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In apertureless near-field optical microscopy the vertical dithering of the tip, associated with
demodulation at higher harmonics (n> 1), allows us to suppress the far-field background, providing
artifact free elastic scattering images. This paper analyzes, both theoretically and experimentally, the
physical origin of the background signal at the different harmonics and the mechanisms underlying
its rejection for the general case of propagative-field illumination. We show that Fourier components
of the background must be expected at every harmonic, evidencing why demodulation at higher
harmonics is not an inherently background-free technique, and assessing the experimental
conditions in which it becomes like that. In particular, we put forward the fundamental roles of both
the harmonic order and the tip oscillation amplitude in the background suppression mechanisms.
Furthermore, we outline how the lock-in detection of the signals amplitude can enhance the
nonlinear dependence of the background on the tip-sample distance. Such effect provides a more
subtle source of topography artifacts since the optical maps become qualitatively uncorrelated from
the topographic counterpart, requiring an upgrade of the criteria to assess the absence of artifacts

from the optical maps. © 2006 American Institute of Physics. [DOI: 10.1063/1.2208527]

I. INTRODUCTION

Scanning near-field optical microscopyl (SNOM) over-
comes the diffraction limit (~X\/2) by scanning a nanometric
probe close to the sample surface. The superior resolution of
SNOM arises from the exploitation of the evanescent com-
ponents of the electromagnetic field, the so-called near field,
in the probe-sample optical interaction. Due to the evanes-
cent nature of the near fields, the tip must follow the surface
at close distance (1—-10 nm) during the scanning process [the
so-called constant gap operation mode (CGM)]. Aperture-
SNOM employs the aperture present at the apex of a tapered,
metal coated-optical fiber as a source of evanescent waves.”
The development of apertureless-SNOM (a-SNOM) tech-
niques (see Ref. 3, for example) has demonstrated that the
use of a sharp tip ending with a nanometer-scale radius of
curvature can provide a local enhancement of the field by
several orders of magnitude.4 Optical imaging with spatial
resolution in the 1-10 nm range is thus achievable.® In an
ideal elastic scattering SNOM experiment, the radiation
reaching the detector should originate only from the nano-
metric region of the probe-sample optical interaction. In
practice, conversely, the total signal is dominated by a large
background (BKG) contribution due to stray light scattered
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by other sources that interfere at the detector. The probe
shaft, the optical elements, or portions of the sample “far”
from the probe are typical examples of undesirable sources
of stray light. The major inconvenience arises from the fact
that, since the phase of the stray fields depends on the mutual
distance among these sources, the BKG is not a constant
plateau, but is sensitive to any position variation of each
source. In CGM, in particular, the continuous displacement
of the sample, driven by the feedback loop, induces a strong
cross talk between the topographical and the optical BKG,
whose variations are orders of magnitude more intense than
any near-field scattering. Fictitious optical maps are thus ob-
tained, which do not contain information about the optical
properties of the sample, but rather representing an optical
readout of the topog1raphy.7’8 This is what is called a topog-
raphy, or z-motion artifact.

The most important challenge in a-SNOM is, therefore,
the extraction of the tiny near-field scattering signal from the
huge far-field background. Moreover, due to the fact that the
scattering amplitude scales down with the sixth power of the
sample’s dimensions,’ such a task becomes more challenging
as the structures we want to investigate become smaller. In
order to extract the near-field signal from the BKG two steps
are required. Firstly, the near-field scattering must be ampli-
fied. This is done through heterodyne,lo’11 or homodyneu_14
interferometric techniques or, when available, by exploiting
material-dependent phonon-polariton resonances.>'® Sec-
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ondly, the BKG must be suppressed exploiting the nonlinear
part of the tip-sample optical interaction.”"” Experimentally,
the latter task is accomplished by vertically vibrating the tip
at frequency w and demodulating the optical signal at higher
harmonics (nw, n> l).lo’12 This modus operandi induces, in
fact, a high-pass filtering of the spatial frequencies of the
electromagnetic fields."® ! The result is that the low-spatial-
frequency propagating fields, such as the BKG, are largely
suppressed, while the evanescent near-field components are
enhanced. Demodulation at higher harmonics is thus consid-
ered to be an artifact-free imaging technique.

In this paper we precise under which conditions this
statement can be considered true. The paper is organized as
follows. In Sec. II we characterize experimentally the BKG
signal, in particular its dc, first, and second harmonic com-
ponents. The results are thus interpreted in a theoretical
framework (Sec. IIT) which allows us to point out the crucial
role of the tip oscillation amplitude in the suppression of the
BKG at the higher harmonics. Finally, in Sec. IV, we outline
how the nonlinear dependence of the BKG can yield ficti-
tious optical images quite different from the topographical
counterpart, allowing us to discuss and update the criteria for
artifacts identification.

