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Silicate glasses show a very intricate rheological 
behavior, where the complex mechanical response is 
strongly affected by structural relaxation. This paper is 
concerned with modeling the viscoelastic behavior of 
silicates together with the evolution of their structural 
state. Conventional phenomenological equations for 
structural recovery (Adam-Gibbs, Tool-
Narayanaswamy, etc.) are discussed, and some 
unresolved problems are formulated. 

 
Introduction 
 
   Rheology was a key parameter in the birth of our planet 
where geological silicates were melted and solidified in a 
process that is still ongoing today. The importance of this field 
to mankind is evident from phenomena such as explosive 
volcanism and earthquakes. It is estimated that about a billion 
people live under the shadow of active geological processes. 
The field of rheology of silicates is also of great importance 
for industrial applications ranging from production of rock 
wool and glasses for automobiles, windows and bottles to 
applications of vitreous silica in wave-guides and 
semiconductor wafers. A number of excellent studies have 
been conducted in this field in the past two decades. However, 
the interaction between the specialists in rheology and those in 
the fields of geology, chemistry and physics of silicates has 
been rather weak. In the present work, we focus on the 
inclusion of structural parameters into constitutive models, 
because viscosity and elastic moduli of silicates depend not 
only on temperature and pressure, but also of the structural 
state of the material. 
 
Silicates  
 
   This paper is concerned with the rheology of silicates in the 
melt state, the state of supercooled liquid, and the glassy state. 
Most features of the melt are preserved in all the three states, 
in spite of significant differences in their physical properties. 
The structure of silicates is rather complex, and it strongly 
depends on the chemical composition: natural melts contain a 
number of different oxides that noticeably affect their 
response. For example, the mechanical behavior of a viscous 
silica-rich “granitic” melt differs substantially from that of a  
“basaltic” melt which is silica poor.  
 

Structural relaxation 
 
   The term “structural relaxation” (and its synonyms, 
structural recovery and physical aging) is conventionally 
employed to describe slow changes in the internal structure of 
a glass with time [1,2]. Here, the adjective ”slow" means that 
the rate of structure alteration is smaller than the characteristic 
rates of other time-dependent phenomena (such as the 
viscoelastic response observed in creep and relaxation tests, 
the viscoplastic effects revealed in tensile tests with various 
strain rates, the mass-transport rates measured in diffusion 
tests, and so on.). 
   It is presumed that above the glass transition temperature, 
the internal structure of a supercooled liquid changes so 
rapidly with temperature that the equilibrium state of a 
material is reached practically immediately (within the 
experimental time-scale). This means that a supercooled liquid 
may be treated as an equilibrated medium at any instant. 
   Below the glass transition temperature, the rate of change of 
the internal structure decreases severely, which implies that 
the time necessary for reaching an equilibrium state after a 
step change in temperature noticeably exceeds the time-scale 
of standard tests. Structural recovery is conventionally thought 
of as development of the internal structure of a glass with time 
driven by changes in temperature or pressure. 
   An excellent review on structural relaxation in silicates is 
provided by Stebbins et al. [3] where a number of complex 
phenomena are described. Previous work on silicate rheology 
focused mainly on characterizing systems in thermal 
equilibrium and extrapolating the effect of temperature on 
moduli and viscosities by means of the Arrhenius or WLF 
equation. The mechanical relaxation is traditionally 
represented using Maxwell models with a single relaxation 
time or a series of relaxation times. By analogy with this 
approach, structural relaxation (evolution of the internal 
structure to a new equilibrium state driven by a step change in 
temperature, pressure or chemical composition) is described 
by the function 
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where τ is a structural relaxation rime. At small departures 
from equilibrium, the temperature dependence of τ is 
approximated by an Arrhenius relationship 
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where τ0 is a constant, ∆H* is the activation enthalpy, R is the 
gas constant and T is the absolute temperature. As Equation 
(2) is not very good at quantitatively describing observations 
in a one-step thermal test, more sophisticated 
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phenomenological equations are often used. According to the 
Tool concept [4], the relaxation process depends not only 
upon the current temperature, but also on a fictive 
temperature, Tf,  that characterizes the internal structure of a 
silicate. Tf   is conventionally thought of as a temperature at 
which the current internal structure of a glass is in equilibrium. 
As the current state of an amorphous material depends on the 
history of its treatment, the fictive temperature is a function of 
the entire thermal pre-history. With reference to the 
Narayanaswamy [5] equation, we write 
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where the parameter x lies between 0 and 1. Another 
conventional model for structural relaxation is provided by the 
Adam-Gibbs equation [6],  
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where B is a constant and Sc(Tf) is the configurational entropy. 
An important advantage of Eq. (4) is that the configurational 
entropy can be found experimentally, for example, from 
calorimetric experiments [7] and FTIR (Fourier transform 
infrared spectroscopy) measurements  [8]. The configurational 
entropy is expressed in terms of the fictive temperature as: 
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where ∆Cp is the difference between the liquid and the glass 
heat capacities in regions close to Tg   and  Tk is  
the Kauzmann temperature (the temperature at which the 
configurational entropy vanishes in equilibrium). Several 
experimental studies have proven that Eq. (1) describes the 
isothermal relaxation rather poorly. To improve the quality of 
data fitting, a model with a distribution of relaxation times can 
be employed [9] 
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where gi are temperature-independent coefficients that satisfy 
the condition Σ gi=1. Despite the advantage of Eq. (6) 
compared to Eq. (1) in the approximation of experimental 
data, the description of the micro-mechanisms corresponding 
to various relaxation times for structural relaxation in Eq. (6) 
still remains a challenge for researchers. For transient 
experiments, where temperature varies with time, the above 

