Theoretical estimates of spectroscopic factors

(and final state interactions) in (e, e'p)
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e Overlaps are well (and uniquely) defined quantities for interacting many-body

systems

Xn(r1) :/ d’ro ... d°ra \Ifﬁ_l(rg...rA)T\IfoA(rl...rA)

e They are directly related to the spectral function, yielding the energy-momentum

probability distribution
_ 2
Pk, E) =Y [(¥5  ax|¥5)|" 6(E — En + Eo)
o If |\I!$_1) is a bound state ., carries information on single nucleon dynamics

e Within the mean field picture yn — ¢M*

\_ /




-~

e In principle the spectroscopic factors

Zn = / Er on ()2

can be extracted from the (non trivial !) analysis of the (e, e’p) x-section, that in

the Plane Wave Impulse Approximation picture reduces to

oc=Koep Plp—q,w—1Tp) ,

where 0., is the elctron scattering cross section off a bound moving nucleon

e Realistic theoretical spectral functions and a quantitative understanding of final

state interactions (FSI) of the knocked out nucleon are required
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[ Spectroscopic factors in infinite nuclear matter ]

e As momentum is a good quantum number, the spectral function at |k| < kg

exhibits only one peak

e The spectroscopic factor is defined as
2
Z = [{®k"Jax|¥o)|” |
where |®1"), is the one-hole (A-1)-nucleon state carrying momentum k
e 7y, does not coincide with the occupation number of the state |®i"), n(k), given

by
n(k) = (Wolafax|Wo) = Y  [(@i]ax| o) |’

{|®x)}, being the complete set of (A-1)-nucleon states of momentum k
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e P(k,E), Z; and n(k) of nuclear matter at equilibrium density (p = 0.16 fm ")

have been calculated using realistic a realistic nuclear hamiltonian of the form

H:Z 2 ‘|‘sz’j‘|‘ Z Vijk

P;
2m
> k>j>i

and the set of correlated states

n) = )
<7LF(}|FTF|77,F(}>1/2

e The correlation operator F', whose structure reflects the structure of the
interaction potential, is determined by minimization of the ground state expectation

value of the nuclear hamiltonian

Ey = (Vo|H|¥o)
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e The correlated states are orthogonalized by a transformation that preserves

diagonal matrix elements

n) = [n) =Tn) , (n|Hln) = (n|Hn)

e The hamiltonian is split according to

H = Hoy+ H;

(m[Ho|n) = dmn(m[H]|n) , (m|Hr|n) = (1= dmn)(m|H|n)

e If correlated states have large overlaps with the eigenstates of the hamiltonian the

matrix elements of H; are small
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e The spectral function, rewritten in the form

1 1

with (AEy = Ey — EY)

1 1 . H; — AE, "
H—FEo—E—in v —- 2. v -
0 1 Ho—Ef —E —1n Ho —Ef — E — 1

m

) =3 (=5 o

m

has been calculated including the correlated one hole and two hole-one particle

intermediate states
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e while the calculated Z is discontinuous at |k| = kr and vanishes at |k| > kr, the

contribution to n(k) from states |®5) # |®5") is continuous across the Fermi surface
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e the difference between Z; and n(k) naturally emerges from the analysis of the

spectral function at fixed |k| < kp

P(k,E) [fm®/MeV]
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e integration over the peak region only yields Z

e integration over the whole energy range yields n(k)
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e High resolution (e, e’p) experiments measure Z

e Comparison to NIKHEF data. The solid red line includes

\

estimated surface effects
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Spectral function of finite nuclei

within the local density approximation (LDA)

e Bottom line: scaling of the calculated n(|k| > kr) with A (for A>2) suggests

that the correlation (continuous) part of the momentum distribution at large |k| be

nearly unaffected by surface effects
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e The separation of one-hole and background contributions in the nuclear matter

momentum distribution can be generalized to the spectral function

e Combine the correlation part extracted from nuclear matter calculations at
different densities with a mean field spectral function yielding a reasonable fit of