Il. EXPERIMENT

Approach curves, in which the optical signal is moni-
tored as a function of the tip-sample distance, represent a
powerful instrument to characterize the different far-field and
near-field regimes in the tip-sample optical interaction. In
particular, they have already allowed us to evidence the oc-
currence of harmonic components of the far-field BKG at the
first'®*** and the second harmonics,'"** superimposed to
the genuine near-field scattering whose signature shows up at
close tip-sample distances (<100 nm). Similar to the dc
component, the harmonic components of the BKG (BKG,,
n=1,2,...) depend both on the tip’s and on the sample’s
position, representing a source of topography artifacts. Ap-
proach curves permit to quantitatively assess the degree of
artifact content in the optical signal through the ratio g,
=BKG,/NF, between the oscillation amplitude of the
nth-harmonic BKG,, (measured in the far-field region) and

-

the near-field signal enhancement NF, demodulated at the
same harmonic (measured when the tip goes in contact with
the sample). In the visible spectrum (A=633 nm), first har-
monic demodulation leads to values &, ~ 1 for tip oscillation
amplitudes ranging from a few nanometers to a few tens of
nanometers.' " The consequent optical maps will be very
likely affected by severe topography artifacts. Demodulation
at the second harmonic demonstrates a stronger BKG rejec-
tion power (g,<107").""'? Demodulation at the third har-
monic guarantees artifact-free imaging”’lz’24 since BKGgj is
always rejected below the noise level (e5=0). The situation
is better in the IR (A\=10.6 um) where the first harmonic
demodulation already provides a good BKG suppression
power (g;~0.2), even for tip oscillation amplitudes in the
100 nm range.23’25

In order to quantitatively assess such results, we have
experimentally studied the interferential nature of the far-
field BKG with an apparatus working in transmission mode,
as shown in Fig. 1. The tip is held in the far field, at a
distance Z; of several micrometers from a glass coverslip,
used as sample, which is scanned in the vertical direction
with an excursion Az of a few microns. The scan allows us to
monitor the BKG dependence (both the dc component and
all the harmonics) on the tip-sample distance. Our tips are
made of gold or silver by means of electrochemical etching
techniques%’27 and are glued orthogonally to one prong of a
quartz tuning fork (TF).”® The assembly is oscillated at reso-
nance (f,.=w/2m7~30 kHz) by a dither piezo, driven by a
function generator (V1) which allows us to change the tip
oscillation amplitude (. A measure of the effective tip oscil-
lation amplitude is retrieved either intelrferometrically29 or by
monitoring the piezocurrent Itp delivered by the fork.**!
The light is provided by a HeNe laser (A=632.8 nm). The
beam is coupled to a single mode optical fiber whose output
is collimated, reflected by a 50% beam splitter (BS), and
finally focused on the tip shaft by means of a lens (L) (f
=8 mm). The sample is mounted on a piezotube, scanned up
and down by means of a linear voltage ramp (V2), never
touching the tip. The field backscattered by the tip shaft (E)
is collected by the same lens and focused on the detector
[photomultiplier tube (PMT)]. Due to the high coherence de-
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FIG. 2. Plot of the background signals BKG, [(a) and (c)], [BKG,]| (b), and
BKG, (d) vs the sample position.

gree of the light source, Er will interfere with the back re-
flection of the sample (Eg), and with part of the light re-
flected back by the lens (E;). The total intensity measured by
the PMT will thus be

BKG = |[Ep+ Es+ E,|?
= |Ex + |Eg|* + |E,|* + 2 Re(E}; Eg)
+2Re(E, E;) +2 Re(E; Ey). (1)

As we will see in more detail in the next section, this
signal results in a sum of harmonic terms BKG
=3,BKG,(ay,Az) cos(nwt), which represent the optical
background in a typical a-SNOM experiment with
propagative-field illumination. In order to measure both the
dc part (BKG) and the harmonics BKG,, the PMT output is
split in two channels and fed, respectively, to a low-pass
filter (f,,=1.6 kHz<<f,), and to a lock-in amplifier syn-
chronous with the nth harmonic of the TF oscillation fre-
quency . We set the lock-in in amplifier to acquire either
the in-phase signal BKG,(ag,z), or its modulus
IBKG,(ay,z)|. A digital oscilloscope is used to monitor the
optical signals, simultaneously with the voltage V2 providing
the sample vertical position.

Figures 2(a) and 2(b) show, respectively, the behavior of
BKG, and of the modulus of BKG,(|BKG;|), simultaneously
acquired as a function of the sample position, in a scan of
1 wm wide (scan speed of 2 um/s). In Figs. 2(c) and 2(d)
we report two analogous plots for the BKG,, and the in-phase
component of BKG,, simultaneously acquired. All the sig-
nals show an oscillatory dependence on the sample excursion
Az, with periodicity N/2, as a result of the interference of the
fields scattered by the stray light sources mentioned above.
The signals BKG,, are characterized by a modulation ampli-
tude A,, superimposed to a constant offset C, due, as we will
see in the next section, to the backscattering of the lens. Such
an offset causes the height asymmetry of the bumps in the
IBKG,| signal [Fig. 2(b)]. The tip oscillation amplitude in
this experiment is ay=(3.4+0.1) nm,*’ equivalent to a ratio
ag/N=5x1073.