equations can be used in combination with the Boltzmann 
superposition principle.  
   At Tg the viscosity for all glasses is in the range of 1012 Pa s 
and the typical shear modulus is of order of 30 GPa. The 
characteristic time for mechanical relaxation is, consequently, 
around 100 s, and the structural relaxation time is of order of 
200 s [6], while a significant part of structural changes occur 
after 400 s [1]. These estimates reveal that structural 
relaxation times are quite long compared to the time-scale of 
many industrial processes in the vicinity of Tg.  
 
Viscosity functions accounting for structural relaxation 
 
   To take into account structural changes in a rheological 
model, we combine Eqs. (4) and (5)  
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Here Ae is a pre-exponential coefficient and the constant Be is 
proportional to the free energy. Eq. (7) was tested by several 
authors and was found to be acceptable for the analysis of 
Newtonian fluids. For a non-Newtonian flow, one can 
combine the Adam-Gibbs formula (4) with e.g. a Carreau type 
[11] model for shear viscosity to obtain 
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where λ is a characteristic time, and the viscosity plateau at 
high shear rates is neglected.  Equation (8) is proposed here 
for the first time, and it has to be further evaluated in viscosity 
tests on non-Newtonian fluids. 
 
Rheometry 
 
   High temperatures and very corrosive melts combined with 
large variations in viscosity  (typically more than 10 decades 
from Tg to the temperatures above liquidus) make rheometry 
of stone a challenge. Due to crystallization of melts, viscosity 
can be directly measured above the liquidus temperature and 
in some limited range above Tg (for rapidly quenched melts) 
only, whereas in the interval between these temperatures it has 
to be extrapolated. Several methods exist for determining 
viscosities of silicate melts and glasses. In our laboratory, the 
concentric cylinder method is commonly used. Adopting the 
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DIN standard geometry for spindle heads, the crucible is 
chosen to provide a medium gap size  
(0.5 < Rspindel/Rcrucible < 0.99). The spindle shaft is extended to 
reach out of an oven and is connected to a Paar-Physica MC1 
rheometer. Both crucible and spindle are made of 80% 
Platinum and 20% Rhodium by weight. The oven can reach 
temperatures of over 1900 K. Some data obtained by this 
method are plotted in Figure 1. Other methods that have been 
used include capillary rheometry [12, 13] at temperatures 
above 1500 K in a graphite rheometer under inert gas. At 
lower temperatures near Tg, available methods are ball 
indentation, biaxial compression and solid bar oscillatory 
rheometry. Fiber elongation is used to measure the response in 
tensile tests. The high-frequency behavior is analyzed by 
ultrasonic methods.  
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Figure 1. Viscosity versus the inverse normalized (with Tg) 
temperature. DGG is a German standard glass (wt%: 71.7 SiO2, 1.2 
Al2O3, 0.1 TiO2, 0.2 FeO, 6.7 CaO, 4.2 MgO, 15.0 Na2O, 0.4 K2O, 
0.4 SO3), Basalt O (wt%: 49.3 SiO2, 15.6 Al2O3, 1.8 TiO2, 11.7 FeO, 
10.4 CaO, 6.6 MgO, 3.9 Na2O, 0.7 K2O), Basalt K (wt%: 48,9 SiO2, 
14.0 Al2O3, 2.0 TiO2, 11.9 FeO, 7.0 CaO, 10.0 MgO, 2.9 Na2O, 1.0 
K2O, 0.6 P2O5). SiO2 data are taken from [3]. Data in the entire 
temperature range should reach the same end point at 1012 Pas at 
Tg/T=1. For all measurements T=Tf.  
 
 
   The advantages of the plot in Figure 1 were first discussed 
by Angell, see also [14]. The straight line corresponds to a 
strong liquid (whose behavior follows the Arrhenius law), 
whereas curved lines reflect the response of fragile  (non-
Arrhenius) liquids. In terms of the Adam-Gibbs equation (7), a 
strong liquid has a small ∆Cp, whereas a fragile liquid 
possesses a large ∆Cp. Figure 2 presents experimental data in a 
torsional oscillatory test at 760 oC and their approximation by 
a model derived in [15]. Fair agreement is shown between the 
observations for the storage and loss moduli and the results of 
numerical simulation. The model treats a stone melt (glass) as 
an ensemble of relaxing units with various activation energies 
for rearrangement. The effect of thermal treatment is 
accounted for in terms of the fictive temperature. 

 

 
Figure 2. The storage modulus G’ in GPa (unfilled circles) and the 
loss modulus G’’ GPa (filled circles) versus frequency ω rad/s. 
Symbols: experimental data. 
Solid lines: numerical simulation.  
 
