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[0 We compute the distribution of quasideuterons (QD) in doubly closed shell
nuclei and infinite nuclear matter.

[0 The ground states of 0O and *’Ca are described in [s coupling using a
realistic hamiltonian including the Argonne v§ and the Urbana IX models
of two— and three—nucleon potentials, respectively.

[1 The nuclear wave function contains central and tensor correlations, and cor-

related basis functions theory is used to evaluate the distribution of neutron-
proton pairs, which have the deuteron quantum numbers, as a function of
their total momentum.

[1 By computing the number of deuteron—like pairs we are able to extract the
Levinger’s factor and compare to both the available experimental data and
the predictions of the local density approximation, based on nuclear matter
estimates.

[1 The agreement with the experiments is EXCELLENT, whereas the local
density approximation is shown to sizably overestimate the Levinger's factor
in the region of the medium nuclei.
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‘ Formalism I

In a A—nucleon system the distribution of QD pairs, whose center of mass is
in the orbital state specified by the quantum number X', can be written

1 o a
— S (Ala) (Xap(X)]4)

where |A) denotes the A-body ground state and Jp = 1 is the spin of the
deuteron. The operator a(a')$(X) annihililates (creates) a deuteron with the
quantum number X in the o = 1, 2, 3 Cartesian state.

Pp(X)

In configuration space the above expression takes the form

I 1
= 2JD + 15 / d37“1d37“2d37"1'd37“2’\PD,cm(X; R12)

X pg)(rbrz;ry,ra/) \I’E,cm(X;Rm'),

Pp(X)

where pg)(rl, Ir'o; Ty, Tor) is @ generalized two—body density matrix defined by

pg) (1'1, Iy, Iy, 1'2/) = A(A - 1) /dﬁ \Ijj:l(rla I, §)¢%,T6l(12>
x 00){00] (h,er(1'2)) " Wa(rw, o, R),

where |00) is the spin—isospin singlet NN state and summation over the
repeated indices is understood.
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A realistic A-body wave function, accounting for both short— and intermediate—
range correlations induced by the strong nuclear interaction, is given in CBF
theory by

wa(R) = S|[ Fiij)| @ol(R),
1<J
where R = (r1,...,r4), S is a symmetrization operator and @ is the Slater
determinant of single particle orbitals ¢,(7), which are eigenfunctions of a suit-
able single particle hamiltonian. For nuclear matter, the orbitals ¢,(7) are plane
waves corresponding to a noninteracting Fermi gas of nucleons with momenta
k| < kp = (67r2pNM/V)1/3. v =4 and pyys are the NM spin—isospin degen-
eracy and density, respectively. Pandharipande, Wiringa (1979)

The two—body correlation operator, F'(ij), is given by the sum of 6 central
and non—central spin—isospin dependent components,

F(ig) = [felriy) + folrij) (o3 - 05) + fe(ry) (7i - 7)
+ forlriy) (05 0))(Ti - 7)) + filryg) Tap(Tyj)olo]
+ firlriy) Top(@)0fo) (13- 75)
where the f,(r) correlation functions are variationally fixed by minimizing the

ground state energy. All the correlation functions heal to zero, except f.(r —
o0) — 1, while the tensor operator reads

T(ry;) = 3ryr,; — 6% .
A. Fabrocini, A. de Saavedra, and G. Co’ (2000)
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‘ The dressed leading order approximation I

2 n22’ 2
PD (T1,T2; Ty, Ty)
2J +1
F ¥, Z P (e, 1) (r1, Ty oY (12, 1),
T
where p)(r1,1y/) is the one-body density ma-
1’ nﬁ, 1 trix and
1 ~
X(r,r') = L [UU() + WnW(r)Qr 1),
with Q(z) = (3z° — 1)/2 and

up(r) — Au(r) ;
W(r) =wp(r) — Aw(r) .

The Au(r) and Aw(r) functions account for the medium correlations effect
on the bare components of the DWF:

Au(r) = up(r) [he(r) — fo(r) + 3f+(r) + 3for(7)]
— 2V 2wp(r) [filr) = 3fir(r)] ;
Aw(r) = wp(r) [he(r) = fo(r) + 3f-(r) + 3 for(r)]

N2 (uz)(?“) - w%)) [fe(r) = 3fir(r)].

In order to evaluate Pp(kp) in spherically symmetric nuclei, the one-body
density matrix can be expressed in terms of the natural orbits (NO):

20+ 1
rl,rlf —I/Z il Plr T Znnl 7“1 O(rll).

A. Fabrocini, G. Co’ (2001)
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Figure 1: Radial components U(r) and W (r) of the AU8 QD wave functions in %O, *°Ca and nuclear
matter. Upper panel: the solid and dashed lines show the radial dependence of U, (r) for **O and *°Ca
respectively. The dot-dashed and dotted lines correspond to the nuclear matter Uyps(r) and the bare
up(r). Lower panel: as in the upper panel for the D-wave components of the QD and deuteron wave
functions.