To quantitatively assess the BKG rejection power of the
demodulation technique at higher harmonics, we can define
the quantity R,=A,/A,, namely, the nth-harmonic-to-dc
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FIG. 3. (Color online) Dependence of the BKG modulation amplitudes
Ag.12 [(@)—(c) respectively] on the tuning-fork current (bottom axes) and on
the tip oscillation amplitude (top axes). The linear behavior of A, is pointed
out by a linear fit [(b), red line)]. A power fit (y=Ax", n=2.02+0.02) of the
second harmonic BKG amplitude [(c), red line)] evidences the quadratic
dependence on ay.

background ratio, representing the fraction between the
modulation amplitude of the background demodulated at the
nth harmonic with respect to the dc one. The stronger the
BKG suppression, the smaller the expected values of R,. In
the experiment of Fig. 2, for example, we find decreasing
values of R;=6.5X1072 and R,=1.2X 1073, assessing that
the second harmonic demodulation provides a BKG suppres-
sion superior of a factor of 50 with respect to the first har-
monic demodulation. Even though the BKG, is still well
above the noise. To study how the BKG,, depends on the tip
oscillation amplitude we have monitored the modulation am-
plitudes A, varying a, in the 0.5-10 nm range. In Figs.
3(a)-3(c) we can note the different behaviors of the three
signals. While A is almost constant, the first and the second
harmonics increase with a, respectively, in a linear and a
quadratic fashion [red line in Fig. 3(c)]. In Fig. 4 we plot the
corresponding values of R, [Fig. 4(a)] and R, [Fig. 4(b)].
These graphics allow us to conclude that for tip oscillation
amplitudes in the 0.5—10 nm range first harmonic demodu-
lation reduces the BKG by one-two orders of magnitude. For
tip oscillation amplitudes between 2 and 10 nm, second har-
monic demodulation reduces the BKG down to 1072—107%,
In our experiment the second harmonic signal is rejected
below the noise level for ay<<1.5 nm.
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FIG. 4. (Color online) Plot of the nth-harmonic-to-dc-BKG ratio R, as a
function of the tip oscillation amplitude for first (a) and second harmonic (b)
demodulations. The red lines reproduce the linear (a) and quadratic (b) fits
of the experimental data.
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FIG. 5. (Color online) (black symbols) Plot of the dc background observed
when removing the tip from the optical path as a function of the sample
position. (red line) Sinusoidal fit of the experimental data [y
=Asin(4m/N-Az+¢), A=(1.5£0.1) mV].

It is also important to evaluate the contribution of the
field backscattered by the focusing lens to the total BKG
signal. We expect that, since the average tip-lens distance is
constant, the contribution of E; to the harmonic terms BKG,
will be a mere constant offset, i.e., not depending on Az.
Vice versa, the dc term BKG,, due to the interference be-
tween E; and Eg (BKGy=|Es+E,|?), is expected to depend
on the sample’s position Az sinusoidally. For these measure-
ments we have retracted the tip by several millimeters and
swept the sample vertically. In Fig. 5 (black symbols) we
clearly see the interference pattern due to the variation of the
lens-sample distance. From a measure of the oscillation am-
plitude (the red line is from a sinusoidal fit), we assess that
the sample-lens interference contribution amounts to a maxi-
mum of 10% of the total dc background (BKG,) measured in
the presence of the tip [Fig. 2(a)].

lll. THEORETICAL INTERPRETATION

Understanding the physical origin of the background
and, in particular, of its harmonic components is of funda-
mental importance to model and quantitatively evaluate the
rejection power of higher harmonics demodulation. The pres-
ence of a modulated background field using evanescent wave
illumination has been pointed out by Hudlet et al.* Concern-
ing the illumination with propagative fields, Formanek
et al.,”> within the dipole approximation,9 have shown that
the BKG modulated at the first harmonic arises from the
interplay of the fields reflected by the sample and the tip
shaft. In the following, we will see that such stray fields,
interfering with the back reflection of the focusing optics,
provide a source of BKG components modulated at every
harmonic of the tip vibration frequency. Following the
scheme of Fig. 1, let us define a coordinate system in which
the z-axis points downward and the zero coincides with the
tip position at rest. In this system we call a(f)=a, cos(wt) the
tip position, [, the position of the focusing lens, z(f)=z,
+Az(#) the sample position, where z; is the position at rest,
and Az(7) the vertical excursion as a function of the time. As
we have observed experimentally, the BKG originates from
the interference on the detector of three fields backscattered
by the tip shaft Ep=E," exp(-iA¢y;), the sample’s bottom
surface Eg=E’ exp(-iAdg;), and the focusing optics Ej
=E,°. Where, given k=2m/\, the phases Ay =2k[l,
—a(r)] and A g =2k[1,—2z(2)] are related to the optical path
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differences accumulated by the fields scattered, respectively,
by the tip and by the sample, with respect to the one scat-
tered by the lens, in their travel from the laser to the detector.
Substituting in Eq. (1), the expression reduces to
BKG = C() + BSL COS[¢1 - ZkAZ(t)] + BFL
Xcos[ ¢y — 2kag cos(wt)] + Bg cos[ ¢, + 2kAz(1)

