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Spectroscopic factors

...contain valuable information on the structure

of the nuclear many-body system.

...are defined as the norms of one-body overlap
functions:
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...provide the link between an effective one-body
picture and the full nuclear many-body problem:

* Nucleon capture reactions:

O(exp) = SO O'(calc

o calculated in a
e Proton emission: single-particle model

I“(exp) S I‘(calc)



Spectroscopic factors in capture reactions

Reduction from a many-body approach to a one-
body description is fairly straight-forward...

Exact many-body transition matrix element:

frffrrir’F(r, ) pmm (7, 77)
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When the (A-1)-body system remains in the
ground state (here for radiative capture):

\/ Som / dr Gt (r)explik - 7] ()

where ¢ = VS, §

Since o ~ M2, it is reasonable to write:

G(exp) = SO 0(calc)



Spectroscopic factors in proton emission?

Situation not straight-forward...

To understand the role of spectroscopic
factors 1n cross sections, one needs to start
with a many-body approach and reduce the
problem to a one-body case.



Our study

Revisiting the issue for proton emission...

¢ derive expressions for the decay width in a many-
body formalism

¢ use a formalism based on the two-potential
perturbative approach of Gurvitz and Kalbermann

+ reduce the problem to an effective one-body
problem through an appropriate choice of the
perturbing potential

We find...

» ambiguities in the interpretation of the
normalization factor obtained from
experiments.



Two potential approach

Gurvitz & Kalbermann, PRL 59 (1987) 262;
Gurvitz, PRL 59 (1987) 262
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Goal: calculate decay width
for a quasistationary state

Approach:

* split the potential
V(r) =U(r) + W(r)

e start with a bound state 1,
Hy=T+U
Hy ¢y=E, ¢,

 add a perturbation W(r)

e calculate the energy shift
and decay width

2
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e Simplify via integration by
parts
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Many-body implementation

Start with the time-dependent Schrodinger equation:

i
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Use Laplace transform and solve for probability amplitude:
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where Y(1=0)= y,. The decay rate can be extracted from
imaginary part of the pole location (if one pole dominates).

-> Task: Determine the matrix element of the Green’s
function.



Many-body implementation -
projection operator formalism

-> Approach: Use projection operator formalism to obtain

[ ] \
'E_{*;;DH_ H+HQ E_QHQ_'_IEQHHHIU} '{*."II;(J|G-|:."I}U}:]

where P=| ¢y , > < y,land Q=1-P.

-> The poles of the Green’s function are found by solving:
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where E’ | §p. > = QHQ |G, >.



Many-body implementation -
perturbative approximation

Introduce a Hermitean Hamiltonian H, with

H=H,+ oH
Hylyy>=Eyly, >

and derive:
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mm still a many-body problem!



Reduction to an effective one-body problem

Criteria for selecting H,(and 0H) in H = H,+ OH :
H, needs to produce a bound initial state with energy E|, .

After the decay, the wave function of the system describes
a free proton and the bound (A-1)-body system.

Our choice:
OH=— J dra’(r)| D 4_ YV (r) (D |alr)

| &, > 1s the (A-1)-body ground state,

r is the relative coordinate of the proton and the (A-1)-body
system,

V(r) is larger than E, outside the range of the nuclear potential
and zero inside.



An effective one-body problem

Consequence of our particular choice of 6H :

E=E,— J drdi (r)Virydy(r)

q

= J drg(r)V(r)dp(r)
+J dE’
- E”_Elr—l_lr.f

We have an effective one-body problem!

The many-body aspects of the problem are contained in the
overlap functions ¢,(r) and ¢..(r).

Only assumption made so far: 2nd order perturbation is valid
(E has been replaced by E;). Should be valid for narrow
states.

The decay width can be determined from the equation above!



Expression for the decay width
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Wefind: [ =27|| drod(r) V(r)dg (r)
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where ¢, = \;'Et_?)ﬂ{r} 1s the solution of
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and H m(r.r’) is the mass operator.

When #,(r,r’) is approximately local, the integral in (*) can
be evaluated via integration by parts

fh*
= [gru(”u b (”u &b, g U‘u)fﬁ' olro)]
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Spectroscopic factor and the decay width

In practical applications, the one-body functions
are taken to be solutions of a potential model and
are normalized to 1.

It seems to follow that indeed

I“(exp) — SO I‘(calc)

where ['(¢?19) is calculated using a potential model.

However...



Alternative expression for the decay width
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When H(r,r') is approximately local, the integral in (**)
can be evaluated via integration by parts:
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Two valid expressions for the decay width

The previous derivations show:

2

[(exp) ~2 77§, J’ dro¥(r) V(r)¢g (r)

and

2

D) ~275, f dré (r)V(r) by (r)

- Do we know which normalization factor we extract?

SO — I“(exp) / I“(calc) 7

or
SO — T(exp) / I“(calc) 9

or possibly yet another factor?



