Correlated spectral function from (e,e'p)

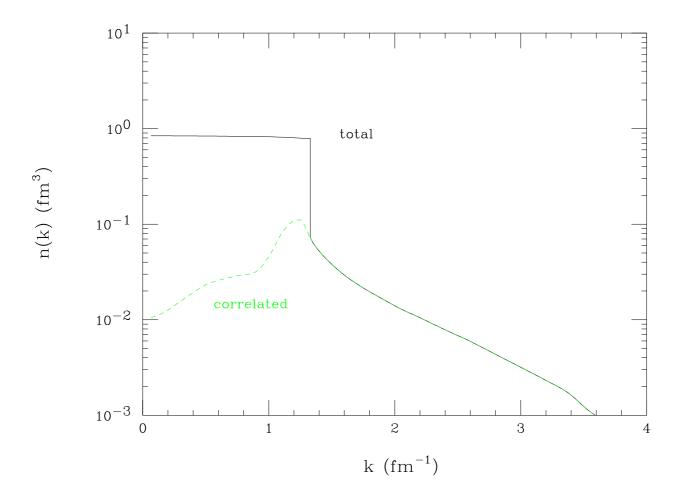
Ingo Sick

historical development of nuclear physics

strongly influenced by shell model existence of Independent Particle states, IP orbits explains many features of nuclei

tacit assumption

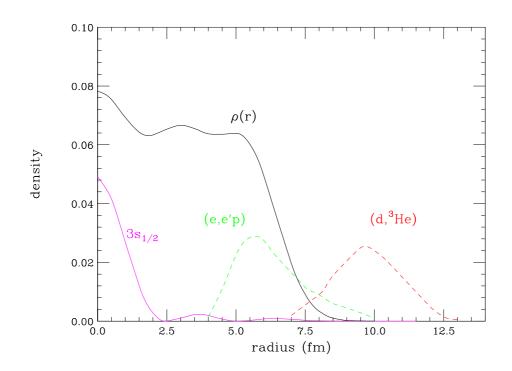
(2j+1) particles in 'filled' shell depletion only due to configuration mixing near ϵ_F can limit space to ± 1 or ± 2 shells effective N-N interaction compensates fitted to selected nuclear properties


today highly developed technique

several groups worldwide quite successful

parallel line of thought: study of NM

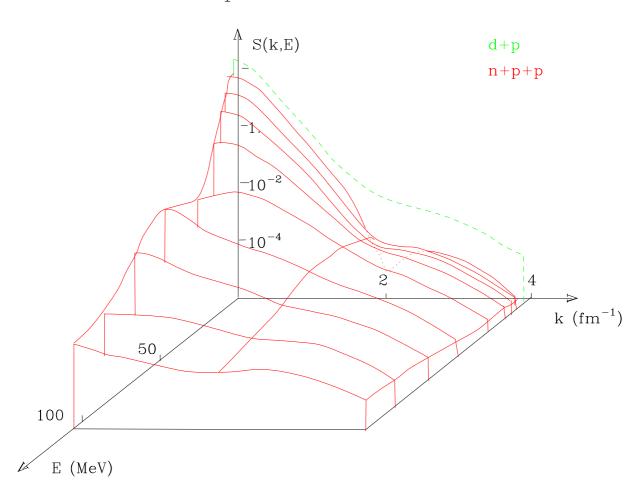
initially Bethe-Bruckner-Goldstone later Correlated Basis Function theory, MC indicate strength way above Fermi edge indicate tail of n(k) to large k


momentum distribution:

 \sim 20% in correlated region little impact on theory of finite nuclei spectroscopic factors seem to agree with SM

change: initiated by (e,e) and (e,e'p)

- magnetic scattering
- density differences of isobars measure $R^2(r)$ do so in nuclear interior not only in large-r region there spect. factor sensitive to assumed R(r) $\Delta s/s \sim 10 * \Delta rms/rms$ can determine genuine integral property find depletion



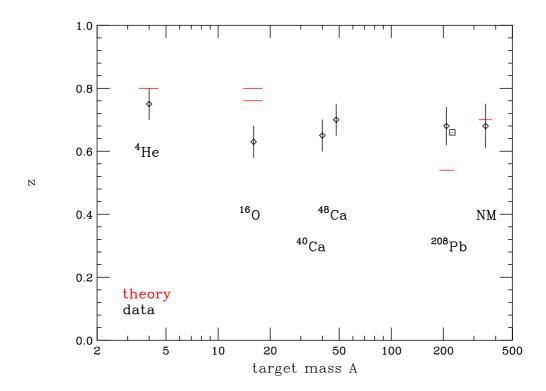
• (e,e'p) reactions measure $R^2(k)$ not as far inside nucleus, but still.... give better integral than transfer reactions find significant depletion

