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We analyze nonlinear radiation imprisonment �RI� effects in an optically thick vapor in different temperature
regimes. An analytical approach is proposed to treat nonlinear decay problems. Special attention is paid to
vapor samples having curvilinear geometries �cylinder, sphere� and being excited by a strong laser pulse. We
derive a number of new formulas for different radiative trapping factors as functions of opacity and propose a
general approach for RI evaluation allowing us to deal with samples both at room and low, or very low,
temperatures, such as those customarily achieved in magneto-optical trap �MOT� experiments. As a result, we
predict a “subnatural” decay of radiation escaping from cold vapors, which can be envisioned as the basis for
a sensitive and reliable MOT diagnostic tool.
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I. INTRODUCTION

If an excited atom is surrounded by absorbing atoms in
the ground state at high enough densities, the resonance ra-
diation will be absorbed and reemitted many times before it
escapes from the gas volume. Radiation imprisonment �RI�
plays an important role in various areas of physics �1,2�. In
astrophysics and spectroscopy, in particular, it must be taken
into account to correctly describe the spectra of celestial bod-
ies �3� or fluorescent signals �2�. Most of the studies on RI
deal with linear equations of radiative energy transfer and
assume a homogeneous vapor as the absorbing medium;
many conventional experiments involving RI have been
treated in the past under similar assumptions. However, sev-
eral emerging experimental situations involve spectral emis-
sion and absorption coefficients that can be both spatially
nonuniform �4,5� and nonisotropic �6�, as, for instance, in
low-temperature atomic samples �MOTs and atom beams�.
Moreover, the RI problem becomes strongly nonlinear if the
excitation of the atomic vapor is produced by a laser pulse
sufficiently strong to saturate the resonance transition �7,8�.
Under such conditions, the optical thickness of the medium
becomes dependent on the density of excited atoms and the
solution of radiation trapping equations appears to be chal-
lenging. Some methods for treating heterogeneous and non-
linear RI problems have been elaborated for astrophysical
applications �3�, but they are restricted mainly to steady state
conditions, flat geometries �e.g., atmospheres of planets� and
an assumption of complete frequency redistribution �CFR� of
the reemitted radiation.

As pointed out in recent decades, RI is involved in impor-
tant heating and loss channels of atoms in MOTs �9�, pre-
venting attainment of arbitrarily low temperatures �10�. Both
the spherical geometry of MOTs and the large intensity of
lasers used in manipulating atoms require considering the
specific behavior of RI in cold samples with nonflat geom-
etries, which cannot be properly described by conventional
methods. Investigations of RI in MOTs both under time-

dependent �4,11,12� and steady-state conditions �5� have
been reported. The results, however, were actually related to
the linear regime of radiative energy transfer. In fact, al-
though intensities of probe lasers used in �4,11� were large
enough to access the nonlinear regime, the authors restricted
themselves mainly to the late stage of excitation decay,
where the corresponding regime can be considered as truly
linear. It is important to point out that the development of a
nonlinear treatment for RI in MOTs offers the additional ben-
efit of a reliable diagnostic tool, potentially able to determine
the particle density of the sample without the limitations of-
fered by conventional methods �e.g., absorption measure-
ments or techniques based on the evaluation of decay time
constants at the late stage of the process�. Even if the spec-
troscopic features of cold vapors have been extensively in-
vestigated in the past, to the best of our knowledge nonlinear
fluorescence decay processes have not been clearly identified
in experiments, nor predicted by accurate approaches ac-
counting for the specific geometrical and spectral conditions
of the cold vapor. This provides us with a strong motivation
to develop an analytical approach allowing an adequate mod-
eling of the nonlinear processes.

A general method, the so-called geometrical quantization
technique �GQT�, was proposed by us to describe linear RI
problems in optically dense vapors and plasmas with uni-
form �13,14� and nonuniform �15,16� spatial distributions of
the absorbing and emitting centers. In particular, we ex-
ploited GQT to analyze RI processes in MOT conditions
with partial frequency redistribution �PFR� in reemission
events using the theory suggested in �17�. Another analytical
approach to treat time-dependent nonlinear problems was de-
veloped in �8� �hereafter referred to as paper I� and was
considered mainly in its application to a flat absorbing layer
at room temperature and under the CFR. Although it was
pointed out in paper I that this was an approach suitable to
deal with cylindrical and spherical geometries, the corre-
sponding cases were only briefly mentioned. The aim of the
present paper is threefold: �i� We intend to provide a consis-
tent description of simple analytical approaches �outlined in
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paper I� in a form suitable for modeling nonlinear RI pro-
cesses in curvilinear geometries, suitable for atomic beams,
cylindrical plasmas, and spherical MOT configurations; �ii�
thanks to improvements in the numerical codes used for
solving RI equations �18�, we present results able to describe
the specific conditions of experiments in MOTs considered in
�4� �hereafter referred to as paper II� with improved accu-
racy; �iii� based on numerical simulations, we discuss the
occurrence of the so-called subnatural decay of fluorescence
signal �7,8� in low-temperature atomic samples, i.e., we iden-
tify reasonable conditions expected to lead, upon pulsed ex-
citation, initially to a very fast decay, corresponding to effec-
tive decay constants �eff significantly larger than the natural
decay rate, �.

The work is organized as follows: In Sec. II, we define the
problem and give its mathematical description in the form of
a nonlinear RI equation of the Holstein-Biberman-Payne
type. This equation describes the evolution of the excited
state population n��r� , t� of the atoms within the sample; we
also point out how to modify the formalism to recover the
master equation of RI in MOTs. Section III briefly summa-
rizes the results of paper I along with their modifications to
account for MOT conditions �Sec. III B�: We introduce two
reduced equations allowing approximate analytical solutions
for n��r� , t� averaged over the whole sample volume, and over
the initially excited region, respectively, and we determine
the corresponding correction factors needed to accurately
evaluate the involved quantities �Sec. III A�. Section III C
addresses the issue of finding ab initio correction factors for
the reduced equations accounting for the vapor geometry. In
Sec. IV A we demonstrate the accuracy of our analytical
method by comparing its predictions with numerical results
for the case of samples with cylindrical geometry and room
temperature. Then we discuss �Sec. IV B� the phenomena of
fast �subnatural� decrease of photon flux emerging from a
sample operated under typical MOT conditions and derive a
simple equation to obtain analytical solutions for flux evolu-
tion. The Appendix contains details of a mathematical treat-
ment of some features of escape factors related to conditions
of MOT experiments.