Structural relaxation, background and future 
 
   Three main approaches are conventionally employed to 
describe transformation of the internal structure of a glass. The 
first was proposed about half a century ago, see [2] and the 
references therein, and it is based on the introduction of a 
structural parameter (or several structural parameters) whose 
evolution reflects changes in the microstructure. Traditionally, 
the free volume (the difference between the total volume and 
the volume occupied by molecules) and the fictive 
temperature (the temperature at which the current 
microstructure would be in the equilibrium state) are used as 
structural variables. According to common practice, the 
kinetics of their development is described by 
phenomenological differential (the KAHR relation [16] for the 
free volume, the Tool formula [4] for fictive temperature) or 
integral (the Moynihan concept [9]) equations. 
   To reduce the number of material constants, first-order 
kinetics are conventionally postulated to derive differential 
models that are determined by only one parameter (the 
characteristic time for structural relaxation, τs). To account for 
the nonlinearity and the non-exponentiality of structural 
transformations, τs is treated as a function of a structural 
variable or variables (as an example, we refer to the 
Narayanaswamy equation, Eq. (3), where an analog of the 
Arrhenius formula is applied to describe the effect of fictive 
temperature on τs). 
   The other approach is grounded in the energy-landscape 
concept [17]. The energy landscape is a hypersurface in the 
phase space that corresponds to a constant free energy of an 
amorphous medium. It is presumed that this surface has a 
relatively simple shape when the temperature, T, exceeds the 
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glass transition temperature Tg (which means that the surface 
possesses only a few points of minima), whereas below Tg , 
the topological structure of the hypersurface becomes more 
and more complicated when temperature drops [18]. Given a 
temperature, T< Tg , the energy landscape is treated as a 
surface with a large number of minima (potential wells) 
separated by barriers.  The points of local minima are gathered 
into groups (that correspond to the same valley), while valleys, 
in turn, are assumed to be separated by barriers with larger 
heights (compared to the energy of thermal fluctuations). 
Structural evolution of a glass is treated as motion of a point 
(its position characterizes the current state of the internal 
structure) that hops from one potential well to another over 
barriers  (searching for a global minimum corresponding to the 
equilibrium state), as well as from one valley to another (this 
motion becomes available when the point reaches a saddle 
point that separates two contiguous valleys). Hops over 
barriers are assumed to be driven by thermal excitations and 
are described by the theory of thermally activated processes. 
Transition from one valley to another is attributed either to 
reaching a saddle point between the existing valleys, or to 
changes in the shape of a hypersurface. The latter 
transformations are associated with a dependence of the 
energy landscape on the current state of a glass, which implies 
that new valleys arise (become available for the travelling 
point) when it reaches some local minima. The current state of 
the energy landscape is determined by a configurational 
entropy that is associated with the number of local minima 
(inherent structures) available for a glass in a non-equilibrium 
state. The topology of an energy landscape has been 
adequately described only in the past several years [19], 
whereas the dynamics of motion along the free-energy 
