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Mixing is a key step in almost every polymer processing
operation, affecting material properties, processability and
cost. Polymers are blended with other polymers to combine
their properties and sometimes to even synergistically increase
their physical characteristics. Various additives and reinforcing
agents are mixed with polymers to improve mechanical perfor-
mance and impart specific properties to the mixture. The need
for developing new materials with improved properties seems
to rely nowadays more on blending and compounding than on
the synthesis of chemically new polymers. Therefore the
importance of a more fundamental understanding of the mixing
process and its dynamics is clearly undeniable.

Modeling the mixing process in real mixing equipment
through flow simulations is not an easy task. Major obstacles
include, but are not limited to, the very complex geometry of
the mixing equipment, the time dependent flow boundaries and
the difficulties involved in selecting the appropriate “indexes”
to quantify the mixing process. Yet modeling offers a means
for understanding, designing and controlling the mixing
process.

Key to a fundamental understanding of the mixing process
and its optimization is the clear distinction between
“dispersive” and “non dispersive” mixing mechanisms and
identification of the important process characteristics
enhancing realization of these mechanisms. In a multiphase
system, dispersive mixing involves the reduction in size of a
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Figure 1 Schematic illustration of dispersive and distributive
mixing mechanisms.

cohesive minor component such as clusters of solid particles or
droplets of a liquid. Distributive mixing is the process of
spreading the minor component throughout the matrix in order
to obtain a good spatial distribution. In any mixing device,
these two mechanisms may occur simultaneously or stepwise.
Figure 1 depicts schematically these two mixing mechanisms.

The conditions under which dispersive mixing occurs are
determined by the balance between the cohesive forces holding
agglomerates or droplets together and the disruptive
hydrodynamic forces. Quantitative  studies of droplet breakup in
simple shear and pure elongational flows [2-7 ] have shown that
elongational flows are more effective than simple shear flows,
especially in the case of high viscosity ratios and low
interfacial tensions. Also, the magnitude of the applied stresses
plays a decisive role in determining droplet size distribution.
These studies have been supported by the experimental results
reported by Powell and Mason [8] and the theoretical
calculations of Manas-Zloczower and Feke [9]  who point out
that elongational flows enhance the process of agglomerate
dispersion by comparison with simple shear flows. In mixing
equipment, the complex flow geometry generates field patterns
which represent a superposition of flows ranging from pure
rotation to pure elongation. Thus, assessing dispersive mixing
efficiency in mixing equipment in terms of elongational flow
components as well as stress distributions seems appropriate.

Distributions of stress and elongational flow give only a
global perspective on mixing efficiency in various types of
equipment. A more accurate prediction of mixing efficiency
would involve tracking the elements of the minor phase
(droplets or agglomerates) during their entire residence time in
the equipment and following the dynamics of their breakup /
coalescence. Such an approach, if achievable, would be
prohibitively expensive in terms of computing time and
memory. However, the global approach of characterizing
mixing efficiency provides one a means to discriminate
between various designs and processing conditions for mixing
equipment,
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Besides its intrinsic limitations, this global approach poses
additional problems. As mentioned previously, in most of the
existing mixing equipment we face the problem of time-
dependent flow boundaries. Take as an example the kneading
discs in a corotating twin screw extruder. As the discs rotate,
the overall geometry of the flow field changes. A simplified
approach to solve for this problem is to select a number of
sequential geometries / snapshots for a complete mixing cycle
and solve the flow problem in each geometry [ 10,111. For
polymer processing operations involving laminar flow of
highly viscous materials, the overall effect caused by a
changing geometry can be analyzed from the results obtained
separately in selected sequential geometries. One can then
proceed by solving the field equations for each sequential
geometry. Shear stress distributions can be obtained for all
sequential geometries and subsequently analyzed.

Another important characteristic of the flow field, relevant
for dispersive mixing efficiency is the flow “strength”. Steady
flows can be classified according to the frame invariant concept
of flow strength [ 12,13] in terms of the flow strength
parameter, Sr, is defined as:
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where D is the rate of deformation tensor and fi is the Jaumann
time dGivative  of Q (i.e. the time derivative of D with respect
to a frame that rotates with the angular velocity of the fluid
element). The flow strength parameter ranges from zero for
pure rotational flow to infinity for pure elongational flow; its
value is unity for simple shear flow. Determining the numerical
value of this parameter requires second derivatives of the
velocities. When using the finite element method in flow
simulations, high density mesh designs are required in order to
minimize the numerical error. This requirement is sometimes
impeded by computational limitations, especially when

considering processing equipment of very complex geometries.
A different way to quantify the flow strength is by

considering the relative magnitude of the rate of deformation
and vorticity tensors. A parameter h can be defined as:

(2)

where ID]  and ]w]  are the magnitudes of the rate of strain and
vorticity tensors respectively. The above parameter assumes
values between 0 for pure rotation and 1 for pure elongation,
with a value of 0.5 for simple shear. Although not frame
invariant, it can be used as a first approximation to discriminate
between various equipment designs and processing conditions
in terms of their dispersive mixing efficiency [ 14,151.

