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Example���
 Our reading from the book of Jackson, ���

Problems 1.12 and 1.13	


A charge q is placed at an arbitrary point, xo, relative to two 
grounded, conducting electrodes.	



What is the charge q1 on the surface of 
electrode 1?	


	



Repeat for different x0	



q	


x0	

q1	



q2	





Solution - Green’s Reciprocation Theorem	



Prob #1	


Your 
Problem	



∇2φ = −qδ (x − x0 ) BC:	

 φ B1 = φ B2 = φ(x→∞) = 0

Green’s 	


Theorem	

 d 3x

V
∫ ψ∇2φ −φ∇2ψ( ) = ...

Prob #2	


N.Y. P.	

 ∇2ψ = 0 BC:	

 ψ B1 = 1, ψ B2 =ψ (x→∞) = 0

!!!
q1 = d2x n

B1
∫ ⋅∇φ

q1 = −qψ (x0 )When the dust settles:	





George Green 	

1793-1841	



Physics Today Dec. 2003	



•  Born in Nottingham  (Home of Robin Hood)	


•  Father was a baker	


•  At age 8 enrolled in Robert Goodacre’s Academy	


•  Left after 18 months (extent of formal education pre 40)	


•  Worked in bakery for 5 years	


•  Sent by father to town mill to learn to be a miller	





•  Fell in love with Jane, the miller’s 
daughter.	



•  Green’s father forbade marriage.	


•  Had 7 children with Jane.	


•  Self published work in 1828	


•  With help, entered Cambridge 

1833, graduated 1837.	


•  “Discovered” by Lord Kelvin in 

1840.	


•  Theory of Elasticity, refraction, 

evanescence	


•  Died of influenza, 1841	


	


	

 Green’s Mill: still functions	





Features of Problems Suited to Adjoint 
Approach	



1.  Many computations need to be repeated.   	


	

(many different locations of charge, q)	



	


2.  Only a limited amount of information about the 

solution is required. 	


	

(only want to know charge on electrode #1)	





Basic Formulation – Linear Algebra	



We wish to solve :	

 !A⋅x = B

And then evaluate for each B:	

 !!D=C ⋅x†

Instead solve for y once:	

 !!A
† ⋅ y =C

!!D= B† ⋅ yThen:	



for many B’s.	



D(B) is the answer.	





Other Examples of Reciprocity	



Electrostatics 	

 	

Symmetry of the Capacitance Matrix	


	


Electromagnetics 	

Symmetry of the Inductance Matrix	



	

 	

 	

Symmetry of Scattering Matrix	


	

 	

 	

	



	


Collisional Transport:	

Onsager Symmetry of off-diagonal elements of 
transport matrices.	


	


Temperature gradient 	

 	

è 	

 	

Electric current	


Electric field 	

 	

 	

è  	

Heat flux	





Optimize shape	


to minimize 
drag.	



Result is also 
aesthetically 
appealing.	



Super Computer	



Courtesy, Elizabeth Paul	







1985  Volvo 240 DL	





2017 Porche Panamera	



That’s more like it !!!	





RF Current Drive in Fusion Plasmas	


Magnetic Confinement: ITER	



US-EU-Russia-Japan-India Collaboration 	


Will be built in Cardarache France	


Completion 2016??	



http://www.iter.org/	



Poloidal 
magnetic 
field	



Toroidal 
current	



a person	



Injecting RF waves can drive a 
toroidal current. N. Fisch	





RF Current Drive Efficiency	


Original Langevin Treatment:  Nat Fisch, PRL (1978)	



RF pushes particles to higher energy.	


	


Collisions relax distribution back to 
equilibrium. 	

J/PD	



Adjoint Problem: distribution function driven by a DC electric field.	


TMA and KR Chu, PoF 25, (1982)	



!!
J = d3v Γ⋅ ∂

∂v∫ Ψ !!
PD = d3v Γ⋅ ∂

∂v∫ ε

Γ = RF induced 
velocity space 
particle flux	



ψ inversely proportional to collision rate	





For a Homogeneous Plasma, we want to solve steady state kinetic 
equation	



   
∂ f
∂t

= 0 = C( f )− ∂
∂v

⋅Γ

Linearized collision operator	

 RF induced velocity space flux	



Then find parallel current	


   
J! = −e d 3v∫ v! f

Adjoint problem: Spitzer-Harm	


   
−ev! fM = C(g)

    
J! = d 3v∫ Γ ⋅ ∂

∂v
g
fM

⎛
⎝⎜

⎞
⎠⎟

Parallel current	



Adjoint Approach	



Problem #1	



Problem #2	





RF Current Drive Efficiency	



RF pushes particles to higher energy.	