hypersurface have not yet been unambiguously determined. A 
convenient approach was proposed by Bouchaud [20], who 
treated a glass as a set of points located in potential wells with 
various depths and described the hopping process by a 
distribution function for occupied wells. The evolution of the 
distribution function is attributed to jumps to new potential 
wells, when the points reach some reference level in their 
hops. 
   According to the third approach, the glass transition 
temperature is associated with changes in the time-dependent 
behavior of some basic elements from which a glass is 
composed. It is assumed that the response of these basic 
elements (whose physical meaning is determined by the 
chemical composition of a glass) is not affected by their 
interactions above the glass transition temperature. Below Tg, 
these elements are organized into flow units: cooperatively 
rearranging regions (CRR) which relax when all elements in a 
group change their positions with respect to each other 
simultaneously [6]. Cooperative organization of the basic 
elements (a few tetrahedra in silicate glasses or several nearby 
strands in polymer glasses) is induced by a severe reduction 
(with a decrease in temperature) in the volume available for 
rearrangement. 

   Two scenarios were suggested for the non-Debye structural 
relaxation in glasses (that presume organization of flow units 
in parallel and in sequence). According to the first picture 
[21], elements with small activation energies relax first 
preparing a necessary place for rearrangement of elements 
with higher activation energies. Then, elements with higher 
potential energies are rearranged, providing new opportunities 
for the small-energy elements (opening new valleys on the 
energy landscape for these elements). These multi-step 
processes (where more and more elements rearrange in 
sequence) are repeated until an equilibrium state is reached. 
The other scheme is based on rearrangement of cooperative 
regions in parallel [22] (which presumes that various regions 
are characterized by various activation energies, and the 
higher the activation energy is, the longer a region waits for a 
rearrangement event). Rearrangement of a CRR does not 
necessary result in its equilibration (which means that the 
equilibrium state of a region is reached by an infinite sequence 
of rearrangement events only). The current state of a CRR is 
characterized by its configurational entropy that is thought of 
as a measure of irregularity in mutual positions of basic 
elements in a group. The higher is this irregularity, the smaller 
is the activation energy necessary for rearrangement, and the 
larger the rate of structural recovery is. A simple and 
convenient formula that accounts for these correlations is 
provided by the Adam-Gibbs equation. 
   It is natural to assume that these three different approaches 
to the description of evolution of the microstructure of a glass 
should be mutually dependent. Some correlations between 
them may be easily established by using phenomenological 
relations. For example, assuming the configurational entropy, 
Sc, to be expressed in terms of the fictive temperature, Tf, by 
means of a conventional formula that connects entropy and 
temperature, see Eq. (5), a relation may be developed between 
the phenomenological approach and the concept of 
cooperative relaxation. In another example, the 
configurational entropy of an ensemble (that characterizes 
topology of an energy landscape) is assumed to coincide with 
the configurational entropy of a cooperative region. Despite 
the convenience of these assumptions for applied research, 
their physical basis is rather questionable, and their 
justification requires a serious revision of the fundamental 
concepts. 
 