Aside from breaking clusters of fine particles or droplets of
an immiscible fluid, the aim of any mixing operation is to
reduce system nonuniformity. This is accomplished by a
repeated rearrangement of the minor component into the major
one. In this case, the mechanism of mixing is distributive.

In order to study distributive mixing, one has to track the
position of the minor component elements (fluid elements or
solid particles) at each instant of the process. This is not an
easy task and is usually achieved only by introducing
simplifying assumptions. In most cases the minor component
elements are assumed to be massless points, such that their
presence does not affect the flow field of the otherwise pure
matrix. Furthermore, interactions among particles, such as Van
der Waals attraction force, friction, and droplet coalescence are
ignored. With these simplifications,  the location of minor com-
ponent elements can be found by tracking their motion in the
mixing region, provided that their initial position is known.
Figure 2 is an illustration of one particle trajectory in a single
screw extruder. Due to computational limitations, usually only
several thousand particles can be tracked simultaneously
during their motion in the equipment.

Figure 2 Particle trajectory in a single screw extruder.
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In order to facilitate a quantitative analysis of the distributive
mixing process, one needs to develop a framework which can
provide the means to differentiate among various equipment
designs or processing conditions. One index, frequently used
for the characterization of distributive mixing efficiency, is the
length stretch (distribution and average value) [ 16].  The length
stretch 1 is defined as the ratio of the distance between two
particles at any time t to the initial value of the distance
between the same particles [ 17]:

where [X01 is the magnitude of the vector defining the initial

locations of two neighboring and distinct particles and 1x1
defines their locations at time t. For a system with N particles,
the length stretch distribution g(l,t) can be calculated from:

2M(1, t)
gcRJt) = AjN(N-  1)

where M(l,t) is the total number of pairs of particles with a
length stretch ranging from ( I- A l/2) to ( 1+ A f/2) at time t.

Using the length stretch distribution, the average length
stretch i at any time can be obtained through the following
relation:

Time evolution of length stretch distributions and average
values can provide a quantitative measure of analysis for
distributive mixing efficiency.

Another way of looking at the overall distribution of the
minor component in the mixing region (usually in batch type
mixing equipment) is by following the dynamics of pairwise
correlation functions [ 18,19]. For a more local analysis of
mixing in batch systems, one can search for regions of the
mixer void of any minor component elements. Such regions
are called islands and they represent an obstacle to efficient
mixing [ 18].

The different indexes of distributive mixing, namely length
stretch distributions, pairwise correlation functions or volume
fraction of islands provide an objective framework to quantify
distributive mixing and to discriminate between various
operating conditions and / or various mixer designs.
Distributive mixing is related to randomization of a minor
component throughout the system and therefore chaotic
features of flow will enhance the process. Ottino and
coworkers [20-23 ] have presented the most systematic
approach to the modeling of distributive mixing by combining
the kinematical foundations of fluid mechanics with chaotic
dynamics.

In polymer processing equipment, the origin of chaos is
related to complicated, time-dependent flow geometry. In
chaotic systems there is a rapid divergence of initial conditions
[24]. One way to quantify the divergence of initial conditions is
by means of Lyapunov exponents. Positive values for the
Lyapunov exponents indicate a more rapid divergence of the
initial positions leading to better distributive mixing.

Simulating the mixing process in mixing equipment relies on
the predictions of flow simulations. The computational
schemes employed in most of the flow analyses in polymer
processing are based on finite difference, finite element and
boundary element methods. The purpose of these methods is to
reduce the partial differential equations for the variables to a
set of simultaneous equations for nodal variables at fixed
points.



Most of the published literature on complex 3-D flow
simulations in polymer processing equipment is based on
either the Newtonian fluid or, at the next level of complexity,
on the Generalized Newtonian Fluid model. Constitutive
equations describing viscoelastic flow phnomena are generally
numerically insoluble in multidimensional flows. One source
of difficulty may arise from the singularity displayed in many
of these constitutive equations when stress is plotted versus the
rate of strain.

Larson [ 13] proposed constitutive equations for materials
with a broad distribution of relaxation times using a power-law
relaxation modulus. Such equations, although rigorously valid
only for special flows (e.g. flows of constant stretch history)
may represent a first step to a numerically tractable approxima-
tion of viscoelastic flows in complex flow geometries.

With today’s rapid advancement in computer technology,
there is hope of solving fluid-flow problems involving complex
fluids in complex geometries. However, challenges still remain
in selecting constitutive equations which describe material
flow behavior realistically, yet are tractable in numerical
solutions and in the interpretation of flow simulation results in
tersms of process efficiency.
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