Techniques and challenges of ion beam preparation

A. Jokinen
Department of Physics, P.O.Box 35 (YFL)
FIN-40014 University of Jyväskylä

EURISOL-DS; Task 9, Beam preparation:

The objective of this task is to study the feasibility of a new generation of devices with orders of magnitude greater capacity and throughput in order to accumulate, cool, bunch and purify the high intensity radioactive ion beams of EURISOL.

(+ Construction of the prototype for beta-beams)

Manipulation of radioactive ions

lon group (beam, cloud) properties

energy degrading energy

stopping, trapping

acceleration

 energy spread cooling, trapping

 emittance cooling

cooling, trapping size

 time structure pulsing

bunching

Ion properties

 charge state ioniz 	ation
--	-------

 ionic/atomic state optical pumping

 spin direction alignment polarization

"ion beam cooler" (gas-filled RF quadrupole) Sub-Task 2

"charge breeder" (ECRIS & EBIS) Sub-Task 3

Target and ion source tricks

- Neutron converter → removal of spallation products
 - Absolute yield lower
 - Compensated by the selectivity (purity)
- Molecular sidebands → reduction of contaminants
 - Transfers products to new clean mass region
 - No laser ionization
- Ion guide approach (IGISOL) → access to refractory elements
 - No chemical selectivity
 - Fast
 - Overall efficiency low
- Laser ionization → chemical selectivity (Z)
 - Enhancement of chemical selectivity
 - Isomeric selectivity
- Laser ion source trap (LIST)
 - Reduction of contaminants → enhanced selectivity

Molecular sidebands

SnS⁺ separation

A. Joinet, PhD thesis, Université de Paris, 2003

Another example: Spectrscopy of n-def. Sr isotopes produced from Nb-target and extracted as SrF molecule

→ No target-produced background (especially Rb!)

Target and ion source tricks

- Neutron converter → removal of spallation products
 - Absolute yield lower
 - Compensated by the selectivity (purity)
- Molecular sidebands → reduction of contaminants
 - Transfers products to new clean mass region
 - No laser ionization
- Ion guide approach (IGISOL) → access to refractory elements
 - No chemical selectivity
 - Fast
 - Overall efficiency low
- Laser ionization → chemical selectivity (Z)
 - Enhancement of chemical selectivity
 - Isomeric selectivity
- Laser ion source trap (LIST)
 - Reduction of contaminants → enhanced selectivity

IGISOL at JYFL

Thin target approach for refractory isotopes:

IGISOL (Ion Guide Isotope Separator On-Line)

Target and ion source tricks

- Neutron converter → removal of spallation products
 - Absolute yield lower
 - Compensated by the selectivity (purity)
- Molecular sidebands → reduction of contaminants
 - Transfers products to new clean mass region
 - No laser ionization
- Ion guide approach (IGISOL) → access to refractory elements
 - No chemical selectivity
 - Fast
 - Overall efficiency low
- Laser ionization → chemical selectivity (Z)
 - Enhancement of chemical selectivity
 - Isomeric selectivity
- Laser ion source trap (LIST)
 - Reduction of contaminants → enhanced selectivity

LIST (Laser ion source trap)

- Atoms exiting the source are selectively ionised by the lasers
- lons produced in the source repelled back >selectivity boost
- Laser-atom interaction length = v_{atom} /laser rep. rate
- Radial overlap over the interaction length critical for efficiency

K. Blaum *et al.*, Nucl. Instr. and Meth. B204, 331 (2003)

ISOLDE: diffusion/effusion of neutrals out from the source IGISOL: gas jet transport of neutrals out from the gas cell

Magnetic separation (HRS at ISOLDE)

EURISOL UG Workshop Firenze, Italy, January 2008

Basics of magnetic separation

Optimization of mass purification

High resolution requires:

