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Example���
 Our reading from the book of Jackson, ���

Problems 1.12 and 1.13	

A charge q is placed at an arbitrary point, xo, relative to two 
grounded, conducting electrodes.	


What is the charge q1 on the surface of 
electrode 1?	

	


Repeat for different x0	


q	

x0	
q1	


q2	




Solution - Green’s Reciprocation Theorem	


Prob #1	

Your 
Problem	


∇2φ = −qδ (x − x0 ) BC:	
 φ B1 = φ B2 = φ(x→∞) = 0

Green’s 	

Theorem	
 d 3x

V
∫ ψ∇2φ −φ∇2ψ( ) = ...

Prob #2	

N.Y. P.	
 ∇2ψ = 0 BC:	
 ψ B1 = 1, ψ B2 =ψ (x→∞) = 0

!!!
q1 = d2x n

B1
∫ ⋅∇φ

q1 = −qψ (x0 )When the dust settles:	




George Green 	
1793-1841	


Physics Today Dec. 2003	


•  Born in Nottingham  (Home of Robin Hood)	

•  Father was a baker	

•  At age 8 enrolled in Robert Goodacre’s Academy	

•  Left after 18 months (extent of formal education pre 40)	

•  Worked in bakery for 5 years	

•  Sent by father to town mill to learn to be a miller	




•  Fell in love with Jane, the miller’s 
daughter.	


•  Green’s father forbade marriage.	

•  Had 7 children with Jane.	

•  Self published work in 1828	

•  With help, entered Cambridge 

1833, graduated 1837.	

•  “Discovered” by Lord Kelvin in 

1840.	

•  Theory of Elasticity, refraction, 

evanescence	

•  Died of influenza, 1841	

	

	
 Green’s Mill: still functions	




Features of Problems Suited to Adjoint 
Approach	


1.  Many computations need to be repeated.   	

	
(many different locations of charge, q)	


	

2.  Only a limited amount of information about the 

solution is required. 	

	
(only want to know charge on electrode #1)	




Basic Formulation – Linear Algebra	


We wish to solve :	
 !A⋅x = B

And then evaluate for each B:	
 !!D=C ⋅x†

Instead solve for y once:	
 !!A
† ⋅ y =C

!!D= B† ⋅ yThen:	


for many B’s.	


D(B) is the answer.	




Other Examples of Reciprocity	


Electrostatics 	
 	
Symmetry of the Capacitance Matrix	

	

Electromagnetics 	
Symmetry of the Inductance Matrix	


	
 	
 	
Symmetry of Scattering Matrix	

	
 	
 	
	


	

Collisional Transport:	
Onsager Symmetry of off-diagonal elements of 
transport matrices.	

	

Temperature gradient 	
 	
è 	
 	
Electric current	

Electric field 	
 	
 	
è  	
Heat flux	




Optimize shape	

to minimize 
drag.	


Result is also 
aesthetically 
appealing.	


Super Computer	


Courtesy, Elizabeth Paul	






1985  Volvo 240 DL	




2017 Porche Panamera	


That’s more like it !!!	




RF Current Drive in Fusion Plasmas	

Magnetic Confinement: ITER	


US-EU-Russia-Japan-India Collaboration 	

Will be built in Cardarache France	

Completion 2016??	


http://www.iter.org/	


Poloidal 
magnetic 
field	


Toroidal 
current	


a person	


Injecting RF waves can drive a 
toroidal current. N. Fisch	




RF Current Drive Efficiency	

Original Langevin Treatment:  Nat Fisch, PRL (1978)	


RF pushes particles to higher energy.	

	

Collisions relax distribution back to 
equilibrium. 	
J/PD	


Adjoint Problem: distribution function driven by a DC electric field.	

TMA and KR Chu, PoF 25, (1982)	


!!
J = d3v Γ⋅ ∂

∂v∫ Ψ !!
PD = d3v Γ⋅ ∂

∂v∫ ε

Γ = RF induced 
velocity space 
particle flux	


ψ inversely proportional to collision rate	




For a Homogeneous Plasma, we want to solve steady state kinetic 
equation	


   
∂ f
∂t

= 0 = C( f )− ∂
∂v

⋅Γ

Linearized collision operator	
 RF induced velocity space flux	


Then find parallel current	

   
J! = −e d 3v∫ v! f

Adjoint problem: Spitzer-Harm	

   
−ev! fM = C(g)

    
J! = d 3v∫ Γ ⋅ ∂

∂v
g
fM

⎛
⎝⎜

⎞
⎠⎟

Parallel current	


Adjoint Approach	


Problem #1	


Problem #2	




RF Current Drive Efficiency	


RF pushes particles to higher energy.	