—2kag cos(wt)], (2)

where the constant parameters Co=|Eg|>+|Eg]*+|E,|>, By,
=2|E,Es|, Bp =2|E,EF|, and Bps=2|EpEs| depend on the
amount of light backscattered by the single sources. The
phases ¢y=2kly, ¢ =2k(ly—z0), and ¢,=2kz, depend on the
distances of the lens and of the sample at rest from the tip.
The latter quantities can be assumed as constants, as well,
unless mechanical or thermal drifts take place moving apart
the scattering sources. Expanding the cosines in Eq. (2) we
find

BKG = Cy + By, cos[2kAz(1) — ¢y ]+ {Br; cos( )
+ Bpg cos| ¢, + 2kAz(t) |}cos[ 2kay cos(wt) ]

+ {BFL Sin(¢0) + BFS Sin[¢2 + 2kAZ(t)]}
Xsin[ 2ka, cos(wt)], (3)

from which we evidence the presence of terms having the
form cos(a cos wr) and sin(a cos wr). The latter expressions
can be developed into a series of terms oscillating at the
harmonic frequencies nw, whose amplitudes are given by the
nth-order Bessel functions of first kind Jn.32 This is formally
the reason why we must expect a BKG signal at every har-
monic order. In particular, the expansion of Eq. (3) yields

BKG = Cj + By, cos[2kAz(1) — ¢ ]+ {Bpy, cos( )
+ BFS COS[¢2 + ZkAZ(t)]} . Jo(zkao)
+ 2{Bp; cos(y) + Bs cos[ ¢, + 2kAz(t)]}

o

X D (= 1)"4,,(2kay)cos[ (2n) of]
n=1
+ 2{BFL Sin(¢0) + BFS Sin[¢2 + ZkAZ(t)]}

o]

X X (= 1)1 (2kag)cos[(2n + 1) wt], (4)
n=0

which is an expression of the form BKGy(ay,Az)
+2,=1BKG,(ay,Az)-cos(nwt), consisting of a dc signal plus
a series of harmonics whose amplitudes depend both on the
sample position and on the tip vibration amplitude. The am-
plitude of the dc component is

BKGQ(ao,AZ) = CO + BSL COS[ZkAZ([) - ¢1]

+Jo(2kay) - {Br, cos(¢y)
+ Bpg cos[ ¢y + 2kAz(1) ]}, (5)

while the amplitudes of the even and of the odd harmonics
are, respectively,
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BKG,,(ay,Az) =2 - (= 1)"J5,(2kay) - {Br cos( )
+ B cos[ ¢, + 2kAz(1) ]}, (6)
and
BKG,,,(ag,Az) =2 - (= 1)"J5,41(2kag) - {Bry sin(¢y)
+ Bpg sin[ ¢, + 2kAz(1)]}. (7)

These expressions represent the transfer functions between
the average vertical position of the sample (Z) and the optical
far-field background. Let us analyze them in more detail. The
dc component is composed of a constant offset C,
+Jo(2kay) - Bgy, cos(¢y) slightly dependent on a, (usually
Cy> Bpy), superimposed to a term

By, cos[2kAz(1) — ¢, ]
+ [Jo(2kay)Brg] - cos[ ¢, + 2kAz(2)], (8)

oscillating with the sample position, with period Az=N\/2.
This term arises from the linear superposition of the sample-
lens and of the tip-sample interferences, respectively. The
two contributions add coherently (amplitude and phase)
yielding the total BKG, signal experimentally observed in
Figs. 2(a) and 2(c). In particular, in absence of the tip [Bgg
=0 in Eq. (8)], the light scattered by the focusing lens leads
to a BKG signal whose modulation amplitude Bg; is much
smaller than Bpg, as reported in Fig. 5. Therefore, since the
second term of Eq. (8) is prevalent, we can conclude that the
dc background depends on the tip-oscillation amplitude as
BKG % Jy(2kag). The structure of the BKG at the higher
harmonics is similar. The even harmonics [Eq. (6)] are char-
acterized by an offset 2(—1)"J,,(2kay)By; cos(¢y), induced
by the backscattering of the lens (By, =2|E,Ep|), plus a term
2(=1)"J,,(2kag) B cos[ ¢, +2kAz(t)] oscillating with the
sample vertical position, whose amplitude A,, scales propor-
tionally to J,(2ka,). The odd harmonics [Eq. (7)] show the
same behavior, but the oscillatory dependence on the sample
position is shifted by 90° with respect to the even ones. For
small oscillations, kay<< <1, we can expand the Bessel func-
tions in power series, finding that the background modulation
amplitude depends on the tip oscillation amplitude through a
polynomial law of the dimensionless quantities (kag)"
% (ay/N)".* To the first order in kag, R, is expected to be

A, _ 2J,(2kap) _ 2 (277(10)”. ©)