(e, e'p) data
PEPA(k, E) = Pyrp(k, E) + Peoorr(k, E)
Prorr (k. ) = / Pr p(x) PEM(k, B p = p(r))

Pur(k, B) = ZZ!quF Fo(E — En)

e The spectroscopic factors Z,, are constrained by the requirement

d°k  _rpa
dE 25 © (k,E)=Z
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e PWIA cross sections obtained from LDA spectral functions provide a quantitative

description of inclusive data

e Example: A-dependence of the JLab E89-008 data at x = 1 and Q% ~ 1
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e Integrated strength form Carbon LDA spectral function

d°k  _1pa
dE _ PEPA(k, )
AE ar (27)

e Ak =0-310 MeV, AE = 15— 22 MeV (low Q?, p-state) : Z, = .64

e Ak =0-310 MeV, AE =30 — 50 MeV (low Q?, s-state) : Z, = .60

e Ak =0-290 MeV, AE =30 — 80 MeV (high Q?, s-state) : Zs = .78

e The integration region corresponding to the high Q? measurement is likely to

include a sizeable amount of correlation strength

\_




4 N

[ Final State Interactions within the high-energy approximation J

A. Eikonal approximation : the outgoing proton moves along a straight trajectory

in the direction of p

B. Frozen approximation : the spectator nucleons are seen as a collection of fixed

scattering centers

e Under assumptions A and B, one can construct the coordinate space distortion

operator

1
- /d3r1 . dPra|To(ry...ra)]?

(=) (p) —
QP () pA(I‘)

xS T~ ol — by)8z: — )] 6(r — r2)

i=1 j>i
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e The profile function I'p is the Forier transform of the NN scattering amplitude at
incident momentum p and momentum transfer k, generally parametrized in the

form

folk) = BLi 4 ap)ope P

where op is the total NN cross section

e WARNING :
NN scattering in the nuclear medium may be appreciably modified by Pauli

blocking and dispersive corrections
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e Medium modified NN cross section, evaluated in nuclear matter at equilibrium

density (Pandharipande & Pieper)

Opn in nuclear matter at equilibrium density

i | | | | | | | | | | | | | | | | | | | | | | |
O | | | |
0 200 400 600 800 1000

E, [MeV]

o At T, =970 MeV the free space cross section is reduced by ~ 20%
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e Local Density Approximation (LDA): experimental density + nuclear matter

radial distribution functions at different densities

1
Q) - — Srq ... d°r AU 2
b (r) o) /d r{ dra|Wo(ry ra)l

e Approximate

,0(1'1,1'2) { <r1—|—1‘2)}
g{ri,ro) = N gNM ||[T1 —T2(,pPA
() = o) T -2 )
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e Kffects of FSI

e 7, reduced by a transparency factor Tpp (from the imaginary part of the NN

scattering amplitude)

Xn (r) = Ynp(r) = Q57 (1) xn (r)

1
Thp = 7 /d3r|¢np(r)|2

e Momentum distributions |1,p(k)|? shifted with respect to |xn(k)|* (from the
real part of the NN scattering amplitude)
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[ How low can the proton energy be 7 ]

e Compare theory to the A-dependence of nuclear transparency to a 200 MeV

proton, measured at MIT
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e WARNING: the calculated transparencies are significantly affected by a

complicated pattern of correlation effects
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[ Conclusions)

Spectroscopic factors (SF) are well and uniquely defined properties of

interacting many-body systens

Extraction of SF from (e, e’p) data requires a quantitative understanding of

reaction mechanisms beyond the PWIA picture (FSI, two-body currents .. .)

Even within PWIA, the presence of correlation strength extending down to low

momentum must be carefully taken into account

The results of accurate calculations based on microscopic many-body

approaches provide a satistactory description of the data (Monte Carlo for "Li,

/

Green’s Function for '°O, CBF for nuclear matter . ..)




