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Astronomy

Intensity/phase interferometry first used to assess sizes of
astronomical objects. Astronomers have since moved to details:

red giant Betelguese

Can we do comparably well?

binary star Capella, Monnier
Rep Prog Phy 66(03)789
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Imaging
Geometric information from imaging. General task:

C(q) =

∫
dr K (q, r) S(r)

From data w/ errors, C(q), determine the source S(r).
Requires inversion of the kernel K .
Optical recognition: K - blurring function, max entropy method

C:

S:
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Factorization of Final-State Amplitude in Reactions
2-ptcle inclusive cross section
at low |p1 − p2|

dσ

dp1 dp2
=

∫
dr S′

P(r) |Φ(−)
p1−p2

(r)|2

data source 2-ptcle wf

S′: distribution of emission
points in 2-ptcle CM

Normalizing with 1-ptcle cross sections yields correlation f:

C(p1 − p2) =

dσ
dp1 dp2
dσ
dp1

dσ
dp2

=

∫
dr SP(r) |Φ(−)

p1−p2
(r)|2

Then the relative source is normalized to unity:
∫

dr SP(r) = 1.
Note: C may only give access to the density of relative emission
points in 2-ptcle CM, integrated there over time
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Time Difference in Emission

Anisotropic C, depen-
dent on orientation of q
Attributable to
anisotropic S:

Ghetti et al.,
PRL91(03)0927011

Model fitted to data
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Geometry + Freezeout + Collective Motion

⇐ Fitted radii (longitudinal,
outward & sideward) for an
anisotropic Gaussian

Models fitted to data. . .
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Integral Relation
Of interest is the deviation of correlation function from unity:

R(q) = C(q)−1 =

∫
dr

(
|Φ(−)

q (r)|2 − 1
)

S(r) ≡
∫

dr K (q, r) S(r)

Learning on S possible when |Φ(−)
q (r)|2 deviates from 1, either

due to symmetrization or interaction within the pair.

The spin-averaged kernel K depends only on the relative angle
between q and r. This facilitates the angular decomposition.
With

K (q, r) =
∑

`

(2` + 1) K`(q, r) P`(cos θ) , and

R(q) =
√

4π
∑
`m

R`m(q) Y`m(q̂) , S(r) =
√

4π
∑
`m

S`m(q) Y`m(r̂)

we reduce the 3D relation to a set of 1D:

R`m(q) = 4π

∫
dr r2 K`(q, r) S`m(r)
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` = 0

Different multipolarities of deformation for the source and
correlation functions are directly related to each other.
The ` = 0 version:

R(q) = 4π

∫
dr r2 K0(q, r) S(r)

where R(q), K0 and S(r) – angle-averaged correlation, kernel
and source, respectively.

For pure interference, π0’s or γ’s, Φ
(−)
q (r) = 1√

2

(
eiq·r + e−iq·r),

the kernel K = |Φ|2 − 1 results from the interference term in
|Φ|2 and the correlation-source relation is just the FT:

R0(q) =
2π

q

∫
dr r sin (2qr)S0(r)
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Discretization & Imaging
Source discretization w/ χ2 fitting applies to any pair:

1 Discretize integral
Ri =

∑
j

4π ∆r r2
j K0(qi , rj) S(rj) ≡

∑
j

Kij Sj

2 Vary S(rj) to minimize χ2:

χ2 =
∑

i

(
∑

j Kij Sj −Rexp
i )2

σ2
i

3 Sj -derivative of χ2 yields:∑
ij

1
σ2

i
(Kij Sj −Rexp

i ) Kij = 0

with solution in a mtx form:
S = (K>K )−1 K>Rexp
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... r

S(r)

r1 r2 r3 r4

S1
S2

S3

S4
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pp Imaging

Imaging impacted interpretation of Cpp, Verde PRC65(02)054609

Gauss par: quickly changing radii. Imaging: quickly changing
preequilibrium fraction, non-Gaussian source shapes!
S(r → 0): preequilibrium fraction, entropy, freeze-out ρ. . .
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Anisotropies??

As far as anisotropies are concerned, with

R(q) =
√

4π
∑
`m

R`m(q) Y`m(q̂) , S(r) =
√

4π
∑
`m

S`m(q) Y`m(r̂)

we have

R`m(q) = 4π

∫
dr r2 K`(q, r) S`m(r)

A set of 1D integral relations

Problem: Why turning real quantities, R & S, into imaginary,
R`m & S`m? Other basis than Y`m??
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Cartesian Basis

Take the direction vector: n̂α = (sin θ cos φ, sin θ sin φ, cos θ)

Rank-` tensor product:

(n̂`)α1...α`
≡ n̂α1 n̂α1 . . . n̂α`

=
∑

`′≤`,m

c`′m Y`′m

D(`,`) projection operator that, within the space of rank-`
cartesian tensors, removes Y`′m components with `′ < `:

(Dn̂`)α1...α`
=

∑
m

c`m Y`m

The components Dn̂` are real and can be used to replace Y`m.
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Low-` Cartesian Harmonics

Dn̂0 = 1
(Dn̂1)α = n̂α

(Dn̂2)α1 α2 = n̂α1 n̂α2 −
1
3
δα1 α2

(Dn̂3)α1 α2 α3 = n̂α1 n̂α2 n̂α3 −
1
5
(δα1 α2 n̂α3 + δα1 α3 n̂α2 + δα2 α3 n̂α1)

...