"l T Jokag)  ml\ X

That is, the background at the nth harmonic scales down as
the nth power of the ratio a,/\ multiplied by a further factor
1/n!. In particular, the advantage of increasing by 1 the har-
monic order, in terms of BKG reduction, is R,,;/R,
~kay/(n+1). This value must be compared with the near-
field signal loss due to the spatial filtering effect'”'® to assess
the best experimental parameters. In Fig. 6 we plot the BKG
amplitude at the various harmonics A, as a function of
(ap/N) (in the top axis we report the values of a, for \
=633 nm). In the visible range (e.g., for HeNe illumination),
and for a tip oscillation of 20 nm peak to peak (ay,=10 nm),
increasing the harmonic order n=1, 2, and 3 leads to an
increased rejection of the background, whose modulation
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FIG. 6. (Color online) Plot of the background modulation amplitudes at the
various harmonics [dc (black), first (red), second (blue), and third (green)]
as a function of the ratio (ay/N\) (bottom axis) and of @, assuming \
=633 nm (top axis).

amplitude will be reduced to values of 107!, 5% 1073, and
2 X 107* with respect to the dc amplitude. Decreasing the tip
oscillation by one order of magnitude, from 10 to 1 nm
(thicker lines in Fig. 6), has different consequences depend-
ing on the harmonic order of the BKG. While the dc signal
(black line) is almost unaffected, the amplitude of the signal
demodulated at the first, second, and third harmonics (red,
blue, and green lines) is reduced, respectively, by further
one, two, and three orders of magnitude. In the mid IR (A
~10 wm) the technique is even more powerful, since for
ay=10 nm [namely, (a,/\)=~107%], first, second, and third
harmonic demodulations will reduce the BKG amplitude of
factor of 6 X 1073, 2 X 107>, and 4 X 108 with respect to the
dc amplitude, respectively. The higher rejection power in the
IR part of the electromagnetic spectrum explains why far-
field oscillations are clearly visible in the second harmonic
approach curves at in the visible (A=633 nm) reported by
Hillenbrand and Keilmann'' and Roy et al.,24 while there is
just an outline in the 2w curve at A=10.6 um reported by
Formanek et al.”

Decreasing the oscillation amplitude is, however, not the
only way to reduce the BKG. In fact, when we plot the
correct expression |J,(2ka,)| for the amplitude of the BKG
harmonics, as in Fig. 6, it emerges that there are some par-
ticular values of the tip oscillation amplitude a,, that strongly
reduce the BKG. Such values represent the first zeros of the
Bessel functions for which J,(2ka;)=0. The corresponding
values of the ratios a,/\ for n=0,...,4 fall in the interval
ag/N~0.2-0.7, as reported in Table I. In order to reject the
BKG at the nth harmonic we can thus either decrease the
oscillation amplitude to smaller and smaller values, or tune
the oscillation amplitude a, to well defined values a, which

TABLE I. Theoretical values of the ratios @,/\, corresponding to the zeros
of the J, Bessel functions, that yield complete background suppression at
each harmonic n. The values Aa,/a, indicate the precision needed on @, to
have a BKG rejection better than 10° at every harmonic.

Order n=0 n=1 n=2 n=3 n=4
ay/\ 0.191 0.305 0.409 0.508 0.604
Aay/ a 0.0016 0.0013 0.0013 0.001 0.001
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FIG. 7. (Color online) Values of the tip oscillation amplitude @, correspond-
ing to the first zeros of the nth Bessel functions for various wavelengths \.

depend on n and N. The numerical values of a, for some
typical laser wavelengths are shown in Fig. 7. In particular,
in the NUV-visible region (black, red, blue, and green sym-
bols in Fig. 7), the spectrum of values of a, which allow to
null the BKG at the first three harmonics falls in the
100-200 nm range. These values are certainly reasonable for
experimental configurations employing freestanding tips or
atomic force microscopy (AFM) cantilevers,”>** but quite
unusual for systems based on quartz tuning forks, suited for
low oscillation amplitudes. On the contrary, oscillation am-
plitudes of several microns (pink symbols in Fig. 7) would
be required to accomplish such a task in the mid-IR (\
=10.6 um). In order to establish how fine the tuning of a,
must be, we note that the Bessel functions are almost linear
around their first zeros. This implies that the maximum dis-
crepancy interval Aa,/a, allowed to have a BKG rejection of
three orders of magnitude is of the order of 0.1%. More
precise calculations for the different harmonics are reported
in Table 1.”

IV. NONLINEAR TOPOGRAPHY ARTIFACTS

In near-field optical microscopy an artifact can generally
be defined as information recorded in the optical map which
has not an optical origin. In particular, topography artifacts
are induced by the vertical motion of the sample that modu-
lates the intensity of the far-field BKG from point to point.
Such signal, originating from an interference process, is thus
expected to vary on tip-sample distances of the order of the
laser wavelength. In particular, if the topography excursions
are much smaller than A, the coupling can be assumed as
linear,’ leading to optical maps very similar to the topo-
graphical counterpart, and easily identifiable as affected by
artifacts. If the height of the topography structures becomes
comparable with the wavelength, or larger, the sinusoidal
character of the interference profile will provide optical maps
qualitatively different from the topography.8 From the physi-
cal point of view there are almost no differences between
topography artifacts in aperture- and apertureless-SNOM. In
aperture-SNOM (illumination mode), the far-field emission
from the probe interferes with the light reflected by the
sample. In apertureless-SNOM it is the light scattered by the
tip shaft that interferes with the light reflected by the sample
(plus a smaller contribution from the focusing lens which, as
we have seen, is negligible). As a consequence, the BKG
transfer functions are expected to be analogous. Neverthe-
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FIG. 8. (Color online) Approach curves predicted for the dc background (a)
and the modulus of the first three harmonics [(b)-(d), respectively] base on
Egs. (5)—(7), for ay=10 nm and A\=633 nm. The colored circles and the
arrows indicate how the optical signal changes as a function of an increased
sample topography.