└→ Low emittance

Beam cooler

▶ Pre-separator

Large dispersion

Large / multiple magnets

□ Correction of distortions

Sub-1: EURISOL-HRS

EURISOL UG Workshop Firenze, Italy, January 2008 (T. Giles, CERN)

Purification in the Penning trap

Recipe:

Dipole excitation to blow up the radial motion of **all** ions **Mass-selective centering** of wanted ions by resonance quadrupole excitation

- FWHM ~ 20 Hz
- m/ δ m = 145000 possible (above spectrum m/ δ m ~ 53000) V. Kolhinen et al., NIM A528 (2004) 776
- sufficient for mass spectroscopy S. Rinta-Antila, PRC 70 (2004) 011301(R)
- "Experimental approach",
- RIB-facility use demonstrated at REX-ISOLDE

Trap-assisted spectroscopy

JanK Aug 2006

energy [keV]

Ion beam cooler: principle

- reducing beam size, emittance, energy spread
- storing
- bunching (not chopping!)

the output does not depend on the input!

principle

reducing energy spread: thermalization in (He) gas

confinement by E-fields

- RF multipole
- Axial electrodes

Present RFQ-devices

Name	Input Beam		∍am	Input Emittance	Cooler Length	R₀	RF Voltage, Freq, DC	Mass Range	Axial Voltage	Pressure	Output Beam Qualities	
Colette	60 keV ISOLDE beam decelerated to ≤ 10 eV			~ 30 π-mm- mrad	504 mm (15 segments, electrically isolated)	7 mm	Freq : 450 – 700 kHz		0.25 V/cm	0.01 mbar He	Reaccelerated to up to 59.99 keV with long. energy spread ~10 eV	
LPC Cooler	SPIRAL type beams		beams	Up to ~ 100 π-mm-mrad	468 mm (26 segments, electrically isolated)	15 mm	RF : up to 250 Vp, Freq : 500 kHz – 2.2 MHz			up to 0.1 mbar		
SHIPTRAP Cooler		type be	eams 20- \//Δ		1140 mm (29	3.9 mm	RF: 30-200 Vpp, Freq: 800	up to 260	Variable: 0.25	~ 5×10-3 mbar		1
JYFL Cooler	IGISOI	•		•		•	rototyped				Í	y spread < 4
MAFF Cooler	30 decele						ize and op or the elec		•		·n	, Emittance ·mm-mrad to nrad
ORNL Cooler	20-60 RIBs (and axial o					~2 eV
LEBIT Cooler	5 ke'	•	•				$\delta E < 1 eV$				~ few π	
ISCOOL	60 keV				•		fficiencies					1
ISOLTRAP Cooler	60 keV	•	No	t opti	mized for	r hi	gh intensit	ties	! (EUF	RISOL	DS)	าร ≈ 10p mm
TITAN RFCT	continuous 30–60 keV ISAC beam						RF: 1000 Vpp, Freq: 300 kHz - 3 MHz				6 π-mm-mrad at 5 keV energy	extraction
TRIMP Cooler	TRIMP beams		eams		660 mm (segmented)	5 mm	RF= 100 Vp, Freq.: up to 1.5 MHz	6 < A < 250		up to 0.1 mbar		
SPIG Leuven cooler	n IGISOL Beams		eams		124 mm (sextupole rod structure)	1.5 mm	RF= 0-150 Vpp, Freq.: 4.7 MHz			~50 kPa He	Mass Resolving Powe 1450	∍r (MRP)=
Argonne CPT cooer	 r											
SLOWRI cooler				- '	600 mm (segmented sextuple rod structure)	8 mm	RF= 400 Vpp, Freq.: 3.6 MHz			~10 mbar He		

Next-generation RFQ for EURISOL

(in terms of an ion beam/cloud capacity)

$$D = \frac{eV^2}{4mr_0^2\omega_{RF}^2} = \frac{q_{Mathieu}V}{8}$$

e.g. A=40; 2x0=7 mm

@ 2 MHz; V(q=0.4) = 80 V; D = 8 eV

@ 20 MHz; V(q=0.4) = 8000 V; D = 800 eV

10-100-fold increase in the capacity based on the increasing of the pseudopotential depth D

Technical proposalr by O. Gianfrancesco

Technical challenge to be solved: 20-30 MHz at 10 kV!