Where correlated strength in finite nuclei? $\rightarrow S(k, E)$ of ³He

• first microscopic spectral function S(k, E) calculated by Dieperink et al exact Faddeev wave function includes all NN-correlations use RSC interaction 2B-breakup \sim shell-model n(k) 3B-breakup \sim correlated strength due to short-range N-N interaction for long time only microscopic calculation

³He spectral function

many things to be said:


- shows that correlations give strength at both large k and E
- strength *very* spread out, hard to identify experimentally
- explains failure of sum rules $\int ...dE = 2j + 1$ cannot include large E in integral
- failure of Koltun sumrule \rightarrow 3BF's
- high I have only 8% probability, give 50% to kinetic energy!
- played many games to understand effect of large k, E in data lacking info on them
- taught me how to think about effects of correlations A=3 not too "pathological" to teach us

Convincing data on s.p. strength:

(e,e'p), mainly NIKHEF (\rightarrow talk Louk) high-quality experiments due to large duty factor increased sophistication treating FSI, ... dedicated effort

comes together with other information form (e,e)

density difference Pb-Tl confirmation of SM orbitals in nuclear interior BUT: Δ occupation 3s only 0.7 together with (e, e'p), (d, He): \rightarrow absolute occupation

main message

in nuclei find orbits \sim independent-particle states R(r), R(k) as given by IPSM observed in transitions to $low E^*$

but

single particle states have partial occupation rest of strength at $very\ large\ E^*$

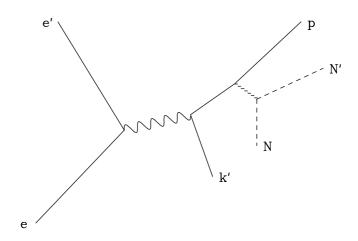
Similar to ∞ nuclear matter overall

shell-model describes only 70% of nucleons rest outside model space how can ever get quantitative?? simply use enough parameters? not satisfactory!

insight for time being lost on SM-community

calculations of ever increasing sophistication ignoring 20-30% of nucleons!

e.g. review Talmi, 50y of SM, 2002, 275p

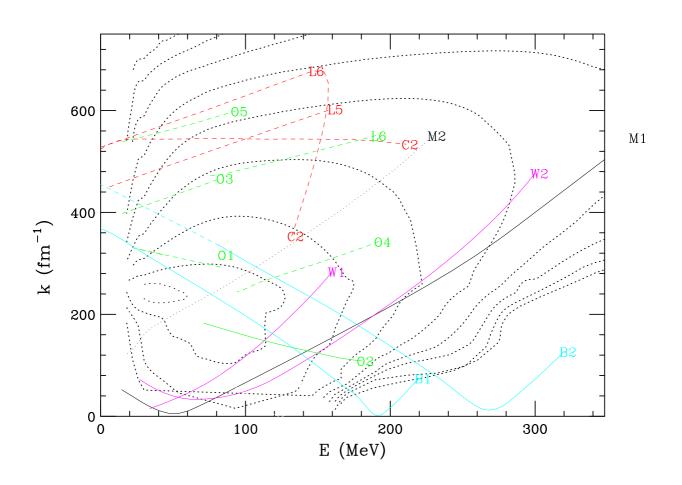

not one word on 30%

unsatisfactory:

have identified *missing* strength have fair theoretical understanding have not seen *correlated* strength

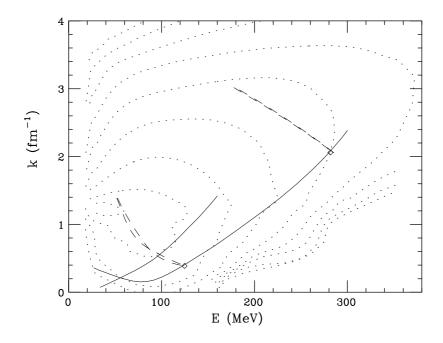
Complications:

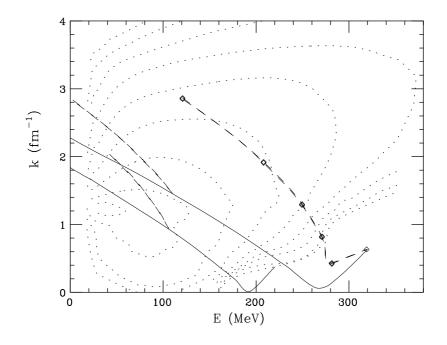
- strength spread out over 100-200MeV very hard to observe
- reaction mechanism
 - at low E, $k_{p'}$ optical potential for FSI OK
 - at large E, $k_{p'}$ more complicated p' not 'swallowed' by Im(V)p' reappears at lower $k_{p'}$ simulates large missing energy Ecovers small genuine strength


Complications largely ignored

could not do much about kinematics too constrained by facilities available not enough energy/momentum available

study of all available data


compare experimental $d\sigma/d\omega dE$ to IA using realistic S (IPSM + NM(ρ) in LDA)


look if exp. \simeq or >> theory

find

- most experiments give $\sigma_{exp} \gg \sigma_{IA}$
- standard perpendicular kinematics worst, // kinematics best
- understand how (p, 2p) moves strength

consequence:

must do experiment in parallel kinematics, at large q, (available data are for perpendicular kinematics) above ridge $E \sim k^2/2m$ to have chance

similar study for π -production contribution

Δ excitation

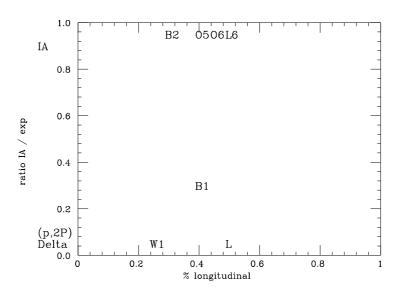
can give large contribution mainly from low E' as m_{π} small

L/T - separation?

 Δ -excitation transverse can suppress by extracting L?

2-step processes:

L/T not possible do not know intermediate state cannot reconstruct momentum,.. e.g.: could be out-of-plane do L/T as were in-plane


L/T extremely limited

if T factor 5 larger than L error on L huge known from (e,e'), Coulomb sumrule! more true for (e,e'p) as more difficult

L/T in existing data

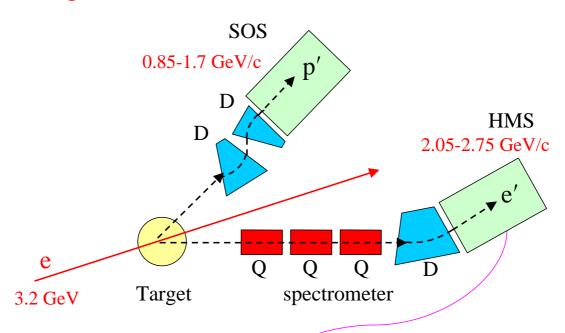
plot σ_{IA}/σ_{exp} versus %L if T problem, expect ratio closer to 1 for large L

Data:

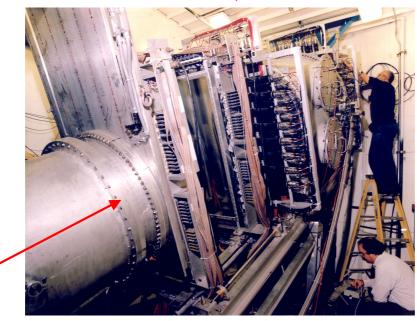
show *no* correlation

L/T not efficient for reasons mentioned

Conclusion: understand why


some experiments measure \pm S(k,E) others measure multistep reactions no obvious need for new mechanism conventional (p,pN)+ Δ -excitation enough

lesson for future

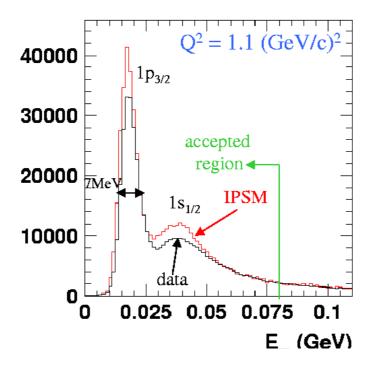

kinematics for measurement of S(k>>,E>>)such that k'>>k, E'>Eparallel kinematics! not antiparallel, not perpendicular not L/Tnot dip vs. other kinematics