	

Collisions relax distribution back to 
equilibrium. 	
J/PD	


Adjoint Problem: distribution function 
driven by a DC electric field.	

TMA and KR Chu, PoF 25, (1982)	


electron 
velocity 
space	


!Ψ = const.

!!
J = d3v Γ⋅ ∂

∂v∫ Ψ



Toroidal Geometry Makes a Difference���
(TMA and KR Chu, PoF 25, (1982))	


Outside	
Inside	

!Ψ = const.

!!
J = d3v Γ⋅ ∂

∂v∫ g
fM

    
v!b ⋅∇g − ev! fM = C(g)

streaming	




Global Beam Sensitivity 
Function for Electron Guns	


Goal 	

Derive and Calculate a function that gives the variation of 
specific beam parameters to 	


	
- variations in electrode potential/position	

	
- variations in magnet current/position	


	

Can be used to	


	
- establish manufacturing tolerances	

	
- optimize gun designs	


	

Should be embedded in gun code (e.g. Michelle)	




Emitter 
Focus  
Electrode Ground 

1 cm 

– HV 

Matching 
Section 

Solid Model of Electrode	


Michelle: Petillo, J; Eppley, K; Panagos, D; et al., IEEE TPS 30, 
1238-1264 (2002).	

	


Cut away view of trajectories	




Code (Michelle) solves the following equations:	


K	

A	


dx j
dt

=
∂H
∂p

dp j
dt

= −
∂H
∂x

Equations of motion for N particles j=1,N	


Accumulates a charge density	


ρ(x) = I j dt δ
0

Tj

∫
j
∑ (x − x j (t))

Solves Poisson E                                         	


!−∇
2Φ = ρ /ε0

Iterates until converged	


                  	


                                                                                                                                                                                                                                                                                                                                                 	


                                                                                                          	


                                                                                                                                                                                                                                                                           	




Sensitivity Function Example	


K	


A	


C	


Basic question: How do small changes in 
position or potential of anode affect the 
properties of the beam leaving the gun? 	


Beam leaves here	


Conventional approach:  trial and error.  Do many 
simulations with different anode potentials or positions 
select the best based on some metric measured at the 
exit.	




Beamstick: Gun Baseline Design ���
Thermal Beam	


Vk = -25 kV	

	


Vma = -19 kV	

	

	


Ik = 96.5 mA	

	


Transmission = 100%	


10X	


Approved for public release; Distribution unlimited	


KT Nguyen et al. IVEC (2014).	




Beamstick: Gun Baseline Geometry���
Particle Trajectories at Actual Voltages	


Vk = -25.1 kV	

	


Vma = -20.2 kV	

	

	


Ik = 39.8 mA 	
	

	


It = 16.7 mA 	
	

	


Transmission = 42% 	


10X	


Approved for public release; Distribution unlimited	




It can be shown …	


K	


A	


C	


K	


A	


C	


Problem #1	


Change in beam 
radius	


δΦ A(x) Due to wall displacement	


Problem #2	


Reverse and perturb 
electron coordinates	


δEn Calculate and record 
change in normal E.	


δEn Is the sensitivity function	


Electrons run backwards	




Hamilton’s Equations H(p,q,t)���
Conserve Symplectic Area	


(δq1(t),δ p1(t)) !!

dq
dt

= ∂H
∂p

dp
dt

= − ∂H
∂q

!!!

dδq1
dt

= ∂2H
∂p∂q

⋅δq1 +
∂2H
∂p∂p

⋅δp1

dδp1
dt

= − ∂2H
∂q∂q

⋅δq1 −
∂2H
∂q∂p

⋅δp1

(q(t), p(t))

(δq2 (t),δ p2 (t))

perturbed orbit #1	


!!!

dδq2
dt

= ...
dδp2
dt

= −...

perturbed orbit #2	


!!!
d
dt

δp1 ⋅δq2 −δp2 ⋅δq1( ) =0 Area conserved for 
any choice of 1 and 2	




Jacobian Matrix – M(t)	


(q(t), p(t))

(δq(0),δ p(0))

(δq(t),δ p(t))

δq(t)
δp(t)

⎛

⎝
⎜

⎞

⎠
⎟ = M (t) ⋅

δq(0)
δp(0)

