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Introduction

MPDT plasma (left) and tomographic reconstruction of the �ow (right)1

1F. Bonomo et al., Phys. Plasmas 12, 093301 (2005)
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Introduction

Ideal magnetohydrodynamics (MHD) is an important tool for
assessing the design and interpretation of laboratory plasma
experiments and for understanding phenomena in naturally
occurring plasmas.

Variational principles for equilibria have been discovered over a
period of many years.

δW energy principles2 and other energy-like principles, based
on Lagrangian displacements or Eulerian quantities, have been
discovered and e�ectively utilized.

2I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M. Kulsrud, Proc.
R. Soc. London, Ser. A 244, 17 (1958)
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Introduction

All of these variational principles for equilibria and all of the
energy principles, both Lagrangian and Eulerian, are a
consequence of the fact that ideal MHD is a Hamiltonian �eld
theory3,4.

The existence of variational principles for equilibrium states
follows from the fact that equilibria are extremal points of
Hamiltonian functionals.

3W. A. Newcomb, Nucl. Fusion Suppl. Part 2, 451�463 (1962)
4P. J. Morrison and J. M. Greene, Phys. Rev. Lett. 45, 790-794 (1980) and

Phys. Rev. Lett. 48, 569 (1982)
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Introduction

Stability conditions can be directly derived from the
Hamiltonian formulation:

the δW energy principle for static equilibria is an
in�nite-dimensional version of Lagrange's stability condition of
mechanics;
all of the su�cient conditions for stability of equilibria are
in�nite-dimensional versions of Dirichlet's stability condition.
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MHD Equilibria

MHD equilibria are solutions to the equations

ρeve ·∇ve =−∇pe +Je ×Be + ρe∇Φ

∇× (ve ×Be) = 0

∇ · (ρeve) = 0

ve ·∇se = 0

for the equilibrium velocity �eld ve , magnetic �eld Be , density
�eld ρe , and entropy/mass �eld se . Here Φ represents and
external gravitational potential.
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MHD Equilibria

In terms of Hamiltonian formulations, the equilibrium
equations derive from:

the extremization of the MHD Hamiltonian in Lagrangian
variables, which gives not only static equilibria in a natural way
but also, introducing a canonical time-dependent relabeling
transformation, stationary equilibria.
the extremization of the MHD Hamiltonian in Eulerian
variables constrained by Casimir invariants, which are
associated with the non-canonical variables.
the extremization of the MHD Hamiltonian in Eulerian
variables with dynamically accessible variations.
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Lagrangian Formulae

The Hamiltonian for MHD in Lagrangian variables is

H [q,π] =
∫

d3a

[
πiπ

i

2ρ0
+ ρ0U (s0,ρ0/J )

+
∂qi
∂ak

∂qi

∂a`
Bk
0B

`
0

8πJ
+ ρ0Φ

]
(1)

where (q,π) are the conjugate �elds with q(a, t) = (q1,q2,q3)
denoting the position of a �uid element at time t labeled by
a = (a1,a2,a3) and π being its momentum density.
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Lagrangian Formulae

The Hamiltonian together with the canonical Poisson bracket

{F ,G}=
∫

d3a

(
δF

δqi
δG

δπi
− δG

δqi
δF

δπi

)
, (2)

renders the equations of motion in the form

π̇i = {πi ,H}=−δH

δqi
and q̇i =

{
qi ,H

}
=

δH

δπi
. (3)
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Relabeling Transformation

Lagrangian equilibrium states correspond to static conditions

δH

δπ
= 0 → π = 0. (4)

To accommodate stationary equilibria, a relabeling
transformation can be adopted

a = A(b, t) ↔ b = B(a, t) (5)

q(a,t)=Q(b)a
b(a,t)
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Relabeling Transformation

The general time-dependent relabeling transformation give rise
to the new dynamical variables

Π(b, t) = Jπ (a, t) , Q(b, t) = q(a, t) (6)

and the new Hamiltonian

H̃ [Q,Π] = H−
∫

d3bΠ · (V ·∇bQ) , (7)

where J := det(∂ai/∂bj) and

V (b, t) := Ḃ◦B−1 = Ḃ(A(b, t) , t) (8)
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Relabeling Transformation

Extremization of Hamiltonians give equilibrium equations: for
the Hamiltonian H[q,π] this gives static equilibria, while for
H̃[Q,Π] one obtains stationary equilibria.