N 08 ____________ | dD(Tj
Q F Uleo(’/')
~ 06 =X ~—~ Ueaal)
| 20k ’
é I ///,/ -------- TN —-— Unpn(r)
—04 ) |
O 7 /
202 | |
O | | | ——
1 wp(r)
g r —— Wwo(?")
" 03 == Waca(r)
é —-— Wnum(r)
~ 0.2
E F e
So ) TN
0)
0 1 2 340
r [fm]

At small relative distances both U(r) (r < 1 fm) and W (r) (r < 0.5 fm)

are slightly suppressed with respect to up(r) and wp(r). On the other
hand, they are appreciably enhanced at larger distances. These effects are
more visible for the lightest nucleus.
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Figure 2: Radial components U(k) and W (k) in momentum space of the AU8" QD wave functions in

160, “°Ca and nuclear matter. Upper panel: the solid and dashed lines show the radial dependence of
U4(r) for %0 and *°Ca respectively. The dot-dashed and dotted lines correspond to the nuclear matter
Un(r) and the bare up(r). Lower panel: as in the upper panel for the D-wave components of the QD

and deuteron wave functions.
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The nuclear medium shifts the second minimum of |up(k)| towards lower
values of k. The Argonne vg |wp(k)| does not exhibit any diffraction
minimum, which, however, appears in |W (k)|.
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‘ QD distribution in a nuclei I

Po(kp) = Yo o Mt Py” (kp) ,

with

o0/ v? (27)°
Pp (kp) = 16 4r

2
W) + 3 w;;a;%w] |

s=—2

where oo = (nlm),

o (kp) = / 43k ¢ O (k—D + k) U(k) o2° (k—D — k> ,

a0l s 4m k k k
U5 (k) = \/?/di”k(bgm (7D+k> W (k) du° (f—k) Yas(k),

and

DO

Snim () = Oni” (4) Yim(@)

Yim(q) are the spherical harmonics.

In the independent particle model (IPM), U4(R) = ®(R), and n!FM =1,
NO = @, for occupied states, whereas n!"M = 0 for unoccupied states.
Deviations from IPM provide a measure of correlation effects, as they allow

higher NO to become populated with n,; # 0.
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Figure 3: Momentum distribution of QD pairs in O as a function of the total momentum |kp|.
The solid, dashed and dash-dotted lines are the results obtained within the fs and Jastrow correlation
models and IPM respectively. The short—dashed line displays the fg¢ momentum distribution of the QD

in nuclear matter at equilibrium density, pyas = 0.16 fm™

3. The insert shows a blow up of the region

lkp|/(2kr) < 1, plotted in linear scale. The Levinger factors, L(A), for the various calculations are also

reported. 10
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[1 NN correlations introduce high momentum components in the distribution.

The full Pp(kp) is strongly enhanced with respect to

PLM (kp) at large

'kp|, and it is correspondingly depleted at small |kp|. The depletion is

mostly due to the non—central tensor correlations.

[1 The effect of state—dependent correlations is large, as one can see by com-
paring the full Pp(kp) with the Jastrow model P (kp) (obtained by re-
taining only the scalar component in the two—body correlation operator).

[0 The tail of Pp(kp) is appreciably different from that of nuclear matter.
At |kp| = 4k the difference is still a factor ~ 10 for both 1°0 and *°Ca.
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Figure 4 Momentum distribution of QD pairs in “°Ca as a function of the total momentum |kp|.
The solid, dashed and dash-dotted lines are the results obtained within the fs and Jastrow correlation
models and IPM respectively. The short—dashed line displays the f¢ momentum distribution of the QD

in nuclear matter at equilibrium density, pyp = 0.16 fm™".

3. The insert shows a blow up of the region

lkp|/(2kr) < 1, plotted in linear scale. The Levinger factors, L(A), for the various calculations are also

reported.
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Figure 5: Convergence of Pp(kp)/A for 0 and *°Ca in the number of natural orbits. The results
have been obtained within the fg correlation model.
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‘ Levinger’s factor I

Within the Levinger's QD model (1951) the nuclear photoabsorption cross
section o 4(E,), above the giant dipole resonance and below the pion threshold,
s

0A(Ey) = Pp ogn(Ey) ,
where E, is the photon energy and Pp is interpreted as the effective number of
the NN pairs of the QD type

A

where L(A) is the so called Levinger's factor.

Po= 1) | 2522

PD d3]€D PD(kD)
L(A)=4— =4(2Jp+1
12.5 + T 7 T 7 ]
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Figure 6: Levinger’s factor L(A) for 160, °Ca and nuclear matter (shown by the arrows for the UU14
and AUS8' forces). The filled circles, the empty circles and the triangles show the Levinger’s factors
obtained within the fs and Jastrow correlation models and the IPM, respectively. The LDA is also
reported (solid line).
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‘ Conclusion I

[1 CBF theory has been applied to microscopically compute the distribution
of QD pairs, Pp(kp), in doubly closed shell nuclei °O and 40Ca and nu-
clear matter, starting from the realistic Argonne v§ plus Urbana IX potential.

[0 NN correlations produce a high momentum tail in Pp(kp) and, corre-
spondingly a depletion at small k; for both nuclei and nuclear matter.
These effects are mainly due to the presence of the state-dependent cor-
relations associated with the tensor component of the one pion exchange
interaction. Contrary to what happens for the one-nucleon momentum dis-
tribution, this tail sizably differs from that of nuclear matter.

[J Summation of Pp(kp) over kp, provides the total number Pp, of QD pairs
and consequently allows for an ab initio calculation of the Levinger's fac-
tor L(A). The Levinger factors for 0 and “°Ca are much smaller than
the nuclear matter value and in very good agreement with the available
photoreaction data. In addition, our results show that LDA overestimates
LL(A) in the region of the light-medium nuclei.

[1 The deuteron wave function is appreciably modified by the surrounding
medium. While in the case of the S-wave component the difference is mostly
visible at small relative distance (r < 1 fm), the D-wave component of the
QD appears to be significantly enhanced, with respect to the deuteron
wp(r), over the range r < 2 fm.
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