→ 10 µA beam or cooled bunches of 6x109 ions at 100 Hz rate

Radiofrequency: 10 kV beyond 10 MHz

Design Study

EURISOL UG Workshop Firenze, Italy, January 2008

O. Gianfrancesco, Ph.D. thesis, McGill University (2005)

Cooling and bunching for collinear laser spectroscopy

A. Nieminen et al., Phys. Rev. Lett. 88 (2002) 094801

Collinear laser spectroscopy with bunched beams

Impact on the sensitivity of collinear laser spectroscopy of Zr

5.25 hours @ ~8000 ⁸⁸ Zr per sec (327nm)

After

48 mins @ ~2000 ⁸⁸ Zr per sec (310nm)

A. Nieminen et al., Phys. Rev. Lett. 88 (2002) 094801

J. Äystö and A. Jokinen, J. of Phys. B 36; At. Mol. and Opt. Phys. (2003) 573

Optical pumping in the ion cooler

Preparation for collinear laser spectroscopy: Optical transition with more components or stronger transition

Road to polarization in the

EURISOL UG Workshop Firenze, Italy, January 2008

Charge state breeding: basics

What?

from singly charged to multiply charged ions

"
$$1^+ \rightarrow n^+$$
"

In principle

electron impact stepwise ionization

requirements

- 1) high enough electron energy
- 2) suitable combination of:
 - ionization time (→ confinement)
 - high electron density
 - good vacuum

Why?

Low-E experiments with n⁺ Cost effective post-acceleration

$$E = q V$$
 (cyclotron $E = K \frac{q^2}{A}$)

In practice

ECRIS

electron cyclotron resonance ion source

EBIS

electron beam ion source

EURISOL: Comparison EBIS v. ECRIS

	ECRIS	EBIS/T
Single charge state breeding efficiencies	< 20%	<30% <70% in principle
Beam purity	Support gas and rest gas In between peaks ~0.5-10 nA	Rest gas peaks 10-100 pA; In between peaks <<<1 pA (not detectable)
Beam particle rate limitations	> 1e12/s	<pre><1e9/s with pre-bunching <1e11/s with continuous injection</pre>
Breeding times	50 ms	10 ms
Typical A/q	A/Q >5-6	A/Q > 2.6
Breakup of molecules	Possible	Possible
Energy spread of ions	negligible	Up to 0.5% for high current devices
Operation mode	Continuous	Pulsed
Ion beam acceptance	Large	Small

O. Kester, GSI

P. Delahaye, CERN

Complementary devices!!

Summary

Motivation for beam manipulation:

- Request from experimentalists ←→ Ion beam produced
- Cost-effectiveness of post-acceleration

Parameters to be optimized:

- Composition of the beam (contaminansts, isobaric/isomeric purity)
- Time structure (DC vs pulsed/bunched, width of the bunch)
- Energy spread
- Transverse emittance
- Ionic properties (charge state, polarization, atomic state)

Progress during recent years:

- Innovation of ion coolers and bunchers → success story
- Progress in charge breeding both in ECR and EBIS
- EXOTRAPS, NIPNET, LASER, TRAPSPEC, CHARGE BREEDING, ...

Challenges:

- High intensities → radiation problems, space charge problems, radiation safety problems
- Effciency, (losses):
 - Low-energy nbeam transport and high-resolution separation, in practise 100 %
 - Ion coolers and bunchers: 80 % reachable, reduced efficiency for light masses (← H buffer gas ?)
 - Single charge state efficiencu still low, except for some favorable cases
 - Delay time losses for very short-lived isotopes

Thank you for your attention!