less, the different experimental techniques employed to de-
tect the optical signals can yield different results. In aperture-
SNOM, the tip is not vertically dithered and the dc
component S<A+B cos[KAz(t)+ @] is the only signal ac-
quired. It consists of an offset A superimposed to a smaller
modulation (B<<A). K varies from k=2/\ for grazing col-
lection to k=4/\ for a collection geometry parallel to the
tip axis.***¥ In apertureless-SNOM higher harmonics de-
modulation requires the use of a lock-in amplifier whose
output is usually set to provide the modulus of the optical
signal, i.e., S, |A+B cos[ KAz(t)+ ¢]|. Since the modulation
amplitude B is much greater than the offset A (B>A), the
resulting approach curves will be similar to the ones in Fig.
2(b).'""* In particular, monitoring the modulus rather than
the in-phase component of the optical signal, accentuates its
nonlinear dependence on the sample position. The signal, in
fact, will vary on length scales which are about halved, pass-
ing from the minimum to the maximum on distances of
~\/7 [Fig. 2(b)], rather than \/4 [Fig. 2(c)].*™® As a conse-
quence, at least in the visible range, topographic structures as
short as 60 nm are already expected to produce optical arti-
facts nonlinearly related with the topography. To better visu-
alize such phenomenon, starting from Egs. (5)—(7), we have
calculated the approach curves that would be expected for
typical experimental conditions: ay=10 nm, A=633 nm,
0.5% of light back reflected from the lens, 4% from the
sample, and 50% from the tip shaft. In Fig. 8 we show the
behavior of the dc background (a) and the modulus of the
first three harmonics [(b)—(d), respectively] as a function of
the distance between the tip apex and the average sample
plane Z. We assume random phases ¢, and ¢, (since they
depend on the tip length and on the lens position, these pa-
rameters are not really controllable in a experiment). The
position Z=0 corresponds to the contact point of the tip with
the sample surface. In CGM operation, any topographic fea-
ture will cause a drawdown of the sample, and thus an in-
crease of Z. As a consequence, the BKG signal will vary
according to the curves in Fig. 8. It must be noted that, in the
absence of a clear fingerprint of the near-field optical inter-
action in the contact region (Z~0), the optical signal mea-
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FIG. 9. (Color online) [(b) and (f)] dc, [(c) and (g)] first harmonic, and [(d) and (h)] second harmonic BKG maps simulated for a topography [(a) and (e)]
consisting of pillars on a horizontal substrate, having heights of 30 and 300 nm, respectively.

sured will be due entirely to the BKG contribution. And even
the presence of such a fingerprint does not guarantee that the
optical signal, and the corresponding optical image, will be
artifact-free. We must, in fact, assure that the changes of the
optical signal are not entirely due to the BKG modulations,
but do originate from the near-field scattering of the sample.
As a consequence, we should check that at least one of the
following conditions is satisfied: (i) the BKG is actually be-
low the noise level, (ii) the excursions of the recorded optical
signal are larger than the BKG modulations observed in the
far-field region of the approach curves, and (iii) topography
structures located at the same absolute position Z produce
different optical responses (as in Ref. 11). From Eq. (7) we
note that the first and the third harmonic signals have the
same functional dependence on Z [Figs. 8(b) and 8(d)].
Therefore, in the presence of artifacts, the corresponding op-
tical maps are expected to be qualitatively alike (the only
difference relying on the magnitude of the signal). More gen-
erally, we expect the images acquired at the even (or at the
odd) harmonics to be all qualitatively identical, indepen-
dently the specific harmonic order. This would not be the

case, indeed, if some near-field contribution was present,
due to high-pass filtering effect on the image spatial
frequencies.18

It is interesting to visualize the fictitious optical maps
expected for an experiment like the one mentioned above,
assuming the transfer functions plotted in Fig. 8, calculated
from Egs. (5)—(7). In Figs. 9(b)-9(d) we display the images
calculated for the dc, the modulus of the first and of the
second harmonics, respectively, for a sample consisting of
set of truncated cone pillars, having a base diameter of
170 nm and height of 30 nm grown on a flat glass coverslip
with plane parallel faces [Fig. 9(a)]. The total sample’s scat-
tering is assumed to be due entirely to the back reflection of
the bottom coverslip surface, i.e., the scattering of the pillars
is assumed negligible. For small topography excursions op-
tical images qualitatively similar to the topography are re-
trieved, but in the second harmonic map (d) the contrast is
reversed. The different behaviors can be understood consid-
ering the slope of the approach curves at the contact point
(Z=0), which is positive for the dc and the first harmonic
[Figs. 8(a) and 8(b)], and negative the second harmonic [Fig.
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FIG. 10. [(a)-(h)] Line profiles drawn in correspondence of the red lines marked in Fig. 9. The optical profiles reproduce the topography only for the 30 nm

high pillars.
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consisting of pillars on an wedgelike substrate (inclination 10°), having heights of 30 and 300 nm, respectively.

