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(I) THE VLASOV-POISSON 
SYSTEM OF EQUATIONS AND 

THE SUCCESS OF THE KING MODELS

For globular clusters, the dynamical time is very short, because a typical star velocity is a 
few km/s and a typical half-mass radius is a few pc. 

[recall that 1 pc / (1 km/s) ~ 1.02 Myr]

Two-star relaxation times are larger.

In turn, globular clusters in our Galaxy are very old, with age ~ 10 Gyr.
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For stellar dynamics, the general quantitative description is by 
means of the Vlasov-Poisson system of equations, for which we 
consider the possible presence of external fields (e.g., dark matter 
or tidal forces).
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TIDES AND SHAPES OF GLOBULAR CLUSTERS

Tidal interaction with the host galaxy is the physical basis of the truncation considered 
in the King models (see below). But tides would make the stellar system triaxial, with the 
long axis in the direction of the center of the host galaxy. Is it really true? What can we 
say about the shapes of globular clusters? Are the observed shapes primarily due to tides 
or rotation?

Very little has been done on this problem
(White & Shawl 1987; Chen & Chen 2010). 
In contrast, note that this issue has led to 
the discovery of the important role of 
pressure anisotropy in elliptical galaxies.
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Figure 14. Offset angle from the Galactic center ∆φ vs. galactocentric distances dg for 57 clusters within 60◦ × 60◦ around the Galactic center. GCs flatter than
b/a = 0.87 are marked by circle-in-square, whereas the relatively round systems are marked by filled circles. Nine flattened bulge clusters with ∆φ < 45◦ are labeled.
The median value of the errors of P.A.s is shown in the lower left corner.

Figure 15. Spatial distribution of 57 GCs within −30◦ < " < 30◦ and
−30◦ < b < 30◦. Thick ellipses mark GCs with dg < 2.7 kpc and thin
ellipses mark those beyond. For clusters flatter than average (b/a < 0.87), a
line is drawn through the corresponding ellipse depicting the axial ratio, with
a longer length meaning a flatter shape. There are 14 flattened bulge clusters,
marked by lines in thick ellipses. Among these, half (7/14) have ∆φ < 20◦ and
are highlighted in red.
(A color version of this figure is available in the online journal.)

point to the tidal source. For each GC, we computed the offset
angle between the P.A. of the major axis and the direction to the
Galactic center. For a cluster with a large angular distance from
the Galactic center, e.g., in the anticenter, it needs to account for
the three-dimensional geometry to solve for the galactocentric

Figure 16. Distribution function of ∆φ, the offset angle from the Galactic center
of 57 clusters (the solid line) within 60◦ × 60◦ around the Galactic center and
that of a randomly oriented ellipsoid with a:b:c = 1:0.7:0.5 (the dashed line).

direction, so for simplicity, only GCs within 60◦ × 60◦ of the
Galactic center are considered.

Figure 14 shows the sky-projected offset angle ∆φ versus the
galactocentric distance. The 57 clusters reliably measured are
divided into two groups, the bulge clusters and the outer group
(dg > 2.7 kpc). GCs flatter than average, i.e., with b/a < 0.87,
are marked by circle-in-square, whereas the relatively spherical
systems are marked by filled circles. In the bulge, seven out of
14 (50%) flattened GCs have ∆φ < 20◦, to be compared with
6/16 = 37.5% of the outer group.

The alignment of distortion of GCs with the Galactic center is
further illustrated in Figure 15, in which each GC is represented
by an ellipse appropriate to its shape as projected on the sky,
with the size of each ellipse expanded 20 times for clarify. Bulge
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    “Science et méthode”, Henri Poincaré (1908)

...........
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The globular clusters in our Galaxy are characterized by a wide range of 
relaxation times. For many of them relaxation effects are thought to be 
significant. The parameters illustrated below are obtained by fitting the 
observations with King models. 
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depth of the potential well)

Djorgovski & Meylan (1994)
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EFFECTS OF RELAXATION

Star-star relaxation is the physical basis of the isotropic, quasi-Maxwellian King models 
(see below). But collisionality leads to other important phenomena, all responsible for the 
dynamical evolution of globular clusters:
- evaporation

- core collapse [gravothermal catastrophe and oscillations; see also Sormani & GB (2013)]

- equipartition and mass segregation [see also Spitzer’s (1969) instability; Trenti & van 
der Marel (2013)]

- physical encounters, multiple encounters, anomalous effects involving or producing 
binaries

How much of these effects can be measured? So far great attention has been given to 
producing powerful and realistic N-body simulations [e.g., see Heggie & Hut (2003)]. 
Much remains to be done in terms of physical undestanding and actual observations.
Furthermore, good relaxation would lead to mass segregation: is this incompatible with 
the use of simple one-component King models?
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DYNAMICAL EVOLUTION

So the dynamical evolution of globular clusters is expected to be driven by a number of 
factors, among which 

- instabilities

- external forcing

- collisionality
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THE TRADITIONAL KING MODELS
(“lowered isothermal spheres”)

1) isotropic, because constructed under the hypothesis of significant relaxation;
2) generally applied to fit the photometric profiles (constant M/L);
3) tidally-truncated (truncation non-unique; see McLaughlin, van der Marel 2005),
but spherical;
4) nonrotating;
5) generally applied as one-component models;
6) a one-parameter family of models, exhibiting different degrees of concentration.

