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Low-Energy Nuclear Physics Research

= Qverarching goal:

To arrive at a comprehensive and unified microsconic description of all
nuclel and their low-energy reactions from the basic interactions hetween
the constituent protons and neutrons

e This is a lofty and ambitious goal that has been a “Holy Grail” in
physics for over fifty years

* “Unified” does not mean that there is a single theoretical method that
will work in all cases
— Self-bound, two-component quantum many-fermion system
— Complicated interaction with at least two- and three-nucleon components

— We seek to describe the properties of “nuclei” ranging from the deuteron to
super-heavy nuclei and neutron stars

* Symbiosis between theory and experiment
— Experiment without theory is just a collection of information
— Theory without experiment is just playing around

Lawrence Livermore National Laboratory UL-

UCRL-PRES-400431




Nuclear physics and the fate of the Universe

= Nuclear reactions are amongst the

most important in the universe

e They are responsible for all the
matter we can see in the
universe

= Big bang
* Nothing much heavier than
lithium
= Star formation

e Fusion of light-ions can make
elements up to Iron

* Triple-alpha reaction to make
120
= Supernovae (?)

e Rapid neutron capture to make
all elements up to Uranium

Supernova 1987A

"Ilow_ were the elements fromironto
uranium malle_?" -- one of the ‘Eleven
Science Questions for the New

Century 1Connecting Quarks with the
Cosmos, Board on Physics and Astronomy,

Lawrence Livermore National Laboratory
UCRL-PRES-400431

auonal Acauemies rress, LLL



Physics of exotic nuclei and the formation of
the elements

= Rapid neutron capture followed
by beta decay to the valley of
stability
= But much is unknown
 Masses
» Beta-decay lifetimes

e Neutron capture rates
— Density of states 24
— Gamma strength functions

= Big question question
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The evolution of shell structure

Our concept shell closures is
probably not as universal as
we once thought
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Experimental excitation
energies for 2* states

Shell gaps and nucleosynthesis
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What do we need?

= More experimental data and better theories

e Structure Theory
— Masses
— Beta-decay lifetimes
— Level densities
— Shell structures
e Reaction Theory
— Optical potential
— Multi-step direct reactions theory

— Break up
— Surrogates

— Pre-equilibrium emission

= Experiment can’t do it all, and theory can'’t do it without
experiment to validate the theories
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Tools of the future - Experiment

= New RIB facilities eon i ressen

. RIKEN
® GSI FAIR (solids)

- EURISOL o
- GANIL _ [ -

e ISAC-TRIUME TR B " SOL ..... . m_w::zm
. FRIB (aka RIA)

T
= Capabilities
80 -
 Re-accelerated beams
e Fast beams 5 0T
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Tools of the future - Theory

System

64 Racks, 64x32x32

= Moore’s law is a theorist's best o I
friend SRR

Moore's Law
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High-performance computing is giving us a tool that
can revolutionize our approach to theoretical physics
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Nuclear Many-Body Problem
Energy, Density, Complexity

quark-gluon nucleon few body systems ™Many body systems

(820(131[% QCD free NN force effective NN force
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The Beginning - The Interaction
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The Beginning - The Interaction

Inter-nucleon Effective-field theory (EFT) N P
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The Beginning - The Three-body Interaction

N2LO 3-body

Also lllinois potential
e GFMC - S. Pieper &
B. Wiringa
Question:
« Canitsolve the A,
puzzle?

e |s the NNN
interaction the origin
of spin-orbit physics
in nuclei?
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Ab initio descriptions of light nuclei
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Can we get around this problem?
Effective interactions

= Choose subspace of ¢, for a calculation (P-space)
* Include most of the relevant physics
* Q-space (excluded - infinite)

= Effective interaction: @ Q

H,PW = EPY,

— Bloch-Horowitz

N A 1 N N
He =PH +PH —QHP
7 E -QH
— Lee-Suzuki:
H,~PXHX'P
QXHX'P=0
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Deficiency of the NN interaction!
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108 is one of the most important tests as all realistic NN-
interactions fail to give the correct grouni state
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E (MeV)

Three-body to the rescue

T 1
| °B : S
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Spin-orbit nhvsics is coming from

B

While the contact terms prevent
collapse

XX

Binding Energy (MeV)
Exp: -64.7507(3)
Thy: -64.03*

“Convergence study not completed

Level ordering is in overall agreement with experiment.
12 to 150 use ~ 6000 GPU hours with 3-houy!
To he consistent we need to go to N3L0?
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The three-body interaction and level ordering

= No-core Shell Model (NCSM)
» QOscillator basis N_, 72
» Effective interaction with Okubo-Lee-Suzuki transformation
e Computationally challenging with three-body
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The three-body interaction and transitions