II. FORMULATION OF THE PROBLEM

We are interested in the following situation: A strong laser
pulse excites the central part, region A with boundary SA, of
a vapor sample with total volume � �see Fig. 1� and radius
R. If � has a flat geometry �Fig. 1�b��, R corresponds to its
half-width. The intensity of the laser is assumed to be suffi-
ciently large to produce an almost complete saturation of the
resonance transition in region A. This means that the stimu-
lated emission becomes practically equal to the absorption,
so that the effective absorption in region A becomes close to
zero. Our main attention will be focused on the so-called
afterglow regime, i.e., we will investigate the vapor in the
time interval after the end of the saturating pulse. As time
passes, more and more excited atoms situated in A will decay
to the ground state, so that the effective absorption coeffi-
cient increases. However, some of the fluorescence photons
are reabsorbed, which tends to balance the increase in the

effective absorption coefficient. Such cross linking causes a
strong nonlinearity in the radiative transfer equation coupled
with the rate equations of atomic level population.

All of the above features can be accounted for under the
model of a two-level atom within the frame of conventional
Holstein-Biberman-Payne �HBP� theory �1,20,21�. The ap-
proach allows for incorporating both the rate equations and
light-vapor interaction into one nonlinear kinetic integral
equation governing the evolution of the ground-state n1�r� , t�
and excited-state n��r� , t� densities. In presenting the HBP
equation we will follow the notations adopted in paper I. The
effective spectral absorption coefficient ��� ,n��, which de-
scribes the difference between absorption and stimulated
emission, plays a prominent role in describing the process. It
clearly depends on the ground-state and excited-state densi-
ties which in turn depend on the spatial coordinate r� and on
the time t,

���,r�� = �0��n1�r�,t��1 −
n��r�,t�
n1�r�,t�

g1

g�� , �1�

where g1 and g� are the statistical weights of the ground and
of the excited state, respectively, �0 is the absorption coeffi-
cient per unit atom in the center of the absorption line, �0,
and the absorption line shape �� satisfies ��=�0

=1.
The behavior of the profile �� in the line wings strongly

affects the photon trapping effects. According to the quasi-
static theory of the spectral line broadening, the decrease of
�� in the wings is ruled by a power-law function �3,19�, ��

���−�0�−�. Three situations, corresponding to Doppler, Lor-
entz, and mixed profiles, are relevant to describe most ex-
periments,

�D��� = �0
�D� exp�− �D

2 �, �D =
� − �0

	�D
,

�0
�D� =


2

8�3/2
�

	�D

g1

g�n ,

�L��� = �0
�L��1 + �L

2�−1, �L =
� − �0

	�L
, �0

�L� =

2

8�2

�

	�L

ḡ1
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FIG. 1. Scheme of the geometries for the vapor medium �
considered in the text: Region A is directly excited by a strong laser
pulse; the parameter �=rA /R gives the relative size of the excitation
zone. Region B is assumed to be initially nonexcited so that the
vapor opacity 
 is concentrated initially in region B. �a� Curvilinear
configuration �a cylinder or a sphere�. �b� Linear configuration �a
flat layer or a slab�.
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�L� being the absorption coefficient at line center �0
for the Doppler and Lorentz lines with widths 	�D and 	�L.
The total density n=n�+n1 of vapor atoms is assumed to be
independent of position. In the Voigt case, the absorption
coefficient is expressed as �0=�0

�D�. Formally, the exponen-
tial dependence of the Doppler profile can be recovered by
placing �=�D=�. Noteworthy, under the MOT conditions
of paper II, the absorption line corresponds to the Lorentz
one �see the fourth line in Eq. �2��, i.e., the absorption power
index �=�MOT

�ab� =�L=2 �but the power index �MOT
�em� =6 for an

emission line in an optically dense MOT, as we will discuss
in the following�.

As already stated, the initial conditions are given by as-
suming strong saturation of the optical transition in region A
at the end of the exciting laser pulse �t=0�: The excited atom
density nA

� becomes then a noticeable fraction of the total
density n,

nA
� = PnS

�, nS
� 
 n

g�

g1 + g� , �3�

where nS
� corresponds to the complete saturation value of the

resonance state. Thus, according to Eq. �1�, the effective ab-
sorption by the vapor vanishes, and ��� ,nS

��=0 in the region
A provides the saturation parameter P=1. In order to deal
with one-dimensional problems, we assume that the region A
is placed always in the center of the volume �. It is conve-
nient to express its size, the radius rA �see Fig. 1�, in R units
by introducing the nondimensional geometrical parameter �
=rA /R.

The opacity � between two points r� ,r�� , separated by the

distance �= �r�−r�� � is given by the integral

���,r�,r�� ;n�� =	 ���,r�l�dl �4�

calculated over a straight line �with the current coordinate r�l�
connecting r� with r�� . The probability G that a photon emitted

at r�� is reabsorbed at r� depends on the variables introduced
above according to �20,21�,

G�r�,r�� ;n�� =
1

4��2	 ���,r�����,r�� �exp�− ���,r�,r�� ;n���d� .

�5�

The spectral function ��� ,r�� � determines the frequency dis-
tribution of emitted photons and is normalized by

���� ,r�� �d�=1. We note that the expression �5� contains pho-
ton variables and allows for formulating the balance �Hol-
stein� equation for atoms in a closed form,

�n��r�,t�
�t

= − �n��r�,t� + �	
�

G�r�,r�� ;n��n��r�� ,t�d3r�. �6�

Indeed, the excited-state density n� is decreased by the natu-
ral decay occurring at the rate �. On the other hand, n� is
increased by reabsorption of photons that are emitted some-

where else �at the point r�� � in the vapor. As a result, the
second �integral� term contains reabsorption probability G as
the kernel of the �nonlinear� integro-differential equation.
The nonlinear behavior occurs due to the dependence of the
opacity � on n� �see Eqs. �1� and �4��.