8(c)]. For structures sensibly higher, as in Fig. 9(e) (300 nm,
i.e., ~N\/2), the optical maps become different from the to-
pography. Annular structures appear in the dc image [Fig.
9(f)], double rings show up in the |BKG,| map [Fig. 9(g)],
and contrast reversal is observed in the |[BKG,| image [Fig.
9(h)]. The qualitative difference with respect to the previous
structures is better highlighted in the line profiles of Fig. 10.
For pillar heights of ~N\/20 the transfer functions in Figs.
8(a) and 8(c) behave as linear. Therefore, the optical signals
in Figs. 10(b) and 10(d) perfectly reproduce the topography
profile [Fig. 10(a)], apart from the contrast inversion in the
second harmonic. In particular, no lateral shifts are expected
between the topography and the optical maps. For pillar
heights of ~\/2 [Fig. 10(e)] the nonlinearity of the transfer
function yields modulations of the optical signals [Figs.
10(f)—10(h)] difficult to attribute to artifacts a priori. The
signal enhancement at the structure edges [Figs. 10(g) and
10(h)] could, in fact, be confused with a high-pass spatial
frequency ﬁltering,18 and be attributed to a genuine near-field
effect. In particular, the shape and position of such modula-
tions will depend on several experimental parameters such as
the harmonic number (experimentally controllable), or the
phases ¢, and ¢, (hard to control). This phenomenon ap-
pears in a more intriguing way if we suppose that the pillars
have grown a coverslip whose faces are not perfectly paral-
lel, i.e., on a wedge. In such case the different local thick-
nesses of the coverslip will induce a further optical path dif-
ference between the light reflected by the bottom sample’s
surface, and the light reflected by the tip, which will follow
the top coverslip surface. As a consequence, a long range
sinusoidal modulation is expected in the optical signal, as
evidenced in Fig. 11. Here we have simulated the fictitious
optical maps (dc, modulus of the first, and of the second
harmonics) that would arise for pillars of 30 nm [(b)—(d)]
and 300 nm [(f)—(h)] grown onto a coverslip whose top sur-
face is inclined of ~10° with respect to the bottom surface,
assumed horizontal [Figs. 11(a) and 11(e)]. In particular, we
see [Fig. 11(b)] that the pillars can appear either brighter or
darker with respect to the neighboring substrate, depending
on their spatial position within the map. It can also happen

that half of the single pillar looks bright and half dark, as in
Fig. 11(d). Moreover, if the pillars height is comparable to
the wavelength, they can appear as bright rings with a dark
interior or vice versa within the same map, as in Figs. 11(g)
and 11(h). A similar situation has already been encountered
experimentally for the demodulated first harmonic signal.3
The presence of artifacts in similar cases can, however, be
pointed out noting that an increase of the harmonic order is
not expected to suppress the long range modulations. The
disappearance of such a feature from the images at higher
harmonics can thus be held as a proof of the genuine nature
of the optical signal.3’19

V. CONCLUSIONS

In conclusion, the far-field background in apertureless-
SNOM has been studied both theoretically and experimen-
tally. The occurrence of a signal modulated at frequencies
multiple of the tip vibration, evidenced experimentally, has
been explained in terms of the interference process taking
place between the stray fields scattered by the sample and the
tip shaft. The field backscattered by the focusing optics has
been observed to take part only in the dc background. The
power-law dependence of the background modulations on
the harmonic order has been put forward, explaining quanti-
tatively the advantages obtainable in terms of background
rejection when increasing the harmonic order. The possibility
to reject the background decreasing the tip oscillation ampli-
tude has been quantitatively studied, highlighting at the same
time the opportunity to exploit the first zeros of the Bessel
functions to accomplish such a task. Finally, we have simu-
lated different optical images induced by topography arti-
facts in correspondence to structures having different
heights, deposited on flat or inclined substrates, pointing out
the effect of the nonlinear BKG-topography coupling, and of
the substrate inclination on the optical images. This, in par-
ticular, has allowed us to state a precise criterion for artefacts
identification: in presence of artefacts, the optical maps ac-
quired at the even harmonics are expected to be all qualita-
tively identical, independently from the harmonic order (the
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same states for the odd harmonics). Therefore, any qualita-
tive difference between the optical images acquired at differ-
ent even (or odd) harmonics, such as the disappearance of
the long range modulations induced by the sample’s inclina-
tion, can be reasonably ascribed to genuine near-field spatial
filtering effects. !>

ACKNOWLEDGMENTS

A. Mlayah is acknowledged for carefully reading the
manuscript and M. Labardi for fruitful discussions. One of
the authors (G.B.) acknowledges the CNR-CNRS bilateral
project “Diffusione Raman e Brillouin risonante e localizza-
zione spaziale di stati elettronici” for partial financial sup-
port. PG.G. is grateful to D. Arigod and G. Spinella for their
skill ful expertise in the SNOM setup manufacturing.