⎛

⎝
⎜

⎞

⎠
⎟

!!!
d
dt

δp1 ⋅δq2 −δp2 ⋅δq1( ) =0

2N Eiegenvectors and Eigenvalues of M	


2Nx2N	


Λ(t)
δq(0)
δp(0)

⎛

⎝
⎜

⎞

⎠
⎟ = M (t) ⋅

δq(0)
δp(0)

⎛

⎝
⎜

⎞

⎠
⎟

Solutions come in N pairs-	
 !Λ1Λ2 =1
Eigenvectors from different pairs orthogonal	


!! δp1 ⋅δq2 −δp2 ⋅δq1( ) =0



Code (Michelle) solves the following equations:	


K	

A	


dx j
dt

=
∂H
∂p

dp j
dt

= −
∂H
∂x

Hamilton’s Equations  for N particles j=1,N	


Accumulates a charge density	


ρ(x) = I j dt δ
0

Tj

∫
j
∑ (x − x j (t))

Solves Poisson Equation	


!−∇
2Φ = ρ /ε0

Iterates until converged	




!![δ x j(t),δpj(t)]

!![δ x̂ j(t),δ p̂j(t)]

Reference Solution + Two Linearized Solutions	


!!! x j ,p j( )→ x j ,p j( )+ δx j ,δp j( )

!!Φ(x)→Φ(x)+δΦ(x)
!!ρ(x)→ρ(x)+δρ(x)

Two Linearized Solutions	


subject to different BC’s                                 	


!!!
I j

j
∑ δ p̂ j ⋅δx j −δp j ⋅δ x̂ j( )

0

Tj
= −qε0 dan ⋅ δΦ∇δΦ̂−δΦ̂∇δΦ⎡⎣ ⎤⎦s

∫

Can show	


true	


adjoint	


Reference Solution	
 Perturbation	




!!!
I j

j
∑ δ p̂ j ⋅δx j −δp j ⋅δ x̂ j( )

0

Tj
= −qε0 dan ⋅ δΦ∇δΦ̂−δΦ̂∇δΦ⎡⎣ ⎤⎦s

∫

Can show	


Problem #1 (true problem) Unperturbed trajectories at cathode, 
Perturbed potential on boundary.	


!!!δpj 0 =0, δqj 0 =0, δΦ(x)≠0
Problem #2 (adjoint problem) Perturbed trajectories at exit, 
Unperturbed potential on boundary.	


!!!δ p̂j T = λx⊥ j , δqj T =0, δΦ̂(x)=0

!!!
λIRRMSδRRMS = λ I j

j
∑ x j ⋅δx j( )

Tj
= −qε0 daδΦ n ⋅∇δΦ̂( )

s
∫

Sensitivity Function	




 Theoretical Study of Statistical Variations 
Example of the Adjoint Method in Action 

31	


∫ Φ∇Φ⋅−=
s
da

I
qx ˆ
4

δδ
πλ

δ n
𝛿𝑥  = Beam centroid displacement at gun exit	

 = Small change or error in anode or other electrode potential	


−𝒏∙𝛻Φ = Sensitivity (Green’s) function	


Problem: Compute the displacement of the beam in a sheet beam 
gun due to a small change in anode potential or a small displacement 
of the anode:	
 MICHELLE Simulations of Sheet Beam Gun	


‘Perturbed’ case:	

Beam centroid at gun exit is displaced	


‘Perfect’ case:	

Beam centroid at gun exit is on axis	


The adjoint method gives us a way to compute the displacement of the beam without re-running 
MICHELLE:	


𝛿𝑥	




Task 1-4: Theoretical Study of Statistical Variations 
Successful Test of Adjoint Method ! 

32	


𝛿𝑥	


!!!
δ x = −

qε0
λI

dan ⋅δΦ∇δ Φ̂
s
∫

Vector plot of the ‘sensitivity’ or Green’s function	

−𝛻𝛿Φ 	


‘Direct’ MICHELLE Simulation with	

Perturbed Anode Voltages	


Predicted displacement  / Calculated displacement = 0.9969	




RMS radius sensitivity	

Cathode E-normal has the largest “sensitivity”���
	


Anode E-normal 
sensitivity	


Anode normal AK-
Gap values	


!!!
λIRRMSδRRMS = λ I j

j
∑ x j ⋅δx j( )

Tj
= −qε0 daδΦ n ⋅∇δΦ̂( )

s
∫



Conclusion:  Next Steps	


!!!
I j

j
∑ δ p̂ j ⋅δx j −δp j ⋅δ x̂ j( )

Tj

= −qε0 daδΦA
s
∫ n⋅∇δΦ̂S − µ0 d3x∫ δ jm ⋅qδ Â s

Change in magnetization current	


sensitivity function	
Add Magnetic field	


Add time dependence	

	

Implement in an optimization routine	




Thank You	


Happy Birthday Francesco	




 Signal to Noise Ratio in a Gyroklystron	


Klystron: invented in 1937 by the Varian 
brothers. One of the first Palo Alto High Tech. 
firms.	