Under the conventional model of complete frequency re-
distribution of reemitted photons used in Holstein-Biberman
theory �see �2� for details�, the emission profile ���� is as-
sumed to be proportional to the absorption profile �� and,
thus, does not depend on spatial coordinates. The more gen-
eral Payne treatment �21� deals with a partial frequency re-
distribution �PFR� function for reemission processes, but it is
reduced to the Holstein equations �5� and �6� provided one
can obtain information �from an experiment or computer
simulations� on ���� �14�. The case of PFR under MOT con-
ditions was studied in paper II. Because of very small atom
velocities typical for subthermal samples, the absorption line
shape �MOT��� is described by the conventional Lorentzian
function �L���, Eq. �2� �the fourth line�, with 	�L=� /4�.
The emission profile �p���, however, turns out to exhibit a
specific explicit form

�p
�MOT���� �


p

�

1

1 + �2

1

Vp���
,

Vp��� = 1 −
�L���

p
arctan� p

�L���
� , �7�

which depends on the MOT opacity 
=�0
�M�R via the param-

eter p determined in paper II,


p
−1 


1

�
	

−�

� d�

1 + �2

1

Vp���
, �8�


 =
	S�p� + �

2p/�0
�M� , 	S�p� =

�

2
�1 +

1

2
p

d

dp
ln�p

d
p

dp
�
 . �9�

Equation �9� gives the functional relation between values p
and 
. The function Vp��� can strongly modify the Lorentz-
ian behavior of the MOT emission profile. For small opaci-
ties, p→�, so that �p

�MOT���� coincides with the �L��� pro-
file, while in the region of large 
 �p→0�, �p

�MOT� acquires a
quite different behavior,

�p��
�MOT���� �

1

�

1

1 + �2 , �p�0
�MOT���� �

8

3�

1

�1 + �2�3 .

�10�

In the wings, �p�0
�MOT�������−�0�−6 �4�, i.e., as already antici-

pated, �MOT
�em� =6. In the following �Sec. IV B� we will analyze

in more detail the consequences of such a peculiar depen-
dence of the absorption and emission profiles in the fluores-
cence emission from a MOT sample.
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Equation �6� is a master equation determining all experi-
mentally observable variables, related to both atomic levels
and the fluorescence signal �see Sec. IV�. In completing the
description of our theoretical background, we recall the set of
the main �not very restrictive� assumptions needed in the
following �paper I contains a more detailed discussion�. It is
required that �i� the whole region A is excited homoge-
neously; �ii� a two-level atom model is applicable; �iii� col-
lisional quenching and broadening are negligible; �iv� the
emission profile is independent of position; �v� the laser
pulse must be shorter than the radiative lifetime �−1; �vi� the
laser pulse must be strong enough to cause appreciable satu-
ration of the resonance transition in the excitation of region
A. Since we consider the afterglow stage of the experiment,
high-field effects �e.g., ac-Stark splitting� are expected to be
negligible.

III. REDUCED TRAPPING EQUATIONS

The time-dependent, nonlinear equation �6� can be solved
in its general form via numerical simulation only. If we re-
strict ourselves to some integrated features of the excited
states, namely the total numbers N��t� and NA

��t� of excited
atoms in the region � �with volume V�� and in the region A
�with volume VA�, it is possible to substantially simplify the
treatment. In this section we briefly discuss the reduced
equations for determining N��t� and NA

��t� according to the
method presented in �8�. Special attention is paid to describ-
ing a number of correction factors in kinetic coefficients
which account for different regimes in the decay processes of
the initial excitation. Our main aim is to extend the results of
paper I in order to derive the proper construction of the re-
duced equations allowing sufficiently accurate solutions for
N��t� and NA

��t� for curvilinear geometries and under MOT
conditions.

The relevant rate equations including all correction fac-
tors can be written as

dN�

dt
= − ��ef

�H�
„
�t�… · N��t� , �11�


�t� 
 
„N��t�… = 
�M��1 −
N��t�
nS

�V�
��1 +

N��t�
nS

�VA

	�,


�M� = n�0R , �12�

dNA
��t�

dt
= − ��ef

�H�
„
A�t�… · NA

��t� + ��N� − NA
���ex„
A�t��…�−1,

�13�


A�t� 
 
A„NA
��t�… = 
A

�M��1 −
NA

��t�
nS

�VA
��1 +

NA
��t�

nS
�VA

	A�,


A
�M� = n�0rA. �14�

Equations �11� and �13� must be combined with the initial
conditions N��t=0�=NA

��t=0�= PnS
�VA according to Eq. �3�.

Importantly, Eqs. �11�–�14� were originally obtained under

some simplifying assumptions without correction factors,
i.e., with parameters 	=	A
0 and �
1. In what follows,
we shall discuss in detail the nature of both balance equa-
tions �11� and �13� and the correction factors.

The rate equation �11� has the form of the decay equation
for N� with an effective constant ��ef

�H� corresponding to the
inverse Holstein g0 factor �2,20�. In other words, ��ef

�H� co-
incides with the effective decay rate of the fundamental
mode for the trapping equation in a vapor with total optical
opacity 
�t�. The physical meaning of Eqs. �11� and �12� is as
follows. The effective decay rate of excited atoms depends
on the current sample opacity 
�t�, which, in turn, is deter-
mined by the current value of N��t� via Eq. �12�. If the initial
saturation was complete, i.e., the excitation of the MOT va-
por by the laser pulse has reached the maximum allowed
value Ns

�=nS
�V� �see Eq. �3��, the sample would become

transparent, with 
�t=0�=0. For low excitation power,
N��t� /Ns

��1, as is realized at a later stage of the decay pro-
cess, the opacity 
�t� acquires its maximum value 
�M�

=n�0R.
An effective analytical method to evaluate �ef

�H� factors
was suggested in �13� under the assumption of CFR and
using the geometrical quantization technique,

�ef
�H��
� = 
̃p 
 	

−�

�

d�����Vp���, 
 =
	S̃�p� + 0.5��k − 1�

2p/�0
.