The relabeling allows us to express stationary equilibria in
terms of Lagrangian variables, which would ordinarily be time
dependent, as time-independent orbits with the moving labels.
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Relabeling Transformation

The equilibrium equations are

0 =∂tQe =
Πe

ρ̃0
−Ve ·∇bQe ,

0 =∂tΠe =−∇b · (Ve ⊗Πe) +Fe

From these it follows the equation

∇b · (ρ̃0VeVe ·∇bQe) = Fe
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Relabeling Transformation

From the equation

∇b · (ρ̃0VeVe ·∇bQe) = Fe ,

using b = Qe(b) = qe(Ae(b, t), t) = Be(a, t) and the
de�nition of V(b, t) = Ḃe(Ae(b, t), t) = ve(b), where ve(b)
denotes an Eulerian equilibrium state, we obtain the usual
stationary equilibrium equation

∇ · (ρeveve) = Fe .
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Lagrangian Stability

For stability, we expand as follows

Q = Qr (b, t) + η (b, t) , Π = Πr (b, t) + πη (b, t)

The second variation of the Hamiltonian results

δ
2Hla [Ze ;η ,πη ] =

1

2

∫
d3x

1

ρe
|πη −ρeve ·∇η |2 + δ

2Wla [Ze ;η]
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Lagrangian Stability

The functional δ 2Wla is identical to that obtained by Frieman
and Rotenberg5

δ
2Wla [Ze ;η] :=

1

2

∫
d3x η ·Ve ·η

=
1

2

∫
d3x

[
ρe (ve ·∇ve) · (η ·∇η)−ρe |ve ·∇η |2

]
+ δ

2W [η]

5E. A. Frieman and M. Rotenberg, Rev. Mod. Phys. 32, 898 (1960)
T. Andreussi Stability of MHD plasmas with �ows



Eulerian formulae

The Hamiltonian for MHD can be written in terms of the
Eulerian variables Z = (ρ,s,v,B) as

H [Z ] =
∫

d3x

[
ρ

2
|v|2 + ρU (s,ρ) +

B2

8π
+ ρΦ

]
Eulerian variables are non-canonical and the corresponding
Poisson bracket has degeneracy that gives rise to Casimir
invariants Ci .

Eulerian equilibria Ze satisfy δF = 0, where F = H + ∑Ci is
the Energy-Casimir functional.
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Eulerian formulae

For MHD with no symmetry the Casimirs are

Cs =
∫

d3x ρf (s)

and the magnetic and cross helicities

CB =
∫

d3xA ·B, and Cv =
∫

d3x v ·B.
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Eulerian formulae

If translational symmetry is assumed, all variables are
independent of the coordinate z and

B = Bz ẑ+ ∇ψ× ẑ
M = Mz ẑ+ ∇χ× ẑ+ ∇Υ

where M = ρv and ẑ is the unit vector in the symmetry
direction.

With this symmetry assumption, the set of Casimir is
expanded and is su�cient to obtain a variational principle for
the equilibria considered here.
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Casimir Invariants

The Casimir invariants of the case with translational symmetry
are

Cs =
∫

d3xρ J
(
s,ψ, [s,ψ]/ρ,

[
[s,ψ]/ρ,ψ

]
/ρ,[

s, [s,ψ]/ρ

]
/ρ, ...

)
(9)

CBz =
∫

d3x BzH (ψ) , (10)

Cvz =
∫

d3x ρvzG (ψ) , (11)
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Casimir Invariants

If the entropy is assumed to be a �ux function, i.e., [ψ,s] = 0
where [f ,g ] = ẑ ·∇f ×∇g , then

Cs =
∫

d3xρ J (ψ) ,

and there is the additional cross helicity Casimir

Cv =
∫

d3x

(
vzBzF

′+
1

ρ
∇F ·∇χ +

[Υ,F ]

ρ

)
=

∫
d3x v ·BF ′.
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Energy-Casimir Stability

For equilibria Ze a su�cient condition for stability follows from
the positiveness of6

δ
2F [Ze ;δZe ] =

∫
d3x

[
a1 |δS|2 +a2 (δQ)2

+a3 (δRz)2 +a4 |δR⊥|2 +a5 (δψ)2
]

where the variations (δS,δR,δQ,δψ) are linear combinations
of (δv,δB,δρ,δψ).

