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Introduction

Astronomy

Intensity/phase interferometry first used to assess sizes of
astronomical objects. Astronomers have since moved to details:

CAPELLA: COAST R at 1280nm on 25/10/87

100 (

Relative R.A, (milforcsec)

Figure 5.7: Reconstructed image of Capella, from data taken on 25 October 1997 at a
wavelength of 1.3 um. The contours are at -4, 4, 10, 20, 30, ..., 90% of the peak ux.

The map has been restored with a circular beam for clarity.

red giant Betelguese binary star Capella, Monnier
Rep Prog Phy 66(03)789
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Can we do comparably well?

Z

2

SC

Source Shapes P. Danielewicz

(=]



Introduction C ion Analysis lllustration Summary
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Imaging
Geometric information from imaging. General task:
Cla) = [ dark(a.n s(r)
From data w/ errors, C(q), determine the source S(r).

Requires inversion of the kernel K.
Optical recognition: K - blurring function, max entropy method
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Introduction
[ ]

Factorization of Final-State Amplitude in Reactions

2-ptcle inclusive cross section
atlow [p; — pz|

do _
= [ arsL(r) o) 2
Tordo = [ 4rSh(n)19} 2,0
data source  2-ptcle wf

S’: distribution of emission
points in 2-ptcle CM
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Introduction
[ ]

Factorization of Final-State Amplitude in Reactions

2-ptcle inclusive cross section

‘71//' atlow [py — pz|
do

ol
; - _ (=) 2
== oraps =] 0150
' P, data source  2-ptcle wf
N S’: distribution of emission

pronounced structure pOintS in 2'ptC|e CM

calculable

Normalizing with 1-ptcle cross sections yields correlation f:
do

_ dpidp2 _ (=) 2

Cp1 ~pe) = 2% = [arselr) o)1)
dpy dp2

Then the relative source is normalized to unity: [ dr Sp(r) = 1.

Note: C may only give access to the density of relative emission

points in 2-ptcle CM, integrated there over time
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Introduction
[ le]

Time Difference in Emission
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Relative Momentum, q (MeV/c) Model fitted to data
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Introduction
Geometry + Freezeout + Collective Motion
e |2 p e o
05F -t v .
£ " I
o 6F METIN v 1
o JF S
o Ty :
g° . ;
= b , y .
ab - < Fitted radii (longitudinal,
€.l + } ‘ outward & sideward) for an
¥ ol 4 # + anisotropic Gaussian
51.5* ; + ;
;:'2?: , o4t + & } Models fitted to data. ..
o 10 102 -
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Correlanon Analys.ls lllustration

Integral Relation
Of interest is the deviation of correlation function from unity:
R(a) = C(@)-1 = [ ar(jofnE 1) s = [ ark(a.r)s(r)

Learning on S possible when |¢f{)(r)\2 deviates from 1, either
due to symmetrization or interaction within the pair.
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Integral Relation
Of interest is the deviation of correlation function from unity:
R(a) = C(@)-1 = [ ar(jofnE 1) s = [ ark(a.r)s(r)

Learning on S possible when |<l>£|*)(r)\2 deviates from 1, either
due to symmetrization or interaction within the pair.

The spin-averaged kernel K depends only on the relative angle
between q and r. This facilitates the angular decomposition.

With K(Q.r) = (20+1)Ky(q.r) P‘(cosf),  and
V4
R(q) = Var > R Y™(@), S(r)=Var)_ S(q)Y"(F)
fm Im

we reduce the 3D relation to a set of 1D:
RM(q) = 4x / drr? K,(q, r) S"™(r)
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Correlation Analysis
[e] Jele]

Different multipolarities of deformation for the source and
correlation functions are directly related to each other.
The ¢ = 0 version:

R(q) = 47r/drr2 Ko(q. r) S(r)
where R(q), Ko and S(r) —'angle—averaged correlation, kernel
and source, respectively.
For pure interference, 7%’s or s, d)f;)(r) = ﬁ (€97 + e~iaT),
the kernel K = |®|?> — 1 results from the interference term in
|®|? and the correlation-source relation is just the FT:

Ro(q) = 2C;r/drr sin (2qr)So(r)
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Correlation Analysis
[e]e] o]

Discretization & Imaging

Source discretization w/ x? fitting applies to any pair:
Qo Discretize integral

Z47rArr Ko(qi ;) S ZK,,S,

Q Vary S(rj) to minimize x2:
ROP)2 smh

2 (Z/ KI] SJ Y il
=) S 52
i i -
@ Sj-derivative of ¥ yields: S3
1
> (K S = RPP) K =0 54
_ v _ : : : : >
with solution in a mtx form: ri r2 r3 r4 ..
S=(K'K) "K' R*
on
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pp Imaging
Imaging impacted interpretation of Cpp, Verde PRC65(02)054609