�15�

The parameter k describes here the type of geometry: k=1
for a plane-parallel slab of total thickness 2R; k=2 for a
cylinder with radius R; k=3 for a sphere with radius R �see
also Table I�. The function Vp��� was introduced above, via

Eq. �7�, while 	S̃�p� is obtained with Eq. �9� provided one

exchanges 
p→ 
̃p. We note that �ef
�H� depends on 
 due to

dependence 
�p� involved in Eq. �15�.
The methods of �13� were further developed in paper II

where it was shown that under MOT conditions the Holstein
effective rate constant �MOT

�H� has the following analytical rep-
resentation:

�ef
�H� = �MOT

�H� = 
p �16�

with the dependence on the MOT opacity being given by
Eqs. �8� and �9�, which evidently differs from the previously
introduced equation �15�.

Considering Eq. �13� for a total excitation NA
� of volume

A, we notice that it has the form of a balance equation. The
right-hand side of Eq. �13� consists of two terms. The first

TABLE I. Correction factors 	 for different geometries.

Layer Cylinder Sphere

k=1 k=2 k=3

	� 0.27 �1−�� 0.43�1−�2� 0.57�1−�3�
	G 0 −0.4�2 −�5 /9��3

	 	� 	�+	G 	�+	G

	A 0 −0.4 −5 /9
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one is the rate at which NA
� decreases because of the photons

leaving the region A �at the current opacity 
A�t��. The sec-
ond term corresponds to photons that are emitted in region B
�from secondary-excited atoms� and are then reabsorbed in
region A. The coefficient �ex, thus, plays the role of “inter-
action” constant between the excitation of regions A and B,
and has a form different from that of �ef

�H� �8�,

�ex�
� =
21−k/2

k��k/2�	0

�

d�����

��

�0
	


��/�0

�

dzzk/2−1Kk/2−1�z� .

�17�

The function K� is the modified Bessel function of the sec-
ond kind, while ��x� corresponds to the Euler � function
�22�. MOT conditions can be recovered by applying Eq. �7�
for the emission profile ���� and by setting the value k=3
�spherical geometry�.

The key point of paper I was the possibility to relate the
current values of opacities 
�t� and 
A�t� to the total numbers
of atoms N��t� and NA

��t� via formulas of the kind


�N�� = 
�M��1 −
N�

NS
�� . �18�

However, strictly speaking, this relation is valid for a plane-
parallel slab only �the k=1 case� where the so-called tech-
nique of reduced optical opacities �3� works well.

A. Correction factors

In order to apply Eq. �18� to cylinders and spheres, one
needs to insert some corrections having the form of an addi-
tional multiplier �1+N�	 / �nS

�VA�� accounting for both spe-
cific features of curvilinear geometries �see below� and dif-
ferent aspects of nonlinear decay processes. Analytical
representation of the correction factor 	 may be found ab
initio by solving a set of reference problems. We shall illus-
trate this statement and consider in detail the derivation of
formulas for the geometrical factor 	G �see Sec. III C�. How-
ever, we will first discuss and make relevant comments on
three basic types of correction factors displayed in Table I
and affecting the factor � in Eq. �13�.

The first type of corrections �the first line 	� in Table I�
relates to the single-mode approach. It is well known �2� that
if the initial excitation is localized sharply inside the volume
�, the fluorescence decay process must involve a set of
modes showing different effective radiative constants. Equa-
tion �11�, in contrast, predicts a single-exponential decay of
excitation �at least in the linear limit for small values of the
saturation parameter P� corresponding to the fundamental
mode of the spatial distribution of excited atoms. Single
mode decay is typical when �=rA /R�1, i.e., when the laser
excites the majority of atoms in �. If the initially excited
atoms were concentrated near the sample center ���0�, the
decay, at early times, occurs on a slower time scale than
predicted by Eq. �11�. In order to recover the proper behavior
of N��t�, we must increase the optical opacity 
 in Eq. �18�
by a factor 	�, 
�N��→
�N���1+	��. At later stages of de-
cay, however, only the fundamental mode survives, so the
above correction 	� must be switched off at some time. The
following replacement,


�N�� → 
�M��1 −
N�

NS
���1 +

N�

nS
�VA

	�� , �19�

entering in Eq. �11� provides the proper dynamic interpola-
tion at intermediate times. The values of 	� were derived in
paper I from ab initio positions and are presented in Table I.
Note that no corrections are needed for single-mode decays
���1�. The multiplier �1−�k� in 	� cancels the correction
for such � values.

The second type of correction has a similar origin but
relates to the excited atom distribution nB

��r�� in region B �see
Fig. 1�. The “coupling” constant �ex �Eq. �17�� accounting
for excitation of atoms in region A by reemitted photons in
region B implies that the distribution nB

� is concentrated near
the boundary of the central region A �see paper I�. Such a
picture, valid at early times, is no longer true when the fun-
damental mode starts determining the atom distribution in
volume �; that requires a dynamic correction of the form

�ex„
A�t�… → �ex„�
A�t�…�−1. �20�

It turns out that this replacement does not affect the NA
�

curves when no correction is needed. Indeed, at the begin-
ning of the decay when x=�
A�t��1, the function �ex�x�
�x has a linear dependence on its argument �it follows di-
rectly from Eq. �17�� and, hence, the dependence on � in Eq.
�20� is cancelled out. In contrast, the � factor influences
strongly the value of �ex for large 
A�t�. A proper choice of �
thus allows one to account for the spatial diffusion of excited
atoms occurring due to radiation trapping processes in region
B. The Appendix reports the details for the evaluation of the
correction factor covering the three geometries under consid-
eration for samples at room temperature,