High Power Source of Microwaves	

 Radar, Particle Accelerators, (LHC 16 x 300 
kW), etc 	




Velocity Modulation   Ballistic Bunching	
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Cavity 1 

Cavity 2 
I(t) 

Field in cavity 1 gives 
small time dependent 
velocity modulation 
 
Fast electrons catch up 
to slow electrons giving 
large current 
modulation. 

cathode	


electron 
beam	




Shot Noise in Input Cavity	


Cavity 1 

power 
in electron beam	


cathode	


Signal to noise ratio 
determined by ratio of 
injected signal power in 
cavity to fluctuating beam 
power due to discrete 
electronic charge.	
fluctuating current	


If arrival times are independent and identically distributed, 
fluctuations are a white noise process.	


!!
I2(t) = dω

2π∫ e I

But, this is wrong: electrons become correlated on transit from 
cathode to cavity.	




Shielding Cloud	


v	

Direct calculation	

	

For an ensemble (N>>1) of 
initial conditions at that cathode 
of test electrons, calculate the 
shielding cloud and total current 
fluctuation that excites the 
relevant mode in the cavity.	


Adjoint approach:	

	

For a given cavity mode profile, integrate the kinetic equation 
( once) backward in time to find the sensitivity function, average 
over initial ensemble.	




Gyroklystron	

Strong applied magnetic field.	

	

Electrons gyrate as they pass 
through the device.	

	

Operating frequency	


! 
ω ! eB

mγ

Relativistic factor	


Shielding cloud is unstable!	

Must control growth.	

TMA, W Manheimer, and A Fliflet, PoP (2001)	

	




EM Reciprocity	

Example: 	

  - Antenna sending and receiving radiation patterns are equal due to 
time reversal symmetry of ME.	

  - Direct calculation of receiving pattern requires many simulations	

  - Instead, calculate sending pattern and invoke reciprocity	


V	
 V	

Receiving	
 Sending        	




Effective Area – Antenna Gain	


V	
 V	

Receiving	
 Sending        	


Power per 
unit solid 
angle	


Power 
received	


Effective 
area 	


Incident 
intensity	


gain	


!
dP
dΩI	


!!

G(Ω)= dP
dΩ

/PT

PT =
dP
dΩ

dΩ∫
!!

PR = Ae(Ω)I

Ae(Ω)=
λ2G(Ω)
4π



Adjoint Problems 	

•  Calculation of RF current drive in magnetic confinement 

plasma configurations, TMA and KR Chu, PoF 25, (1982)	

•  Calculation of RF induced transport in magnetic confinement 

plasmas, TMA and K. Yoshioka, PoF 29, (1986), Nucl. 
Fusion, 26 (1986).	


•  Spontaneous poloidal flow spin-up, Bull Am Phys Soc. 
(1994).	


•  Shot noise on gyrotron beams, TMA, W Manheimer, and A 
Fliflet, PoP (2001).	


•  Beam optics sensitivity function  TMA, D. Chernin, J. 
Petillo, TBP	




1985  Volvo 240 DL	

CODING ERROR  !!!	




RF Induced Transport 	


Perturbed neoclassical DF	
 TMA and K. Yoshioka, PoF 29, (1986)	


Response to a radial 
gradient	


Fluctuation induced radial 
flux	


    
v!b ⋅∇g + vd ⋅∇fM = C(g)

    
v!b ⋅∇f + ∂

∂v
⋅Γ = C( f )

   
d 3v f vd ⋅∇ψ∫ = d 3v Γ ⋅ ∂

∂v∫ g
fM



   
d 3v f vd ⋅∇ψ∫ = d 3v Γ ⋅ ∂

∂v∫ g
fM

Radial Flux driven by RF	




G-Band (220 GHz)  Folded Waveguide Amplifier Structure	

Joye et al., IEEE Trans ED (2014)  60W,  15 GHz BW	


Beam 
Tunnel	


Output 
waveguide	


beam	