	


Collisions relax distribution back to 
equilibrium. 	

J/PD	



Adjoint Problem: distribution function 
driven by a DC electric field.	


TMA and KR Chu, PoF 25, (1982)	



electron 
velocity 
space	



!Ψ = const.

!!
J = d3v Γ⋅ ∂

∂v∫ Ψ



Toroidal Geometry Makes a Difference���
(TMA and KR Chu, PoF 25, (1982))	



Outside	

Inside	


!Ψ = const.

!!
J = d3v Γ⋅ ∂

∂v∫ g
fM

    
v!b ⋅∇g − ev! fM = C(g)

streaming	





Global Beam Sensitivity 
Function for Electron Guns	



Goal 	


Derive and Calculate a function that gives the variation of 
specific beam parameters to 	



	

- variations in electrode potential/position	


	

- variations in magnet current/position	



	


Can be used to	



	

- establish manufacturing tolerances	


	

- optimize gun designs	



	


Should be embedded in gun code (e.g. Michelle)	





Emitter 
Focus  
Electrode Ground 

1 cm 

– HV 

Matching 
Section 

Solid Model of Electrode	



Michelle: Petillo, J; Eppley, K; Panagos, D; et al., IEEE TPS 30, 
1238-1264 (2002).	


	



Cut away view of trajectories	





Code (Michelle) solves the following equations:	



K	


A	



dx j
dt

=
∂H
∂p

dp j
dt

= −
∂H
∂x

Equations of motion for N particles j=1,N	



Accumulates a charge density	



ρ(x) = I j dt δ
0

Tj

∫
j
∑ (x − x j (t))

Solves Poisson E                                         	



!−∇
2Φ = ρ /ε0

Iterates until converged	



                  	



                                                                                                                                                                                                                                                                                                                                                 	



                                                                                                          	



                                                                                                                                                                                                                                                                           	





Sensitivity Function Example	



K	



A	



C	



Basic question: How do small changes in 
position or potential of anode affect the 
properties of the beam leaving the gun? 	



Beam leaves here	



Conventional approach:  trial and error.  Do many 
simulations with different anode potentials or positions 
select the best based on some metric measured at the 
exit.	





Beamstick: Gun Baseline Design ���
Thermal Beam	



Vk = -25 kV	


	



Vma = -19 kV	


	


	



Ik = 96.5 mA	


	



Transmission = 100%	



10X	



Approved for public release; Distribution unlimited	



KT Nguyen et al. IVEC (2014).	





Beamstick: Gun Baseline Geometry���
Particle Trajectories at Actual Voltages	



Vk = -25.1 kV	


	



Vma = -20.2 kV	


	


	



Ik = 39.8 mA 	

	


	



It = 16.7 mA 	

	


	



Transmission = 42% 	



10X	



Approved for public release; Distribution unlimited	





It can be shown …	



K	



A	



C	



K	



A	



C	



Problem #1	



Change in beam 
radius	



δΦ A(x) Due to wall displacement	



Problem #2	



Reverse and perturb 
electron coordinates	



δEn Calculate and record 
change in normal E.	



δEn Is the sensitivity function	



Electrons run backwards	





Hamilton’s Equations H(p,q,t)���
Conserve Symplectic Area	



(δq1(t),δ p1(t)) !!

dq
dt

= ∂H
∂p

dp
dt

= − ∂H
∂q

!!!

dδq1
dt

= ∂2H
∂p∂q

⋅δq1 +
∂2H
∂p∂p

⋅δp1

dδp1
dt

= − ∂2H
∂q∂q

⋅δq1 −
∂2H
∂q∂p

⋅δp1

(q(t), p(t))

(δq2 (t),δ p2 (t))

perturbed orbit #1	



!!!

dδq2
dt

= ...
dδp2
dt

= −...

perturbed orbit #2	



!!!
d
dt

δp1 ⋅δq2 −δp2 ⋅δq1( ) =0 Area conserved for 
any choice of 1 and 2	





Jacobian Matrix – M(t)	



(q(t), p(t))

(δq(0),δ p(0))

(δq(t),δ p(t))

δq(t)
δp(t)

⎛

⎝
⎜

⎞

⎠
⎟ = M (t) ⋅

δq(0)
δp(0)