�1+2��1 − �2�� = �N�

NA
� − 1� �ex���

�ef
�H����

�k�
A
�M��, �k�
A

�M��

=
�ex�
A

�M��
�ef

�H��
A
�M��

�ef
�H����

�ex���
, �21�

NA
� = F��� 
 	

0

�R

drrk−1nH
� �r�, N� = F�� = 1�,

nH
� �r� = �1 − r2/R2��. �22�

A universal method for fast evaluation of �ef
�H� for flat layers

�k=1�, cylinders �k=2�, and spheres �k=3� at room tempera-
ture was developed in �13� and summarized in Eq. �15�. Im-
portantly, both factors �ex�
� and �ef

�H��
� have the same be-
havior ��
��
−2� at large opacities �3,13�, so that the
functions �k�
� have the asymptotic values �k�
=��=1. Un-
der the assumption of complete frequency redistribution, the
spectral parameter � involved in Eq. �21� is determined by
the wings of the line profile

� = �� − 1�/�2�� , �23�

and it has values �L=0.25 ��L=0.5� and �D=0.5 ��D=�� for
Lorentz and Doppler profiles, respectively. Furthermore, the
spatial dependence nH

� �r� of the Holstein fundamental mode
of decay is determined as well by the parameter �, nH

� �r�
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��1−r2 /R2��. This fact allows us to evaluate easily the ratio
N� /NA

� entering Eq. �21�. We stress that the function �k re-
flects the dependence of 
 factors on the opacity of region A
and depends on the geometry type via the escape factors.
Figure 2 shows the values of �k as a function of the opacity

A

�M� for different types of geometry in the case of a Doppler
profile. As demonstrated in paper I, the Doppler profile rep-
resents a reference case for all spectral profiles with extended
wings and a divergent �infinite� value of photon mean free
path. For this reason, in Eqs. �21� and �22� the Doppler value
�=0.5 can be used to obtain important information on the
behavior of the �k function, including the already mentioned
asymptotic value ��k�
=��=1�. Table II shows the ratio
�ex��� /�ef

�H���� entering Eq. �21�.

B. Modifications for low-temperature samples

The discussion presented in the preceding section, where
a Doppler profile has been explicitly considered, is success-
ful in providing results valid for a wide variety of geom-
etries, but it fails in describing the peculiar behavior of low-
temperature samples. Since our goal is to reliably predict RI
in cold samples, in particular those realized in a MOT, we
must take into account specific modifications. We start noting
that, as discussed above, the correction represented by the
factor � implies that functions �ex�
� and �ef

�H��
� have simi-
lar asymptotes ��
→���
−2�. In low-temperature samples,
i.e., in a MOT, the CFR assumption is no longer valid, which
manifests itself in quite different values of wing indices
�MOT for absorption ��MOT

�ab� =2� and emission ��MOT
�em� =6� pro-

files at high opacities. By assuming a spherical geometry
�k=3�, an essential simplification of Eq. �17� can be
achieved,

�ex�
� = �ex
�MOT��
� =

1

3
	

0

�

d��p
�MOT����


��

�0
exp�−


��

�0
� .

�24�

As shown in the Appendix, the direct consequences of the
occurrence of PFR of reemitted photons in cold samples is a
different power-law dependence of escape factors �ex, �ef

�H�,

�ex�
� �
20�

27

1


2.5 , �ef
�H��
� �

8�2

9

1


2 , �25�

when 
�1. This leads to a formal divergence of the ratio
�ef

�H���� /�ex��� entering Eq. �21�. The asymptotic behavior
�ef

�H��
−2 corresponds to the spectral parameter value
�MOT=1 typical for spectral lines with a finite value of pho-
ton mean free path. With this �MOT value in mind, in the case
of spherical MOT configurations it is easy to modify Eq. �21�
to the form

�MOT
3.5 =

5�1 − �3� − 3�1 − �5�
�3�1 − �2��5 − 3�2�

6�

4.5�
A
�M�

��MOT�
A
�M��, �MOT�
� =

4.5�
�ex�
�
6��ef

�H��
�
. �26�

This validates the asymptotic value �MOT�
=��=1. The de-
pendence of �MOT on the opacity 
A

�M� of region A is dis-
played in Fig. 2 �solid line�.

C. Correction factors on the curvilinear geometry

Curvilinearity of geometry gives rise to the last type of
correction factors. Let us consider the transient situation oc-
curring at early stages, when the whole region A has a zero
opacity 
=0, so that photons see the volume � with a “hole”
A �simulating the region without absorption� inside � �Fig.
1�. The hole is filled with excited atoms with a density equal
to the saturation density n

s
*. The local probability ��r� for a

photon emitted at the point r to freely escape from volume �
depends on the position r. In order to demonstrate the dis-
tinct role of a flat geometry, we investigate the case ��1
under the assumption that photon absorption occurs at the
boundary S, in a layer with a small geometrical thickness,
R−rA�R, but with a rather large opacity, 
=�0n�R−rA�
�1 �see Fig. 1�. The features of ��r� for a linear geometry
�k=1� arise from its independence on r. For this reason we
can assign to volume � the universal linear opacity 

=�0n�R−rA�. The latter statement follows as well from Eq.
�18�, if one rewrites it as


�t = 0� = �0nR�1 −
VA

V�
� ⇒ 
L�t = 0� = k�0n�R − rA�

�27�

and sets k=1 for a layer. Assuming Eq. �18� to be valid for
all types of cells we thus simulated formally the linear ge-
ometry.

For curvilinear geometries the above simplification is no
longer valid. This can be easily understood from a simple

FIG. 2. Behavior of �k factors as a function of the opacity 
A
�M�.

The solid curve corresponds to the MOT function determined by
Eq. �26�. Other curves are evaluated via Eq. �21� and relate to
different configurations of vapor volumes at room temperature: �i�
A sphere �k=3�; �ii� a cylinder �k=2�; �iii� a flat slab �k=1�. �k

factors achieve a unit asymptotic value at infinity for all the con-
sidered configurations.

TABLE II. The ratio P=�ex��� /�ef
�H���� for different

geometries.