= M1 and Gamow-Teller are
sensitive to the three-body
interaction
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Reactions with the No-core Shell Model

Light-ion fusion reactions

First generation method
e Not fully ab initio

e Compute radial-cluster overlaps with
NCSM

* Woods-Saxon potential to fix
asymptotic behavior and resonant
state

Resonating group method (RGM)
e Fully ab initio
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Experiments to refine ab initio pictures

Three-body interaction is poorly constrained

 Masses and structure of drip-line nuclei are needed to help
constrain the isospin structure of the three-body interaction

e Gamow-Teller and M1 transitions to constrain the spin-orbit
components of the three-nucleon interaction
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Beyond Light Nuclei
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Traditional methods suffer from computational
overload

= Effective interaction needs to be derived!

e No one really knows how to do this consistently today
= Large dimensions

e Grows dramatically with number of particles

« Consider half-filled fp-gsd

P " 50\ 50
Nops [ N =1.9%x10*
n” A\ n" 25N 25

Current computational capability of
the order 1070 states

Dim =

Even 10 states would require a
computer ~ 106 times more powerful
than any computer available today

1020 |S NOT AN OPTION!
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Auxiliary-Field Monte Carlo

= Try something different

Thermal filter Thermal trace, T=1/p
_pH)2 oy - pH Tr[ﬁ]e‘ﬁﬁ]
E _lim <wtrial e ﬁH/ZHe /J)H/z‘lptrial> E(ﬁ = —
= — -pH
. B—> <wtrial € ﬁH‘wtrial> Tr[e ]
-5BY, VaOs

= The Hamiltonian is two-body and the exponential e
impossible to deal with, so try

One-body operator

.
fdo.ae‘éﬁVa(OAa—saa)z _ 2—7-5 . e_/svaéj _ ﬁ‘Va‘fdo,ae—ﬁvaajﬂﬂsoavaoa
BIV..| \ 27 A

Gaussian factor

* Two-body transformed to one-body -

e Introduced integral over an auxiliary field o
— These o fields have a phyS|caI meanlng think Hartree-Fock
_ Many o fields, also ¢ P — e ABH || o=ABH

J

N, tlme slices
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Path integral formulation

~1Ap |Va|O§ -AB (ga—Vasaoa)éa
2

_LABH V.
ezAﬁH=1:[\/gf1:[do.ae o e o

= Transformed the many-body trace into a path integral and a
trace over a one-body Hamiltonian

_%Aﬁz‘va ‘O-é,n

[DGY = Tr[e_Am(aNt) ) ,e-Aﬂﬁ(%)] Tr[ae-A/ﬂa(aN,) asilon) ]

Tr[e_ Alom) | g Aiom) ]
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Auxiliary-Field Monte Carlo

= We now have a multi-dimensional (many thousands!) integral

. Trloe " D[5]W(5)(0) A X
(6)- 110 ]_TPlow o)), ), -150),

o] o) kTN

1022 states — 2x10° fields

But W(o) must be positive

But, in general, W(o) is not positive definite

g elg vl _ (30, et
N 0 T TN
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The Sign-problem

= Problem: In general, W(o) has bad sign
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Defeating the Sign Problem

= Introduce a shift in the Hamiltonian [maximum of W (o)]

N 2 A~
H=Y va(oa - 6a) +2V6.0,-V35

'70 [ T T T T T I T T T T I T T T T

-30‘:— I 28l\/[ g

— Exact Shell Model
+  AFMC - Old Way

90|
B AFMC - Shifted Contour

100 |

= i
< B N
< 110 -
= L :
= - M— ]
120 . Vit i .
130 -
140 =
_150_ 1 1 1 I I 1 1 1 1 | 1 1 1 1 | 1 1 1 N

0 0.5 1 1.5 2

B (MeV')

First successful application with a realistic interaction
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Results: *5Fe

10 g T T T T [ T T T T ] T T 11
104;_ o * j 18. A. Schiller et al., Phys. Rev. C 68, 054326 (2003).
= § § 19. A. V. Voinov et al., Phys. Rev. C 74, 014314 (2006).
E 10° g E
=g .
%_ . A Ref[19] .
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10" ® AFMC 3
0 oo b e T
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& -160-% o
SRR Y |
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Summary

= Incredible progress over the past five years

= The Future looks bright!
 Link between QCD and NN, NNN, and NNNN interactions
e Ab initio solutions for light nuclei - A ~ 20
* Methods are being developed to treat heavy nuclei

e Theory coupled with experiment will expand our understanding of
nuclei
— New RIB facilities

— High-performance computing
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