Of course, as noted above, globular clusters are very complex systems, in which physical encounters, 
multiple encounters, anomalous effects involving or producing binaries, stellar evolution and other 
phenomena go well beyond the simple view of classical stellar dynamics and for which the use of 
more and more realistic simulations is clearly needed and welcome. Yet, the success of simple models 
would greatly help to understand physical issues and physical mechanisms. 

Great progress in the observations is making it possible, even now, to probe the six-dimensional 
phase-space structure of some clusters, so that more advanced models are demanded.
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ψ is the dimensionless
escape energy at radius r

for ψ > 0

I.R. King (1966)

A, a, r_tr are positive constants: 2 scales (e.g., mass M and core-size r_0), 1 dimensionless parameter [e.g., “concentration” c=log(r_tr/r0) or Ψ = ψ(0)]



(II) BEYOND THE KING MODELS

a) Construction of the collisionless analogues of the Roche 
ellipsoids, produced by the action of an external tidal field on an 
otherwise spherical, self-gravitating system;

b) Construction of models for rotating globular clusters, 
characterized by axisymmetry, differential rotation, and pressure 
anisotropy;

c)  Construction of quasi-relaxed two-component stellar systems by 
considering separate parameters for the distribution functions of 
heavy and light stars.
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Figure 9. Projections of a second-order critical model (Ψ = 2 and ν = 3) along the x̂-axis (left panel (a)) and along the ŷ-axis (central panel (b)). The ellipticity
profiles (right panel (c), from bottom to top) refer to the projections along directions identified by (θ = π/2 and φ = i π/6) with i = 0, ..., 3; dots represent the
locations of the isophotes drawn in the panels (a) and (b), which correspond to selected values of Σ/Σ0 in the range [0.9, 10−6]. The arrow indicates the position of
the half-light isophote (practically same for every projection considered in the figure).

By taking lines of sight different from the axes of the symme-
try planes, we have also checked whether the projected models
would exhibit isophotal twisting. For all the cases considered,
the position angle of the major axis remains unchanged over the
entire projected image. Tests made by changing the resolution
of the grid confirm that, even in the most triaxial case (ν = 1),
no significant twisting is present.

The first two panels of Figure 9 show the projected images of
a critical second-order model with Ψ = 2 and ν = 3 along the
(π/2, 0) and (π/2,π/2) directions, (i.e., the x̂- and the ŷ-axis
of the intrinsic system), corresponding, respectively, to the least
and to the most favorable line of sight for the detection of the
intrinsic flattening of the model. For the same model, the third
panel illustrates the ellipticity profiles for various lines of sight.

Figure 10 shows the surface density profiles along the
x̂P - and the ŷP -axis of the projection plane for 10 critical
second-order models with ν = 3, viewed along the (π/2,π/2)
direction. As a further characterization, for the same models in
the lower panel, we also present the surface density profiles
obtained by averaging the projected density distribution on
circular annuli; this conforms to the procedure often adopted
by observers in dealing with density distributions with very
small departures from circular symmetry (e.g., see Lanzoni et al.
2007). As expected, circular-averaged profiles lie between the
corresponding regular profiles taken along the principal axes of
the projected image.

4. INTRINSIC AND PROJECTED KINEMATICS

By construction, the models are characterized by isotropic
velocity dispersion. The intrinsic velocity dispersion can be
directly determined as the second moment in velocity space
(normalized to the intrinsic density) of the distribution function

σ 2(ψ) = 2
5a

γ (7/2,ψ)
γ (5/2,ψ)

= 1
a
σ̂ 2(ψ), (31)

where γ represents the incomplete gamma function (near the
boundary of the configuration, the velocity dispersion profile
scales as σ̂ 2(ψ) ∼ (2/7)ψ). This shows that the isodensity
surfaces of the models are in a one-to-one correspondence with
the isovelocity and isobaric surfaces (defined by σ 2[ψ(r̂)] =
const). As noted for the intrinsic density profiles in Section 3.1,
a compression along the ẑ-axis and an elongation along the
x̂-axis also occur for the intrinsic velocity dispersion profiles. In

Figure 10. Projected density profiles (normalized to the central value) for the
same 10 second-order critical models displayed in Figure 3. Top panel (a):
the models are viewed from the ŷ-axis and the profiles taken along the two
principal axes in the projection plane (along x̂P (solid) and ŷP (dashed), i.e.,
along the x̂- and the ẑ-axis of the intrinsic frame of reference). Bottom panel (b):
the projection is performed on the same line of sight of the previous panel, but
the profiles are taken by averaging the projected surface density on circular
annuli, as if the images were intrinsically circular.