6T. Andreussi, P. J. Morrison, and F. Pegoraro, Phys. Plasmas 20, 092104
(2013) and Phys. Plasmas 22, 039903 (2015)
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Energy-Casimir Stability

Upon extremizing over all variables except δψ we obtain

δ
2F [Ze ;δψ] =

∫
d3x

[
b1 |∇δψ|2 +b2 (δψ)2 +b3

∣∣eψ ×∇δψ
∣∣2]

where eψ = ∇ψ/ |∇ψ| and

b1 =
1−M 2

4π

c2s −M 2
(
c2s + c2a

)
c2s −M 2 (c2s + c2a ) + M 2

4πρ
|∇ψ|2

b2 = ∇ ·
[

∂

∂ψ

(
M 2

4π

)
∇ψ

]
− ∂

∂ψ2

(
p+

B2
z

8π
+

M 2

4π
|∇ψ|2

)
b3 =

1−M 2

4π
−b1
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Dynamically Accessible Formulae

With energy-Casimir, the constraints are incorporated
essentially by using Lagrange multipliers.

Dynamically accessible variations restrict the variations to be
those generated by the noncanonical Poisson bracket

δρda = ∇ · (ρg1) , (12)

δvda = ∇g3 + s∇g2 + (∇×v)×g1
+B× (∇×g4)/ρ (13)

δ sda = g1 ·∇s , (14)

δBda = ∇× (B×g1) , (15)
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Dynamically Accessible Formulae

Using the dynamically accessible variations in the variation of
the Eulerian Hamiltonian gives

δHda =
∫

d3x

[(
v2/2+ (ρU)

ρ

)
δρda + ρv ·δvda

+ ρUsδ sda +B ·δBda/4π

]
,

=
∫

d3x

[
g1 ·
(

ρv× (∇×v)−ρ∇v2/2

−ρ∇h+ ρT∇s +J×B
)
−g2∇ · (ρsv)

−g3∇ · (ρv) +g4 ·∇× (v×B)

]
= 0
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Dynamically Accessible Stability

Stability is assessed by expanding the Hamiltonian to second
order using the dynamically accessible variations

δ
2Hda [Ze ;g] =

∫
d3x ρ |δvda−g1 ·∇v+v ·∇g1|2+δ

2Wla [Ze ;g1]

If δvda were independent and arbitrary we could use it to
nullify the �rst term and then upon setting g1 =−η , we would
see that dynamically accessible stability is identical to
Lagrangian stability.
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MHD Stability

The second variation of the three variational principles can be
used to determine su�cient (and, in some case, necessary)
conditions for stability.

Di�erent perturbations are associated with the three
approaches and, in terms of Eulerian variables, these
perturbations can be written as


δρla =−∇ · (ρη)

δvla = ∂η

∂ t +v ·∇η−η ·∇v
δ sla =−η ·∇s

δBla =−∇× (B×η)


δρec

δvec

δ sec

δBec


δρda =−∇ · (ρg1)
δvda =X+v ·∇g1−g1 ·∇v
δ sda =−g1 ·∇s

δBda =−∇× (B×g1)

where

X= 2(v ·∇)g1+v× (∇×g1)+ s∇g2+∇g3+
1

ρ
B× (∇×g4)
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Comparison Formulae

We established the inclusions7

Pda ⊂Pla ⊂Pec ,

which led to the conclusions

stabec ⇒ stabla⇒ stabda .

Dynamically accessible perturbations are the most constrained,
while energy-Casimir stability is the most general, when it
exists, for its perturbations are not constrained at all.

7T. Andreussi, P. J. Morrison, and F. Pegoraro, Phys. Plasmas 20, 092104
(2013) and Phys. Plasmas 22, 039903 (2015)
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Comparison Formulae

If δvda is arbitrary, independently of g1, then δ 2Hda is reduced
to the energy expression obtained for Lagrangian stability,
making the two kinds of stability equivalent.

Given that g has in addition to g1, the �ve components of
g2,g3 and g4, one might think that this is always possible.
However, this is not always possible and whether or not it is
depends on the state or equilibrium under consideration8.

8T. Andreussi, P. J. Morrison, and F. Pegoraro, Phys. Plasmas 23, 102112
(2016)
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Cross Helicity

Consider �rst a static equilibrium state that has entropy as a
�ux function. Thus, for this case, the cross helicity Cv

vanishes. For a dynamically accessible perturbation

δCv =
∫

d3x δvda ·B =
∫

d3x (∇g3 + s∇g2) ·B

=−
∫

d3x g2B ·∇s = 0 .

The last equality assumes g3 is single-valued and the vanishing
of surface terms, as well as s being a �ux function.
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Cross Helicity

The fact that δCv = 0 for this case is not a surprise since it is
a Casimir, but we do see clearly that if s were not a �ux
function, then a perturabtion δvda could indeed create cross
helicity.

Because of the term ∂η/∂ t which can be chosen arbitrarily, it
is clear that δvla can create cross helicity for any equilibrium
state, supplying clear evidence that δvda is not completly
general.
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Convection Stability

A clear comparison between the three approaches is possible
for the convection in static equilibria, both with and without a
magnetic �eld.