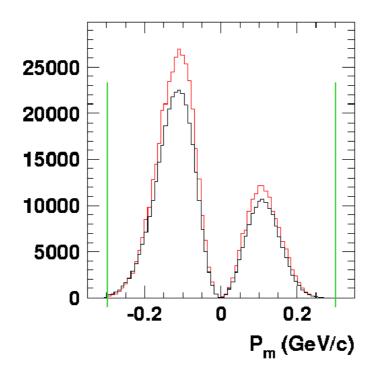
JLAB experiment

Setup in Hall C at Jlab: (e,e'p)

Detector stack:

2 drift chambers


4 scintillator planes

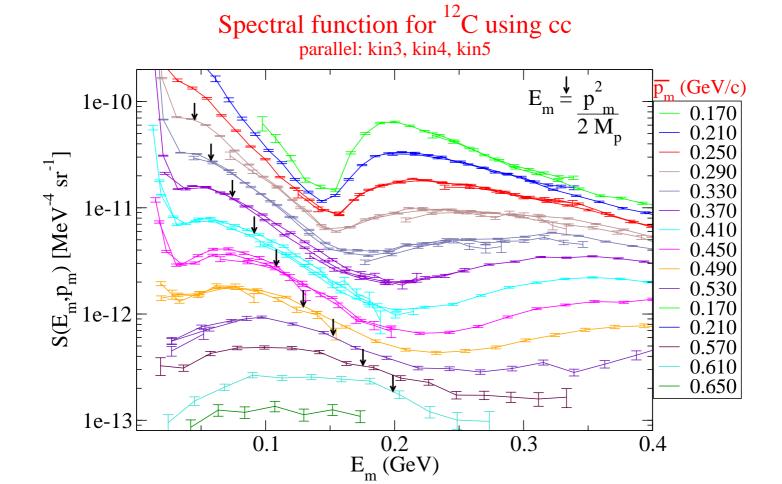

1 Cerenkov

Results from Daniela Rohe

test: s.p.-region

kinematics with same $E_{p'}$ as production runs

use:

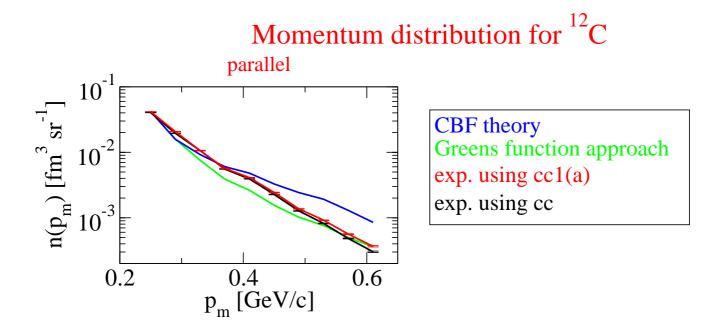

T=0.6.. (Benhar+Pieper) integrate over E < 80 MeV

0.1

find:

occupation agrees with Benhar S(k, E)(significantly larger than values from low-q (e,e'p)) overall syst. error 3%

correlated region

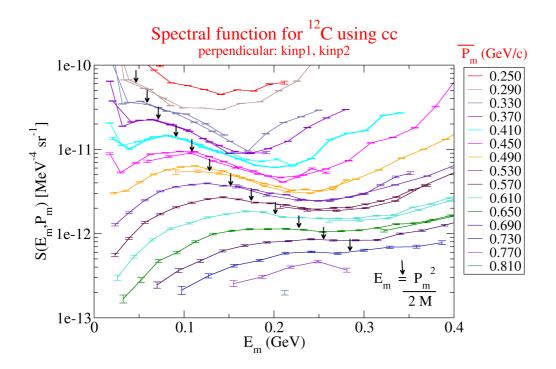


0.3

 $\overline{0}$.4

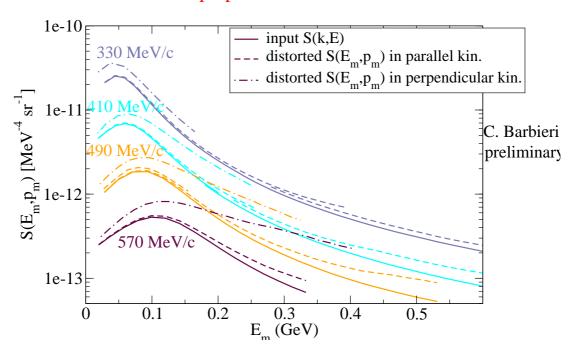
main observation on E-dependence

maximum of S(k, E) of theories at too large E understood by recent calculation of Müther+Polls? momentum dependence


theory and experiment \pm agree

how about standard perpendicular kinematics?