Three questions...

...we should ask:

¢+ What are we approximating when we use a
potential model and potential-model wave
functions?

¢ Do we need to care? (How much difference
is there between S, and S,?)

¢ What are these ﬁr)?



What are we approximating?

This needs to be studied further...



Does the difference matter?

It depends!
So= S, =1

For states with a large spectroscopic factor (S, = 1): Not really!

For states with a small spectroscopic factor (S, < 1): Yes!
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Interpretation of the one-body functions

The function ¢(r)

We have a good intuitive understanding of the one-body
overlap functions. They play an important role in capturing
certain aspects of the complex many-body system.

The function @(r)

How should the auxiliary functions be interpreted?

Do they have any useful application?



Fliessbach’s auxiliary functions

Definition of the auxiliary functions qg(r):

e For the hole case A-1:
bm(r) = [ e’ o) 200 ()

o myr,m,r’) = (ORa’(r)a(r")|TY)

e For the particle case A+1:

Farl(r) = / dr' N A (m, v, m, v') 2G4 ()

NAYm,r,m,v') = (WY a(r)a’(r)] vy

The norm:




Completeness and sum rules

Completeness relation for the auxiliary functions:
- - E : 4—|—L f A+1)* . g
0m’0 (T — T mmﬁb m’k (T )
Sum rule for the auxiliary functions:

4.—|_J_ 2
Z| m.k |‘1""ﬂf |

Note:

TA41 : C :
e The @,z (T) are complete in the ‘particle-only’ space,
whereas the standard overlaps require the complete
‘particle-hole’ space.

e Analogous equations can be derived for the cﬁﬁm(r].
These functions are complete in the ‘hole-only’ space.



Completeness and sum rules for the
one-body overlap functions

The combination of overlap functions {¢%,,,(7) }n=0.1.2....
and {51 (r) }r=0,12,... forms a complete set:

SmmyS(r—")=Y . DT (TJ+Z¢' Y (r)
n=0

where the sums involve both bound and continuum
states.

The closure relation yields the sum rule

1= Y UFlaf|U% o) +Z|{ﬂf |aalP% 1)

=
= ) [{damlea)® + > ot ea)®
n=>0 k=0

where o, (r) denotes the single-particle orbital with
quantum numbers a = {n,l, j.t,1,}.



Fliessbach’s auxilliary functions --
physical interpretation

Trick: Expand the auxiliary functions in terms of
natural orbitals.

The natural orbitals {¢i(7)}i=1,2,... diagonalize the
density matrix operator: [ drp®(m,r,m,v")p)(r") =
Mipi(r), where A; is the occupancy of ¢(r) in
U, They also diagonalize N“"(m r,m,r’), with
Eigenvalues (1 —XNp).

The expansion coefficients are:

1
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Fliessbach’s auxilliary functions --
physical interpretation

One can show:

{(@rldms )| = (T lag | WA 1)| = V1= M| (A ag, [P 41)]
[Pl b | = 10¢A" |0, | ¥4 1)

X! is the component in the wave function U7
which @;(r) is empty [(x|x?) = 1].

[T = a, M [O4Y + bt XA

Meaning of the norms:

A+1 k 2
Sort = ) (U ag, [V, )]
I

Sk = Zl{x?'*lﬂwlll’ )l
S"Hl gives the overall probability of obtaining lIfAJrl
by adding a nucleon to W7 S;:‘LH measures the
probability of obtaining lIff‘le when adding a nucleon
to a particular component of W'. The relevant

component decribes the part of W' which is not Pauli-
blocked.



S and S for (48Ca)*°Ca
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S and S for 47Ca(48Ca)
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S and S for (12C)
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Summary

Spectroscopic factors provide the link between
an effective one-body picture and the full
nuclear many-body problem.

Our formal study of the proton emission process
demonstrates:

The two-potential (perturbative) approach of Gurvitz
and Kalbermann can be used in a many-body picture

An appropriate choice of the perturbing potential
allows for a reduction to an effective one-body
problem

The many-body effects are contained in the
normalization of the proton decay width

It is not clear whether this normalization coincides
with the spectroscopic factor

One-body functions can be defined in various
ways...

The different functions carry complementary nuclear
structure information

One has to be careful when using a single-particle
approximation



Appendix



Small spectroscopic factors

What can we infer from a small spectroscopic factor?

A1
Smk

> {UEaal Vs )1

Spm = D [(TRlal|¥E 1)

(U |aal W5 y)| = (¥4 ]al|¥F)] s small when:

a) the norm of al|¥%), namely [(¥7%|ayal|®T) |22,
is small (Pauli blocking); or

b) the states |W% ) and af,|W7) differ significantly,
e, (T [ab| ) /(U aqal | U]/ i small
(structural difference); or

c) both a) and b) apply.

[Similar considerations apply to S, ]