Layer Cylinder Sphere

k=1 k=2 k=3

P 1 / 1.82 � / 12.6 1 / 6.42
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example: a hollow cylinder as seen from its center is a nor-
mal cylinder with optical thickness 
; a photon emitted close
to the boundary, on the other hand, sees a plane-parallel
layer. It is therefore not surprising that there is a discrepancy
between the linear values of opacity evaluated via Eq. �27�
and the actual transient values 
a�t=0�, which determine
photon escape and enter into the argument of the effective
trapping constant �ef.

Evaluations performed in Appendix D of paper I provide
the following results for 
a:


a�t = 0� = �k�0n�R − rA� , �28�

with �2=0.5�1+ln 4��1.19 for a cylinder and �3=1+1 /3
for a sphere. We must introduce the correction factor 	G into
Eq. �27�,


�t = 0� = k�0n�R − rA��1 + 	G
�k�� , �29�

in such a way that Eqs. �29� and �28� become equal; that
leads immediately to ab initio determination of the geometri-
cal correction factors: 	G=−0.4 for a cylinder �k=2� and
	G=−�5 /9� for a sphere �k=3�.

The factors 	G describe changes in the escape factor due
to a hollow-cylinder or hollow-sphere geometry. Note that
the curvilinear cells restore their normal geometrical charac-
teristics at later times of the decay and the geometrical cor-
rections must be terminated as in Eq. �19�. Remarkably, in
the case of laser focusing in the center of the volume � ��
�0�, the size of hollow zones becomes very small and the
geometrical correction vanishes. It is therefore reasonable to
use the approximation 	G���=�k	G, as listed in Table I. We
underline an important difference between factors 	G and
	�: The correction for the single-mode approach was large
when the initially excited region was very small, �=0, and
zero for �=1. For the geometry modifications, the correction
is zero for �=0 and large for �=1. It means that the correc-
tions 	G and 	� work practically independently of each other
and the final total correction 	 accounting for all possible
regimes of decay processes can be taken as their sum �see
Table I�.

Finally, the above corrections must be carried out for re-
gion A as well. Since the laser covers all atoms in VA, it
corresponds formally to the case ��1 and the correction is
accomplished by setting 	A
	��=1�, as displayed in Table
I.

IV. RESULTS AND DISCUSSION

The system of two equations �11� and �13� provides a
comparatively simple tool for analytical evaluation of the
nonlinear decay processes under investigation. The factors 	
and 	A are summarized in Table I, while the parameter � is
determined for the different cases we have considered via
Eq. �21� with the spectral parameter �=0.5, and via Eq. �26�
��=1�. Universal algorithms to evaluate the Holstein trap-
ping factors �ef

�H��
� for room-temperature samples are de-
scribed in Ref. �13�. For MOT conditions, �ef

�H��
� has the
form of Eqs. �16�, �8�, and �9�, as discussed in detail in paper
II. The escape factors �ex�
� are expressed through Eqs. �17�
and �24�. It is worth noting that the explicit dependence of

N��t� on time t is given by the single equation �11�, so that it
is possible to derive a one-dimensional closed equation for
the determination of NA

��t� with the initial condition NA
��t

=0�= PnS
�VA. For practical purposes, it is convenient to solve

Eq. �13� by exploiting the time dependence of N� on t,

dNA
��t�

dt
= − �N��ef

�H�
„
�M��N��…

dNA
�

dN� . �30�

This allows one to treat NA
� as a function of N� in Eq. �13�

and obtain a solution of NA
��t� in parametric form NA

�(N��t�).

A. Accuracy determination

We demonstrate the efficiency of our approach by analyz-
ing a few examples of evolution for both the excited-state
density and emergent radiation assuming initial and instanta-
neous saturation of the atomic transition �P=1� by the excit-
ing laser pulse. Figures 3 and 4 compare the solutions ob-
tained from our reduced equations �dashed lines� with
numerical simulations �solid lines� in the case of a cylindri-
cal geometry k=2 �e.g., a configuration typical for plasma
and atomic beams� under the CFR assumption. The numeri-
cal results are based on an enhanced algorithm described in
�18�. Figure 3 corresponds to excitation of an infinite cylin-
der of radius R and opacity 
�M�=10 by a laser beam of
radius R /2 ��=0.5� centered along the cylinder axis. The
laser bleaches completely �P=1� the region A. We consider
two types of spectral lines: Doppler and Lorentz �Figs. 3�a�
and 3�b�, respectively�. The agreement between our analyti-
cal results and the numerical simulation in reproducing the

FIG. 3. The case of an infinite cylinder, half-excited ��=0.5�
with opacity 
�M�=10. The normalized decay curves give the total
numbers of excited atoms in the whole considered volume � �N��,
in laser-excited region A �NA

�� and in the remaining region B �NB
��

�see text�. The solid lines represent the result of numerical simula-
tions, according to enhanced code of �18�; the dashed lines are the
solutions of the reduced equations �11� and �13�. �a� Doppler profile
case; �b� Lorentz profile case.
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excited atom evolutions NA
� and NB

� in zones A and B is better
than 5%–7% �we evaluate NB

� =N�−NA
��, and in the cylinder

as a whole �N��.
Evaluation of N��t� allows us to directly evaluate the be-

havior of the total flux J of fluorescence emerging from the
sample � through the obvious relation, J=−dN��t� /dt. Fig-
ure 4 illustrates the decay processes related to an initially
fully excited sample of atoms in a cylinder ��=1�. Two dif-
ferent opacity values 
�M�=50 �Fig. 4�a��, 10 �Fig. 4�b��, and
two kinds �Doppler and Lorentz� of spectral lines are consid-
ered, as specified in the caption. For reference purposes, a
dashed line describing decay at the natural rate � is also
plotted. Finally, the plots in Fig. 5 are evaluated considering
a spherical MOT volume ��=1� and assuming an initial com-
plete bleaching �P=1� of the whole MOT volume; three val-
ues of opacity, 
�M�=2, 
�M�=5, and 
�M�=10, are considered.

Since fluorescence emission, either time integrated, or, in
the case of a pulsed excitation experiment, time resolved, is
the quantity which is typically acquired in conventional ex-
periments, it is rather straightforward to conclude that our
results for the fluorescence behavior, attained within a fast
and accurate analytical approach, can be directly exploited
for the interpretation of experimental data.