(used for overwhelming majority of experiments)


find

experimental (distorted) S(k, E) >> S from parallel kinematics

confirmed by calculation (\rightarrow talk Barbieri) include (p,p'N) via Glauber

Parallel vs. perpendicular kinematics for ¹²C

lesson

use parallel kinematics
not perpendicular, not antiparallel
there 2-step manageable in size
can be corrected for
use perp. kinematics to check FSI-calculation
(improvements needed)

note

parallel kinematics \rightarrow 'dip'region used as argument to avoid excess strength in single-arm (e,e') in dip

not understood by most

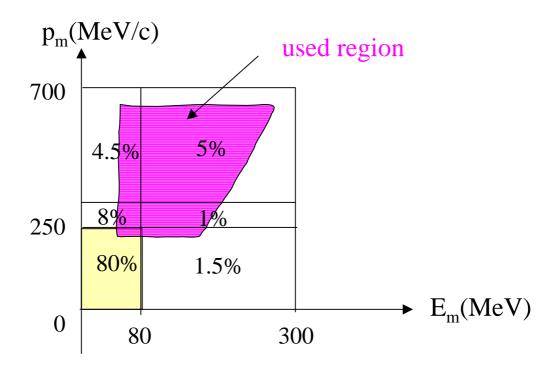
difference missing energy ... energy loss

(e,e') in dip

large energy loss large missing energy (energy not accounted for)

(e,e'p) in dip

large energy loss of electron energy recovered via outgoing proton no large 'missing' energy


$unaccounted \text{ energy loss} \rightarrow$

problematic out-of-control reaction mechanisms

How much correlated strength??

cannot integrate over entire correlated region FSI and Δ -excitation and part of s.p.strength limit

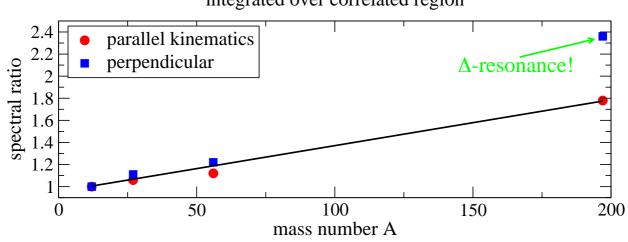
integrate over 'clean' region both data and theories

result

integral over S from experiment 0.55 integral over S from CBF 0.59 integral over S from GF approach 0.53

good agreement

heavier nuclei


experiment performed for C, Al, Fe, Au

interest in A>>

 \rightarrow nuclear matter study of FSI of recoil-p

ratio to C of correlated strength

Ratio Al, Fe, Au to C spectral function integrated over correlated region

enhancement for Au

not yet understood

consequence of tensor correlations as N > Z?? effect of rescattering ??

Summary

- perform experiment with optimized kinematics to minimize multi-step contributions
- identify strength at large k, E
- theory produces S(k, E), \pm correct strength (BHF, CBF+LDA) E-dependence does not entirely agree strength at too low Eenhancement for large A not understood
- would want kinematics more strictly parallel rather restrictive kinematics unfavorable true/accidental but it's worth it!

for details:

see habilitation work of Daniela Rohe

Problem with disagreeing occupation numbers: ^{12}C

```
Lapikas, low-q (e,e'p):

summed s+p strength = 3.40

(add 0.12 for weakly excited states)

Rohe, high-q (e,e'p)

(similar for analyses of SLAC, JLAB data)

integrated strength (E=80) = 4.68

(uses T from Benhar+Pieper)

includes \int_{40}^{80} = 0.3 \ (n_{corr}=1.26!)

noted in paper by Lapikas et al question: which is true occupation? is q-dependent??
```