D can be called a detracing operator as∑
α

(Dn̂`)α α α3...α`
= 0
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Decomposition with Cartesian Harmonics

Completeness relation (D = D> = D2):

δ(Ω′ − Ω) =
1

4π

∑
`

(2` + 1)!!

`!

∑
α1...α`

(Dn̂′
`
)α1...α`

(Dn̂`)α1...α`

=
1

4π

∑
`

(2` + 1)!!

`!

∑
α1...α`

(Dn̂′
`
)α1...α`

n̂α1 . . . n̂α`

In consequence

R(q) =

∫
dΩ′ δ(Ω′ − Ω)R(q′) =

∑
`

∑
α1...α`

R(`)
α1...α`

(q) q̂α1 . . . q̂α`

where coefficients are angular moments

R(`)
α1...α`

(q) =
(2` + 1)!!

`!

∫
dΩq

4π
R(q) (Dq̂`)α1...α`
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Consequences

Cartesian coefficients for R & S directly related to each other:

R(`)
α1···α`

(q) = 4π

∫
dr r2 K`(q, r)S(`)

α1···α`
(r)

For weak anisotropies, only lowest-` matter:

R(q) = R(0)(q) +
∑
α

R(1)
α (q) q̂α +

∑
α1 α2

R(2)
α1α2

(q) q̂α1 q̂α2 + . . .

R(0) - angle-averaged correlation

R(1)
α ≡ R(1) e(1)

α - dipole distortion, magnitude + direction vector

R(2)
αβ (q) = R(2)

1 e(2)
1α e(2)

1β + R(2)
3 e(2)

3α e(2)
3β −

(
R(2)

1 + R(2)
3

)
e(2)

2α e(2)
2β

- quadrupole distortion, 2 magnitude values + 3 orthogonal
direction vectors
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Sample Relative Source

Anisotropic Gaussian, elongated along the beam axis,
displaced along the pair momentum
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Low-` Characteristics

Values + Angles

S(`) ∝ r `
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Classical Coulomb Correlations

Coulomb kernel is a function of θqr and r/rc , where rc distance
of closest approach in head-on collision, q2

2mab
= Za Zb e2

4πε0 rc
:

|φ|2 =
d3 q0

d3 q
=

Θ(1 + cos θqr − 2rc/r) (1 + cos θqr − rc/r)√
(1 + cos θqr)

2 − (1 + cos θqr) 2rc/r

K0 = Θ(r − rc)
√

1− rc/r − 1

Correlation reflects the dis-
tribution of relative Coulomb
trajectories emerging from an
anisotropic source.
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Momentum from Spatial Anisotropy: Evolution with rc

No trajectories can contribute from r < rc

r − rc � rc

C directly reflects
anisotropies of S-
margins

r & rc rc � r
R reflects integral
characteristics of S
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Coulomb Correlation

r−1/2
c ∝ q

For more schematic sources,
one or more correlation val-
ues vanish and/or angles ex-
hibit less variation.

90◦ jump associated with K2
sign change and prolate-oblate
transition
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Imaging

Assumption: ` ≤ 2 cartesian coefficients measured at 80
values of r−1/2

c subject to an r.m.s. error of 0.015.
No of restored values, with the region of r < 17 fm: 5 for ` = 0,
4 for ` = 1 and 3 for ` = 2. Return to source

r < 17 fm Source Characteristics:
Unit Restored Original

4π
∫

dr r2 S(0) 0.99±0.05 1.00
〈x〉 fm 2.47±0.11 2.45
〈z〉 fm 4.25±0.13 3.90

〈(x − 〈x〉)2〉1/2 fm 3.80±0.24 3.90
〈y2〉1/2 fm 3.81±0.22 3.91

〈(z − 〈z〉)2〉1/2 fm 5.54±0.19 5.60
〈(x − 〈x〉)(z − 〈z〉)〉 fm2 2.23±1.49 -0.41
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Summary

Relative correlations give access to space-time geometry
of emission.
Cartesian harmonic coefficients allow for a systematic
quantification of anisotropic correlation functions.
The correlation coefficients are directly related to the
analogous respective coefficients for the relative source.
Features of the source anisotropies may be, to an extent,
read off straight from the correlation anisotropies.
Otherwise, they can be imaged.

nucl-th/0501003

Collaborators: S. Pratt, D. Brown, G. Verde. . .
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