B. Subnatural decay in magneto-optical trap

From the experimental point of view, an intuitively ex-
pected manifestation of RI is the increased effective lifetime

eff=1 / ���ef

�H�� compared to the spontaneous one �1 /��, as
can be easily observed upon pulsed excitation. This has been
already well demonstrated in a large number of experiments,
dealing with thermal samples and, more recently, with cold
vapors. The Holstein trapping factor 1 /�ef

�H� defines the mean

number of secondary emission and absorption events occur-
ring before the emitted photons leave the volume �. Data on
the time behavior of the total number N� of excited atoms
presented in Figs. 4�a� and 5�a� confirm such behavior: The
slopes of the N� curves are smaller than that of the dotted
line corresponding to the natural decay of a single isolated
atom, which means, for instance, that measuring the decay
time in a fluorescence experiment leads to values larger than
the natural decay time.

Contrarily to intuitive expectations, the curves shown in
Fig. 4�b� and Fig. 5�b� show that the fluorescence flux J can
decay with a “subnatural” time constant. In fact, the possi-
bility of such subnatural decay was anticipated in �2,7�.
Here, we demonstrate that in the early stages of the decay the
flux of the escaping radiation decreases with an effective
constant �eff, which is larger than the natural decay rate � of
the resonance level. This intriguing phenomenon occurs due
to medium bleaching in the case of total saturation of the
vapor volume. At the beginning of the decay optical opacity
is zero �the bleaching effect�, and photons escape freely. As
the process evolves, the density of absorbing atoms in-
creases; RI starts to imprison the photons, thus playing the
role of an optical shutter that leads to a strong decrease of the
fluorescence signal. As a consequence, an effective subnatu-
ral decay is observed.

To the best of our knowledge, such a phenomenon has
never been observed in experiments dealing with MOT
samples. It can thus be of practical importance to investigate
and make some predictions on the subnatural fluorescence
emission under typical MOT conditions, such as those �deal-
ing with Cs and Rb MOTs� described in �4�. Briefly, the
arrangement of those experiments is as follows. Once the
trapping lasers were shut off by means of acousto-optical and
mechanical shutters, the trapped cold atoms were excited by
a nearly rectangular probe laser pulse with a duration in the
300–1600 ns range. As the repumping laser was left on dur-

FIG. 4. Entirely excited cylinder ��=1�. The solid and dashed
lines represent the results of the numerical �18� and analytical simu-
lations, respectively. �a� Normalized decay curves of the total num-
ber N� of excited atoms for the case of the opacity 
�M�=50. �b�
Normalized decay curves of the emerging fluorescence J for the
case 
�M�=10. The dash-dotted lines correspond to a decay with the
natural lifetime �−1.

FIG. 5. Illustration of decay processes in a MOT for different
values of the opacity 
�M� as marked close to each curve. �a� Nor-
malized decay of the total number N� of excited atoms. �b� Behav-
ior of the emerging fluorescence J. The dash-dotted lines corre-
spond to a decay with the natural lifetime �−1.
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ing the whole cycle of the dark period, the trapped atoms
were considered to be all in the upper hyperfine level of the
ground state �F=3 for 85Rb and F=4 for Cs�. The probe
laser frequency was accurately tuned around the line center
of the D2 transition for Cs and Rb, and the saturation param-
eter s corresponding to the applied laser intensity reached the
value 3.

Similar conditions justify well the two-level approach in
modeling RI in MOTs. We assume also that the MOT vol-
ume has a spherical geometry, i.e., the geometrical parameter
in our treatment can be set to k=3. The time-dependent
structure of the fluorescence signal J is described by the
solution of the balance equations �11� and �12�, which we
rewrite here in a more convenient form,

− J =
dN�

dt
= − ��ef

�H�
„
�N��…N�,


�N��

�M� = �1 −

N�

Ns
���1 −

5

9

N�

Ns
�� . �31�

A special study of RI trapping factors in a MOT was per-
formed in paper II. It was shown that for sufficiently large
values of the probe laser intensities, the Holstein factor
�ef

�H��
� can be calculated through Eq. �16�, as already dis-
cussed in Sec. III. Note that Eqs. �8� and �9� give the para-
metric dependence of the factor �ef

�H��p� on the opacity 
�p�.
The parameter p plays an important role in geometrical
quantization techniques �4,14�. Under MOT conditions, it
controls the shape of spectral distributions for emitted pho-
tons through Eq. �7�. In the present study, omitting all details,
we mention only that p directly relates to 
 and the ratio
�0

�L� / p may be interpreted as a reduced opacity. Large opacity
corresponds to small values of p, so that Eq. �7� predicts a
��−�0�−6 law of wing emission decrease in MOT profiles.

Figure 5�b� shows the calculated MOT fluorescence sig-
nals �solid curves� for different values of the opacity 
M �as
indicated by the numbers near the curves�. Also shown is the
natural decay of the fluorescence with time constant �−1

�dash-dotted line�. The subnatural behavior of the fluores-
cence decay at times t�0.5�−1 is clearly seen even for
opacities as small as 
M =2, which can be customarily
achieved in conventional MOT experiments. Another impor-
tant observation follows from the comparison between the
shapes of the fluorescence signals: The initial slopes of the
curves are very sensitive to the opacity, which allows their
exploitation for accurate and reliable MOT diagnostics. As a
matter of fact, the most informative part of the subnatural
signals belongs to early decay times, which do not suffer
from the background noise and the poor signal-to-noise ratio
typical for analysis of the late decay stages used in the con-
ventional effective lifetime measurement based methods.
This circumstance is the distinguishing feature of potential
future methods based on the measurement of the subnatural
decay, which is expected to lead to more accurate and sensi-
tive evaluation of the MOT operating conditions, in particu-
lar its density. Experimental verification of the above phe-
nomena is planned with an alkali MOT.