open: quality optical potentials

role MEC's

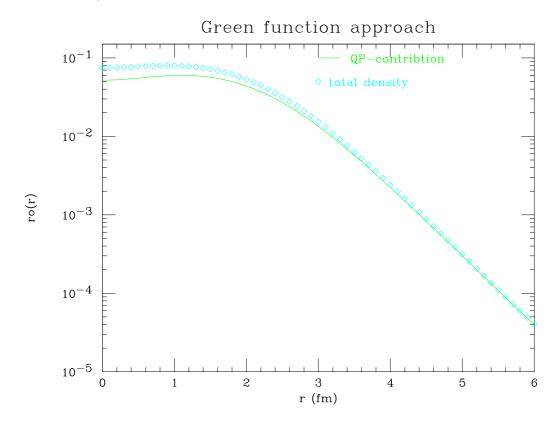
coupled-channel effects

effect relativity

value of T

. . . .

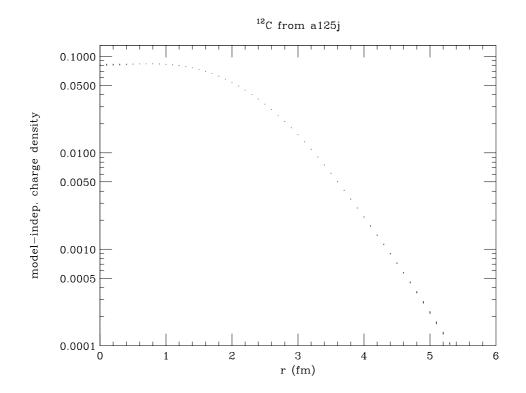
test


- use n(k) from (e,e'p) transform to r-space calculate s.p.-contribution to (point) density
- use charge density from (e,e) unfold n+p-size to get ρ_{point} compare

expectations

at large r asymptotic tail of $R^2(r)$ dominated by single-nucleon properties expect $(n_s R_s^2 + n_p R_p^2) = \rho_{point}$

confirmed by Greens-function calculations

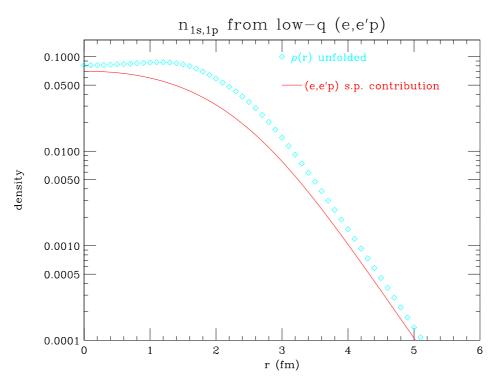

Müther+Polls

¹²C charge density

world data (e,e)+ μ -X model-independent analysis

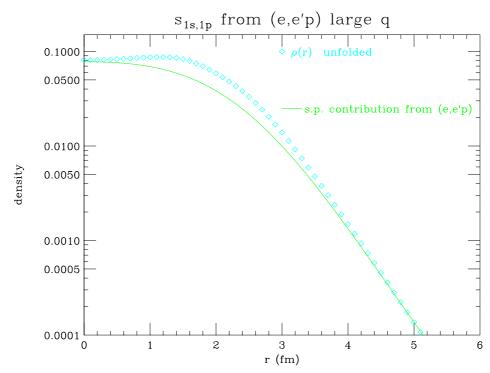
 \rightarrow large-r tail accurately known

fall-off of $\rho(r)$ accurately given by $SE_{1p}=15.9 \text{MeV}$


ρ particularly good check for ^{12}C

large-r density given by one shell, $p_{3/2}$, only occupation of $p_{3/2}$ from low-q (e,e'p) particularly low

particularly clean


low-medium-q, ∼no MEC, only single-particle

result for low-q occupation

tail not explained!

result for high-q occupations

(e,e'p) and (e,e) agree!

my conclusion:

need care in comparing low-q / high-q results spectroscopic factors of some valence states \neq occupation

with careful comparison

no significant discrepancy low-q / high-q

depletion of QP-states of $\sim 20\%$ supported by comparison s+p $\leftrightarrow \rho_{point}$

JLAB measurement of *correlated* strength \simeq theory $\pm 10\%$ (depletion due to correlations $\sim 20\%$)

$$F_{M\Lambda}(q)$$
: $\overline{\alpha_{\Lambda}} = 0.84$ for A=49, 51, 87, 91

$$^{206}Pb - ^{205}Tl \rightarrow n_{3s} = 0.84 \text{ (CERES)}$$