'D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984); A.
Lewis, M. Isaacson, A. Harootunian, and A. Murray, Ultramicroscopy 13,
227 (1984).

’E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak,
Science 251, 1468 (1991).

3s. Patane, P. G. Gucciardi, M. Labardi, and M. Allegrini, Riv. Nuovo
Cimento 27, 1 (2004).

L. Novotny, R. X. Bian, and X.-S. Xie, Phys. Rev. Lett. 79, 645 (1997).
R, Zenhausern, Y. Martin, and H. K. Wickramasinghe, Science 269, 1083
(1995).

°A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, Opt. Lett. 21,
1315 (1996).

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, J. Appl.
Phys. 81, 2492 (1997).

8P, G. Gucciardi and M. Colocci, Appl. Phys. Lett. 79, 1543 (2001).

°B. Knoll and F. Keilmann, Opt. Commun. 182, 321 (2000).

1R Hillenbrand and F. Keilmann, Phys. Rev. Lett. 85, 3029 (2000).

"R. Hillenbrand and F. Keilmann, Appl. Phys. Lett. 80, 25 (2001).

2M. Labardi, S. Patan¢, and M. Allegrini, Appl. Phys. Lett. 77, 621 (2000).

BT, Taubner, F. Keilmann, and R. Hillenbrand, Nano Lett. 4, 1669
(2004).

ML, Stebunova, B. B. Abramitchev, and G. C. Walker, Rev. Sci. Instrum.
74, 3670 (2003).

J. Appl. Phys. 99, 124309 (2006)

1R, Hillenbrand, T. Taubner, and F. Keilmann, Nature (London) 418, 159
(2002).

15N. Ocelic and R. Hillenbrand, Nat. Mater. 3, 606 (2004).

M. Labardi, S. Patan, and M. Allegrini, in Proceedings of the Interna-
tional School of Physics “E. Fermi” Course CXLIV, Varenna, Italy, 2001,
edited by M. Allegrini, N. Garcia, and O. Marti (I0S, Amsterdam, 2001),
p. 425.

8. N. Walford e al., J. Appl. Phys. 89, 5159 (2001).

N. Maghelli, M. Labardi, S. Patane, F. Irrera, and M. Allegrini, J. Microsc.
202, 84 (2001).

20, Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot,
and P. Royer, Opt. Express 13, 5553 (2005).

2T, Taubner, F. Keilmann, and R. Hillenbrand, J. Korean Phys. Soc. 47,
S213 (2005).

223, Hudlet ef al., Opt. Commun. 230, 245 (2004).

2F, Formanek, Y. De Wilde, and L. Aigouy, J. Appl. Phys. 93, 9548 (2003).

*D. Roy, S. H. Leong, and M. E. Welland, J. Korean Phys. Soc. 47, S140
(2005).

5F. Formanek, Y. De Wilde, and L. Aigouy, Ultramicroscopy 103, 133
(2005).

2B, Ren, G. Picardi, and B. Pettinger, Rev. Sci. Instrum. 75, 837 (2004).

7K. Dickmann, F. Demming, and J. Jersch, Rev. Sci. Instrum. 67, 845
(1996).

E. Cefali, S. Patang, P. G. Gucciardi, M. Labardi, and M. Allegrini, J.
Microsc. 210, 262 (2003).

P, G. Gucciardi, G. Bachelier, A. Mlayah, and M. Allegrini, Rev. Sci.
Instrum. 76, 036105 (2005).

%K. Karrai and R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).

K. Karrai, in Le Champ Proche Optique, edited by D. Courjon and C.
Bainier (Springer-Verlag, Paris, 2001).

M. R. Spiegel and J. Liu, Mathematical Handbook of Formulas and
Tables, 2nd ed. (McGraw-Hill, New York, 1999).

3R. Bachelot, P. Gleyzes, and A. C. Boccara, Opt. Lett. 20, 1924 (1995).

#p_M. Adam, P. Royer, R. Laddada, and J.-L. Bijeon, Ultramicroscopy 71,
327 (1998).

*Here R, is considered as the ratio between the BKG amplitude A, and the
amplitude of the dc component A, calculated in the small oscillations
approximation (kay<<1).

*p.G. Gucciardi, M. Labardi, S. Gennai, F. Lazzeri, and M. Allegrini, Rev.
Sci. Instrum. 68, 3088 (1997).

3"M. Labardi, P. G. Gucciardi, M. Allegrini, and C. Pelosi, Appl. Phys. A:
Mater. Sci. Process. 66, S397 (1998).

*The periodicity is exactly halved only if the offset is null.

Downloaded 11 Dec 2007 to 131.114.129.199. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