⎛

⎝
⎜

⎞

⎠
⎟

!!!
d
dt

δp1 ⋅δq2 −δp2 ⋅δq1( ) =0

2N Eiegenvectors and Eigenvalues of M	



2Nx2N	



Λ(t)
δq(0)
δp(0)

⎛

⎝
⎜

⎞

⎠
⎟ = M (t) ⋅

δq(0)
δp(0)

⎛

⎝
⎜

⎞

⎠
⎟

Solutions come in N pairs-	

 !Λ1Λ2 =1
Eigenvectors from different pairs orthogonal	



!! δp1 ⋅δq2 −δp2 ⋅δq1( ) =0



Code (Michelle) solves the following equations:	



K	


A	



dx j
dt

=
∂H
∂p

dp j
dt

= −
∂H
∂x

Hamilton’s Equations  for N particles j=1,N	



Accumulates a charge density	



ρ(x) = I j dt δ
0

Tj

∫
j
∑ (x − x j (t))

Solves Poisson Equation	



!−∇
2Φ = ρ /ε0

Iterates until converged	





!![δ x j(t),δpj(t)]

!![δ x̂ j(t),δ p̂j(t)]

Reference Solution + Two Linearized Solutions	



!!! x j ,p j( )→ x j ,p j( )+ δx j ,δp j( )

!!Φ(x)→Φ(x)+δΦ(x)
!!ρ(x)→ρ(x)+δρ(x)

Two Linearized Solutions	



subject to different BC’s                                 	



!!!
I j

j
∑ δ p̂ j ⋅δx j −δp j ⋅δ x̂ j( )

0

Tj
= −qε0 dan ⋅ δΦ∇δΦ̂−δΦ̂∇δΦ⎡⎣ ⎤⎦s

∫

Can show	



true	



adjoint	



Reference Solution	

 Perturbation	





!!!
I j

j
∑ δ p̂ j ⋅δx j −δp j ⋅δ x̂ j( )

0

Tj
= −qε0 dan ⋅ δΦ∇δΦ̂−δΦ̂∇δΦ⎡⎣ ⎤⎦s

∫

Can show	



Problem #1 (true problem) Unperturbed trajectories at cathode, 
Perturbed potential on boundary.	



!!!δpj 0 =0, δqj 0 =0, δΦ(x)≠0
Problem #2 (adjoint problem) Perturbed trajectories at exit, 
Unperturbed potential on boundary.	



!!!δ p̂j T = λx⊥ j , δqj T =0, δΦ̂(x)=0

!!!
λIRRMSδRRMS = λ I j

j
∑ x j ⋅δx j( )

Tj
= −qε0 daδΦ n ⋅∇δΦ̂( )

s
∫

Sensitivity Function	





 Theoretical Study of Statistical Variations 
Example of the Adjoint Method in Action 

31	



∫ Φ∇Φ⋅−=
s
da

I
qx ˆ
4

δδ
πλ

δ n
𝛿𝑥  = Beam centroid displacement at gun exit	


 = Small change or error in anode or other electrode potential	



−𝒏∙𝛻​Φ = Sensitivity (Green’s) function	



Problem: Compute the displacement of the beam in a sheet beam 
gun due to a small change in anode potential or a small displacement 
of the anode:	

 MICHELLE Simulations of Sheet Beam Gun	



‘Perturbed’ case:	


Beam centroid at gun exit is displaced	



‘Perfect’ case:	


Beam centroid at gun exit is on axis	



The adjoint method gives us a way to compute the displacement of the beam without re-running 
MICHELLE:	



𝛿𝑥	





Task 1-4: Theoretical Study of Statistical Variations 
Successful Test of Adjoint Method ! 

32	



𝛿𝑥	



!!!
δ x = −

qε0
λI

dan ⋅δΦ∇δ Φ̂
s
∫

Vector plot of the ‘sensitivity’ or Green’s function	


−𝛻𝛿​Φ 	



‘Direct’ MICHELLE Simulation with	


Perturbed Anode Voltages	



Predicted displacement  / Calculated displacement = 0.9969	





RMS radius sensitivity	


Cathode E-normal has the largest “sensitivity”���
	



Anode E-normal 
sensitivity	



Anode normal AK-
Gap values	



!!!
λIRRMSδRRMS = λ I j

j
∑ x j ⋅δx j( )

Tj
= −qε0 daδΦ n ⋅∇δΦ̂( )

s
∫



Conclusion:  Next Steps	



!!!
I j

j
∑ δ p̂ j ⋅δx j −δp j ⋅δ x̂ j( )

Tj

= −qε0 daδΦA
s
∫ n⋅∇δΦ̂S − µ0 d3x∫ δ jm ⋅qδ Â s

Change in magnetization current	



sensitivity function	

Add Magnetic field	



Add time dependence	


	


Implement in an optimization routine	





Thank You	



Happy Birthday Francesco	





 Signal to Noise Ratio in a Gyroklystron	



Klystron: invented in 1937 by the Varian 
brothers. One of the first Palo Alto High Tech. 
firms.	