   This brief survey of constitutive models for structural 
relaxation in glasses leads to several questions that remain to 
be answered even at the present stage of our knowledge: 
 
1. Our experimental data [23] reveal striking similarity 

between changes in the configurational entropy (that 
characterizes an ensemble of relaxing domains with 
various activation energies) and changes in relaxation 
times (found by fitting observations in mechanical tests) 
for several amorphous and semicrystalline materials. It 
was also found that the graphs of the mechanical 
relaxation time versus temperature (recalculated using 
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data in rheological tests on equilibrated silicate melts) and 
of the structural relaxation time versus fictive temperature 
(obtained from DSC measurements on silicate glasses) 
plotted on a semi-log scale coincide after their shift along 
the time-axis. These findings lead to a hypothesis that the 
short-term response of a glass (measured when its internal 
structure remains unchanged) and the long-term behavior 
(observed as structural recovery of a glass) are governed 
by the same physical mechanism at the micro-level. What 
the nature of this mechanism is, and in which way 
experimental data in short-terms tests may be used to 
predict structural relaxation remain unclear. 

 
2. Within the energy-landscape concept (where the 

configurational entropy is treated as a measure of 
distribution of cooperatively relaxing units with various 
activation energies), changes in the ensemble of CRRs 
driven by mechanical factors should result in alteration of 
the average rate of structural recovery. Some attempts 
have been undertaken in the past decade to observe 
slowing down of structural relaxation (rejuvenation of a 
glass) induced by loading [24]. Unfortunately, the 
experimental data on polymeric glasses do not provide an 
unambiguous answer to whether the equilibration process 
decelerates. Silicate glasses, where structural recovery 
occurs in a larger interval of temperatures compared to 
polymeric glasses, provide excellent opportunity to check 
the applicability of the energy-landscape theory. 

 
3. There are no doubts that the configurational entropy 

(irrespectively, whether it is defined in terms of the 
energy-landscape theory or within the concept of 
cooperative rearrangement) reflects the evolution of the 
internal structure of a glass. However, the kinetics of 
changes in the configurational entropy should noticeably 
differ for these two approaches. As the configurational 
entropy in the Adam-Gibbs theory cannot be calculated ab 
initio, the only way to predict its evolution with time is 
based on the phenomenological equation (5) and an 
appropriate (Tool-like) kinetic equation for the fictive 
temperature. The energy-landscape concept together with 
physically transparent hypotheses regarding 
transformations of the free-energy hypersurface ensures 
additional opportunities that lead to new classes of 
governing equations. For example, assuming that 
transformation of the micro-structure is governed by the 
fragmentation-aggregation mechanism [25, 26] (which 
means that several CRRs with small activation energies 
can aggregate to form a region with higher activation 
energy and a CRR with a large potential energy can be 
broken into several smaller parts being exited by thermal 
fluctuations), one can describe in a unified fashion such 
interesting phenomena as over-shooting of DSC traces on 
aged samples and a non-monotonic dependence of elastic 
moduli and strength of silicate glasses on time and 
temperature of annealing. We believe that development of 

constitutive equations for the evolution of the energy 
landscape (based on this or similar scenarios) and their 
experimental validation is a challenging task to be 
performed in the coming years. 
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