V. SUMMARY AND CONCLUSIONS

We have analyzed a special class of nonlinear time-
dependent integro-differential problems related to radiative
energy transfer processes in optically dense vapor samples
under both room-temperature and low-temperature condi-
tions, such as those achieved in a MOT. Namely, the evolu-
tion of the excited atom population n��r� , t� created by a
strong and short laser pulse is the main object of our interest.
Saturation of the vapor leads to dependence of its effective
optical opacity on n�, and hence the radiation trapping ac-
quires a nonlinear character. We have developed compara-
tively simple reduced trapping equations allowing for ana-
lytical solutions of the excited-state density in the directly
excited region, in the fluorescence-excited region, and of the
density averaged over the whole vapor sample. We empha-
size that having initially derived the reduced equations for
somewhat restricted conditions, we succeeded in a substan-
tial extension of their validity through the introduction of
three types of correction factors. These corrections account
for different regimes of RI decay processes. The actual
implementation of the correction factors provides effective
means to control the occurrence of competitive regimes at
different time intervals. Since the corrections are obtained
from ab initio principles and are based on solutions of a
number of reference problems modeling different aspects of
the evolution of excited atoms, they are expected to drasti-
cally improve the final accuracy. Comparisons with numeri-
cal results show the accuracy to be better than 5%–8% in the
cases of the practically relevant Doppler, Lorentz, and Voigt
line profiles.

Special attention has been given to analyze vapor samples
of curvilinear geometries. In particular, it has been demon-
strated that the method of reduced optical depths, which up
to now has been employed for plane-parallel geometries of
solar and planet atmospheres �3� can be extended with proper
corrections to describe nonlinear trapping decay evolution of
escaping photons from cylindrical or spherical configurations
of vapor cells and MOTs.

We have eventually succeeded as well in modifying our
formalism to deal with partial frequency redistribution prob-
lems typical for MOT experiments. To the best of our knowl-
edge, no efficient conventional numerical algorithms are
available for the prediction of nonlinear radiative dynamics
of excited atom population in cold samples. Indeed, on the
one hand, Monte Carlo methods fail to work in general non-
linear situations and, on the other hand, traditional treatments
of PFR effects based on the piecewise-constant approxima-
tion or on the propagator function methods face ill-defined
problems in evaluating MOT emission profiles �11�.

Thanks to the development of our model, we could simu-
late the radiation emerging from vapor samples under typical
MOT conditions. One of the interesting findings relates to
the different asymptotic behavior of trapping factors as com-
pared to the case of room-temperature samples. We demon-
strated that bleaching of the MOT volume by the probe laser
pulse results in decreasing the effective decay time of the
initial part of the fluorescence signal below the natural life-
time. Quite remarkably, the rate constant of this so-called
subnatural decay appears to be strongly dependent on the
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atom density and can thus be envisioned as a sensitive and
reliable diagnostic tool with potential applications in cold
and ultracold samples.
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APPENDIX

The correction factor � introduced in Sec. III A can be
evaluated based on the requirement that the evolution of ex-
cited atom density n��r� , t� at late times of afterglow should
be correct, i.e., the n� decay is ruled by the fundamental
mode characteristics: n��r� , t�=CnH

� �r�exp�−��ef
�H�t�, where C

is some constant. The space profile nH
� �r���1−r2 /R2�� of

the fundamental mode is determined by the spectral param-
eter � while the decay constant �ef

�H�=�ef
�H��
�M�� is the so-

called Holstein trapping factor �13� for absorbing media with
opacity 
�M�. The total atom number Ni

��t� in different parts
of the vapor volume can be evaluated as Ni

��t��CNi
� exp�

−��ef
�H�t�, which reduces Eq. �13� to a simple equality

− �ef
�H��
�M��NA

� = − �ef
�H��
A

�M��NA
� + �N� − NA

��
1

�
�ex�
A

�M��� ,

�A1�

with NA
� and N� to be expressed via Eq. �22�. Equation �A1�

allows for a straightforward determination of the � values in
the form of Eq. �21� if one takes into account the following
factorization properties of escape factors at large opacities

�M� and 
A

�M� �see details in paper I�:

�ef
�H��
�M��/�ef

�H��
A
�M�� = � 
A



�2�

= �2�,

�ex��
A��−1 = �ex�
A��−1−2�.

�A2�

Note that for the sake of simplicity we have arranged the

multipliers in a special manner to obtain an uniform normal-
ization �k�
A

�M�=��=1.
The asymptotic behavior ��
→���
−2� mentioned in

Sec. III A and ensuring the validity of relations �A2� are well
known for traditional emission spectral lines at room-
temperature conditions. In MOT experiments, however,
emission and absorption profiles have quite different shapes
�see Sec. III B� at high opacities so that escape factor asymp-
totes must be carefully considered. Starting from the Hol-
stein function �ef

�H��
� determined by Eqs. �8�, �9�, and �16�,
one immediately finds a simple relation between the dimen-
sionless parameter p̃= p /�0

�M� �the so-called inverse reduced
opacity �13�� and the opacity 
 when 
 is large, p̃
=�. The
expansion of the function Vp���, Eq. �7�, over the small pa-
rameter p̃ �
→�� transforms integral �8� to the asymptote


p
−1 �

3p̃2

�
	

−�

� d�

�1 + �2�3 =
9p2

8
, p̃
 = �, 
 → � ,

�A3�

which is equal to Eq. �25�.
Considering Eq. �24�, it is clear that when 
→�, the main

contribution to the integral over the frequency � comes from
large values of � �where 
���1�. For this reason, one may
set 1+�2��2 in both �p

�MOT���� �Eq. �7�� and �MOT��� �Eq.
�2�� profiles and thus reduce Eq. �24�,

�ex
�MOT��
� =


p

3�
	

−�

� d�


�4�̃���
exp�− 
�−2�,

�̃��� = 1 −
1

p̃
�2arctan�p̃
�2� . �A4�

A natural scaling �=x�
 with the following transformation
of the integration variable x=1 /y yields

�ex
�MOT��
� =

2
p

3��

	

0

� dyy2

�̃�1/y�
exp�− y2�, 
 → � .

�A5�

Having in mind that p̃
=�, finding the numerical value
1.127 for the integral over y, and accounting for the asymp-
tote �A3�, we obtain the result presented in Eq. �25�.
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