2+ f F"n"‘%\ffgo’f P~ 270-390 MeV/c | 12 25)(I 1 0:4 o
«1 A450-780 r
0270-390 r Sources
i % ‘ 20:— Imaging —
— ﬁg '-' 1.1 Py [ —-—-Gaussian ]
KX : 1 . < 15L - b
[an k e [ N\, ]
BN E |
7 s ! = 10} i ]
1§ % @» E AL\ ]
? Y | 1.0 5f NN k
f.’ -+-Gaussian : Fo—-a 0 \_ '\, ]
%" L I L i I I O' ‘\-\'\\z@;:}
20 40 60 20 40 60 O 2 4 6 8 10
q (MeV/c) r (fm)
Gauss par: quickly changing radii. Imaging: quickly changing
preequilibrium fraction, non-Gaussian source shapes! @
S(r — 0): preequilibrium fraction, entropy, freeze-out p. .. sté
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Correlation Analysis
@0000

Anisotropies??
As far as anisotropies are concerned, with
Z Rfm Y/m Z S(m Y(m
we have

RM(q) = 4n /dr r? Ky(q,r) SM(r)

z-beam

A set of 1D integral relations /
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Correlation Analysis
@0000

Anisotropies??
As far as anisotropies are concerned, with
R(q) = Vax Y R(q)Y(@), S(r) = Vary_ S™(q) Y (F)
Im /m

we have X

RM(q) = 4n /dr r? Ky(q,r) SM(r)

z-beam
A set of 1D integral relations /
Problem: Why turning real quantities, R & S, into imaginary,
RIM & S!M?  Other basis than Y/™?? B
NoCL
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Correlation Analysis
00000

Cartesian Basis

Take the direction vector: A, = (sin 6 cos ¢, sin 6 sin ¢, cos )
Rank-¢ tensor product:
(M)ay.op = Aoy Aoy - Py = > Com YO
r<em

D) projection operator that, within the space of rank-¢
cartesian tensors, removes Y/™ components with ¢ < ¢:

(Dhe)oq oy — Z Cem Yem

m

The components DA’ are real and can be used to replace Y.
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Correlation Analysis
00e00

Low-¢ Cartesian Harmonics

DAY = 1
(DAY = Aq
1
A2 . A A~
(Dn )a1 ap = NayNay — 55041 Qaz
. T ) ) )
(Dn )041 oapag = Moy Nay Nag — *(5041 ap Nag + Oay ag Moy + day ag na1)

5

D can be called a detracing operator as

Z(Dﬁf)u, aQag...op — O

«
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Correlation Analysis
(e]e]e] o]

Decomposition with Cartesian Harmonics

Completeness relation (D = DT = D?):

s @ -2 = -3 B S i), L, 0.

4 11
14 aq...0p
1« (20+ 1)1 t o
- E Z T Z (Dn/ )Ol1...ozg na1 e nOéZ
14 ' Qe ...0y
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Decomposition with Cartesian Harmonics

Completeness relation (D = DT = D?):

1 20+ 1)1l t )
5 —Q) — 4”2(@) S (D Yy (DA )y
14 ’ aq...0p
1 (20 + 1) s i A
- E Z T Z (Dn/ )Ol1...ozg na1 e nOéZ
14 ' Qe ...0y
In consequence
R(q) _/dQ’(S(Q’ =3 3 RO @) 8 -
V4 Qq...0p

where coefficients are angular moments

20+ [dQ .
R o (@) = Z 0 [ GOR@) (D)oo
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Correlation Analysis
0000e

Consequences

Cartesian coefficients for R & S directly related to each other:
RE-a(@) =47 [ dr 2 Ki(@.r) S, (1)
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Correlation Analysis
0000e

Consequences

Cartesian coefficients for R & S directly related to each other:
RE-a(@) =47 [ dr 2 Ki(@.r) S, (1)

For weak anisotropies, only lowest-¢ matter:

R(@) =RO(q)+ > RI(@) Ga + > RE,(Q) Qo Yoy + - --

a1 ap
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Correlation Analysis
0000e

Consequences

Cartesian coefficients for R & S directly related to each other:
RE-a(@) =47 [ dr 2 Ki(@.r) S, (1)

For weak anisotropies, only lowest-¢ matter:

R(@) =RO(q) + > RI(@) Ga+ D RP,(9) Gay Gop + - --
a a1 ap
R - angle-averaged correlation
R = RM &) - dipole distortion, magnitude + direction vector
2 2) (2) .2 2) (2) (2 2 2)\ (2) .2
RE(q) = AP &) ef) + AP o) of) — (AP + RY) o) &ff)

- quadrupole distortion, 2 magnitude values + 3 orthogonal
direction vectors
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lllustration
[ le]

Sample Relative Source

Anisotropic Gaussian, elongated along the beam axis,
displaced along the pair momentum

0.0007 Displaced deformed source
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001

moments evaluated moving

at constant r about the origin -
g ©u

NSCL
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lllustration

Low-¢ Characteristics

S (fm™)
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Classical Coulomb Correlations

Coulomb kernel is a function of 6, and r/r., where r distance
q2 Z Zb62
of closest approach in head-on collision, S = Anecrs -

d qo ~ ©(1+cosbgr —2rc/r) (14 cosbgr — rc/r)
cq \/(1 + COS fgr)? — (1 + COS Ogr) 2rc /1

Ko=0O(r—re)\/1—re/r—1
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Classical Coulomb Correlations

Coulomb kernel is a function of 6, and r/r., where r distance

q2 ZaZbGZ.
of closest approach in head-on collision, S = Anecrs -

d qo ~ ©(1+cosbgr —2rc/r) (14 cosbgr — rc/r)
cq \/(1 + COS fgr)? — (1 + COS Ogr) 2rc /1

Ko=0O(r—re)\/1—re/r—1

Correlation reflects the dis-
tribution of relative Coulomb
trajectories emerging from an
anisotropic source.
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lllustration
[o] Te]e]

Momentum from Spatial Anisotropy: Evolution with r;

No trajectories can contribute from r < r¢

r—r. <L rg
C directly reflects
anisotropies of S-
margins

reLr

R reflects integral
characteristics of S
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lllustration
[e]e] o]

Coulomb Correlation

rg”zocq

6c (deg)
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Coulomb Correlation

source margins integral source features
——

T T T T T
rg1/2 x q
For more schematic sources,
one or more correlation val-
=025 [t ues vanish and/or angles ex-
rool- hibit less variation.
o | | | | |

M
©
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r, "2 (fm~/®)<—inverse square root
of Coulomb radius
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Coulomb Correlation

source margins integral source features
——

rg”z x q
For more schematic sources,
one or more correlation val-

ues vanish and/or angles ex-
hibit less variation.

6c (deg)

90° jump associated with K»

signh change and prolate-oblate
transition

1 1 1 1 1
Q
000 025 050 075 1.00 1.25
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r, "2 (fm~/®)<—inverse square root
of Coulomb radius
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Imaging

Assumption: ¢ < 2 cartesian coefficients measured at 80
values of rg”z subject to an r.m.s. error of 0.015.

No of restored values, with the region of r < 17 fm: 5 for ¢/ = 0,
4 for ¢ =1 and 3 for ¢ = 2.

r < 17 fm Source Characteristics:
Unit | Restored | Original
47 [drr? SO 0.99:+0.05 | 1.00
(x) | fm | 2.47£0.11 | 245
(z) | fm | 4.2540.13 | 3.90
(x = (x))»1? | fm | 3.804+0.24 | 3.90
(y»1/2 | fm | 3.81+0.22 | 3.91

((z—(2))»"? | fm | 5544+0.19 | 5.60
((x = (X)) (z—(2)) | fm? | 2.23£1.49 | -0.41 @é
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Summary

@ Relative correlations give access to space-time geometry
of emission.

@ Cartesian harmonic coefficients allow for a systematic
quantification of anisotropic correlation functions.

@ The correlation coefficients are directly related to the
analogous respective coefficients for the relative source.

@ Features of the source anisotropies may be, to an extent,
read off straight from the correlation anisotropies.
Otherwise, they can be imaged.
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Summary

@ Relative correlations give access to space-time geometry
of emission.

@ Cartesian harmonic coefficients allow for a systematic
quantification of anisotropic correlation functions.

@ The correlation coefficients are directly related to the
analogous respective coefficients for the relative source.

@ Features of the source anisotropies may be, to an extent,
read off straight from the correlation anisotropies.
Otherwise, they can be imaged.

nucl-th/0501003
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Summary

@ Relative correlations give access to space-time geometry
of emission.

@ Cartesian harmonic coefficients allow for a systematic
quantification of anisotropic correlation functions.

@ The correlation coefficients are directly related to the
analogous respective coefficients for the relative source.

@ Features of the source anisotropies may be, to an extent,
read off straight from the correlation anisotropies.
Otherwise, they can be imaged.

nucl-th/0501003
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