For the case B = 0, the Lagrangian and dynamically accessible
approaches both give the simple necessary and su�cient
condition for stability, ds/dy > 0, or equivalently the inequality

dρ

dy
<−ρg

c2s
< 0.

The Eulerian energy- Casimir approach gives this same result,
but only as a su�cient condition for stability and only
applicable to the case with the imposed translational
symmetry.
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Convection Stability

For the case B 6= 0, the situation is di�erent, although it again
must be true that the Lagrangian and dynamically accessible
approaches must give the same necessary and su�cient
condition for stability

dρ

dy
<− ρg

c2s + c2a
< 0.

The Eulerian energy-Casimir approach gives more complex
inequalities

dp

ds
+

ps
c2s

= ∆ < 0,
d (J/ρ)/dy

dψ/dy
+

J2

p2c2s ∆

dρ/dy

ds/dy
< 0,

which again represent su�cient conditions for stability and are
only applicable to the case with the imposed translational
symmetry.
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Convection Stability

The energy-Casimir inequalities depend on an extra derivative
with respect to y of at least one of the equilibrium pro�les,
e.g. a derivative of the current J.

This dJ/dy term can be removed by inserting into the second
variation of the energy-Casimir functional the Lagrangian
variations, adapted to the convection example

δψla = η ·∇ψ

Such a correspondence by constraining the Eulerian variations
in general connects energy-Casimir and Lagrangian stability.
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Rotating Pinch Stability

Within the Lagrangian, Energy-Casimir (Eulerian) and
Dynamically accessible frameworks, a second comparison was
then performed on the stability of an azimuthally symmetric
rotating pinch.

We consider rigidly rotating pinch equilibria and, to compare
the Lagrangian and the dynamically accessible stability
conditions with those obtained in the energy-Casimir
framework, we restrict our analysis to perturbations η that do
not depend on z (no �sausage� or kink instabilities).
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Rotating Pinch Stability

The results of the stability analysis for such perturbations can
be expressed as stability bounds on the normalized rotation
frequency w .

These bounds are modi�ed by the presence of an equilibrium
magnetic �eld along the symmetry direction, Bz , that couples
the component ηz to the other components of the
displacement leading in general to stricter bounds.
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Rotating Pinch Stability

Comparing the Lagrangian and the dynamically accessible
stability conditions, we observe that the constraints obeyed by
the dynamically accessible perturbations in the presence of
�ows lead to an additional stabilizing term.

This additional term cannot be made to vanish for azimuthally
symmetric perturbations, however, this term does not modify
the stability analysis since azimuthally symmetric perturbations
are found to be stable even within the Lagrangian framework.

For more general equilibria than the ones considered here, this
need not be the case.
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Rotating Pinch Stability

The minimization of δ 2Wla for our pinch case reduced to the
study of 4×4 matrix (for Bz 6= 0) for |m|= 1 perturbations

m2
(

Π̂/r2− p̂w2
)

imp̂w2 −imΠ̂/r2 −m2B̂/r

−imp̂w2 m2ϖ 0 0

imΠ̂/r2 0 1+ Π̂/r2 −imB̂/r

−m2B̂/r 0 imB̂/r m2ϖ


where ϖ = 1− p̂w2 and Π̂ = p̂+ B̂2.
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Rotating Pinch Stability

A necessary and su�cient condition for the positivity of this
matrix is provided by the Sylvester criterion which yields

w2 < 1/2 for Bz = 0

w2B2
z < 1 for Bz 6= 0 and w2→ 0.

A partial minimization procedure with respect to ηφ and ηz

leads to less restrictive conditions

w2 . 0.62 for Bz = 0

w2 . 0.46 for Bz 6= 0 and B2
z = 1.
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Rotating Pinch Stability

Extremization of the energy-Casimir functional over all
variables except δψ leads to a reduced energy-Casimir
functional and to su�cient stability bounds on w2 that, similar
to the Lagrangian case, become stricter as B2

z increases.

These bounds are in general more restrictive than those found
within the Lagrangian framework, for example we obtain

w2 . 0.31 for Bz 6= 0 and B2
z = 1.
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Rotating Pinch Stability

Sharper stability conditions could be obtained by solving the
Euler-Lagrange equation associated with this reduced
energy-Casimir functional subject to a normalization constraint
on δψ .

Stability criteria obtained from dynamically accessible
perturbations and Lagrangian perturbations are in general
di�erent when s is not a �ux function. However, this pinch
example demonstrates that, even though s is a �ux function,
dynamically accessible and Lagrangian stability can be
equivalent.
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