High Power Source of Microwaves	


 Radar, Particle Accelerators, (LHC 16 x 300 
kW), etc 	





Velocity Modulation   Ballistic Bunching	
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Cavity 1 Cavity 2 

power 
in power 

out 

Cavity 1 

Cavity 2 
I(t) 

Field in cavity 1 gives 
small time dependent 
velocity modulation 
 
Fast electrons catch up 
to slow electrons giving 
large current 
modulation. 

cathode	



electron 
beam	





Shot Noise in Input Cavity	



Cavity 1 

power 
in electron beam	



cathode	



Signal to noise ratio 
determined by ratio of 
injected signal power in 
cavity to fluctuating beam 
power due to discrete 
electronic charge.	

fluctuating current	



If arrival times are independent and identically distributed, 
fluctuations are a white noise process.	



!!
I2(t) = dω

2π∫ e I

But, this is wrong: electrons become correlated on transit from 
cathode to cavity.	





Shielding Cloud	



v	


Direct calculation	


	


For an ensemble (N>>1) of 
initial conditions at that cathode 
of test electrons, calculate the 
shielding cloud and total current 
fluctuation that excites the 
relevant mode in the cavity.	



Adjoint approach:	


	


For a given cavity mode profile, integrate the kinetic equation 
( once) backward in time to find the sensitivity function, average 
over initial ensemble.	





Gyroklystron	


Strong applied magnetic field.	


	


Electrons gyrate as they pass 
through the device.	


	


Operating frequency	



! 
ω ! eB

mγ

Relativistic factor	



Shielding cloud is unstable!	


Must control growth.	


TMA, W Manheimer, and A Fliflet, PoP (2001)	


	





EM Reciprocity	


Example: 	


  - Antenna sending and receiving radiation patterns are equal due to 
time reversal symmetry of ME.	


  - Direct calculation of receiving pattern requires many simulations	


  - Instead, calculate sending pattern and invoke reciprocity	



V	

 V	


Receiving	

 Sending        	





Effective Area – Antenna Gain	



V	

 V	


Receiving	

 Sending        	



Power per 
unit solid 
angle	



Power 
received	



Effective 
area 	



Incident 
intensity	



gain	



!
dP
dΩI	



!!

G(Ω)= dP
dΩ

/PT

PT =
dP
dΩ

dΩ∫
!!

PR = Ae(Ω)I

Ae(Ω)=
λ2G(Ω)
4π



Adjoint Problems 	


•  Calculation of RF current drive in magnetic confinement 

plasma configurations, TMA and KR Chu, PoF 25, (1982)	


•  Calculation of RF induced transport in magnetic confinement 

plasmas, TMA and K. Yoshioka, PoF 29, (1986), Nucl. 
Fusion, 26 (1986).	



•  Spontaneous poloidal flow spin-up, Bull Am Phys Soc. 
(1994).	



•  Shot noise on gyrotron beams, TMA, W Manheimer, and A 
Fliflet, PoP (2001).	



•  Beam optics sensitivity function  TMA, D. Chernin, J. 
Petillo, TBP	





1985  Volvo 240 DL	


CODING ERROR  !!!	





RF Induced Transport 	



Perturbed neoclassical DF	

 TMA and K. Yoshioka, PoF 29, (1986)	



Response to a radial 
gradient	



Fluctuation induced radial 
flux	



    
v!b ⋅∇g + vd ⋅∇fM = C(g)

    
v!b ⋅∇f + ∂

∂v
⋅Γ = C( f )

   
d 3v f vd ⋅∇ψ∫ = d 3v Γ ⋅ ∂

∂v∫ g
fM



   
d 3v f vd ⋅∇ψ∫ = d 3v Γ ⋅ ∂

∂v∫ g
fM

Radial Flux driven by RF	





G-Band (220 GHz)  Folded Waveguide Amplifier Structure	


Joye et al., IEEE Trans ED (2014)  60W,  15 GHz BW	



Beam 
Tunnel	



Output 
waveguide	



beam	