Figure 11(a), we present the intrinsic velocity dispersion profiles
along the x̂-axis for the same critical models illustrated in
Figure 3 compared to the profiles of the corresponding spherical
King models. The behavior of the projected velocity dispersion
profiles near the boundary is significantly different from that of
the spherical models.

The projected velocity moments can be calculated by integrat-
ing along the line of sight (weighted by the intrinsic density)
the corresponding intrinsic quantities. Therefore, the projected
velocity dispersion is given by

σ 2
P (x̂P , ŷP ) =

∫ ẑsp

−ẑsp
σ 2(r̂P )ρ(r̂P )dẑP

Σ(x̂P , ŷP )

= 2
5a

∫ ẑsp

−ẑsp
γ [7/2,ψ(r̂P )] exp[ψ(r̂P )]dẑP

Σ̂(x̂P , ŷP )
= 1

a
σ̂ 2

P (x̂P , ŷP ).

(32)

a) By replacing the single-star energy by the Jacobi integral in the King distribution 
function and inserting the tidal field in the Poisson equation (under the assumption 
that the globular cluster is moving on a circular orbit around the galaxy center):

GB, A. L. Varri (2008) Astrophys. J.; A.L. Varri, GB (2009) Astrophys. J.
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b) Simple models for rotating globular clusters, characterized by 
axisymmetry, differential rotation, and pressure anisotropy, based on a 
relatively simple choice of distribution function [Varri & GB (2012); 
Bianchini,  Varri, GB, Zocchi (2013)]:

I(E, Jz) ≡ E − ωJz
1 + bJ2c

z

fd
WT (I) = Ae−aE0

�
e−a(I−E0) − 1 + a(I − E0)

�

E ≤ E0

fd
WT (I) = 0

if

otherwise
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Figure 7. Surface brightness profile, line-of-sight velocity dispersion profile, and line-of-sight rotation profile (measured along the projected major axis; for the
definition of the xp coordinate and the way the data are binned, see Sect. 2) for 47 Tuc. Solid lines represent the model profiles and open circles the observational
data points. Vertical bars represent the measured errors and horizontal bars indicate the size of the bins. The fits on these profiles have been used to determine
the three physical scales of the model (SB0, r0,v0) (see Table 3).
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Figure 8. The top panels illustrate the fit to the proper motion dispersion profiles along the projected tangential and radial directions for 47 Tuc; this fit has
determined the dynamical distance d. The bottom panel shows the predicted anisotropy profile against the available data. Solid lines represent the model profiles,
open circles the observational data. Vertical bars indicate the measured errors and horizontal bars indicate the size of the bins.

Photometric data: 
Trager et al (1995) + 
Noyola & Gebhardt 
(2006)

2,476 l.o.s. velocity data: Gebhardt 
et al. (1995) + Lane et al. (2011)
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Figure 7. Surface brightness profile, line-of-sight velocity dispersion profile, and line-of-sight rotation profile (measured along the projected major axis; for the
definition of the xp coordinate and the way the data are binned, see Sect. 2) for 47 Tuc. Solid lines represent the model profiles and open circles the observational
data points. Vertical bars represent the measured errors and horizontal bars indicate the size of the bins. The fits on these profiles have been used to determine
the three physical scales of the model (SB0, r0,v0) (see Table 3).
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Figure 8. The top panels illustrate the fit to the proper motion dispersion profiles along the projected tangential and radial directions for 47 Tuc; this fit has
determined the dynamical distance d. The bottom panel shows the predicted anisotropy profile against the available data. Solid lines represent the model profiles,
open circles the observational data. Vertical bars indicate the measured errors and horizontal bars indicate the size of the bins.

12,974 HST proper motions: McLaughlin et al. (2006)

Inclination: Anderson & King (2003) ~ 45 degrees
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5.1. Photometry and kinematics
As illustrated in Fig. 7, the surface brightness profile and

the line-of-sight rotation and velocity dispersion profiles are
well reproduced by the selected model. In particular, the ro-
tation profile is well matched throughout the extension of the
cluster, showing clearly the position of the maximum rotation
velocity, the characteristic rigid rotation behavior in the cen-
tral region, and the relatively sharp decrease in the outer parts.
The observed line-of-sight velocity dispersion profile is char-
acterized by one data-point at R � 30 arcmin deviating from
the model profile. A corresponding discrepancy is found also
for the surface brightness profile, at approximately the same
radial position (the last four photometric data-points). These
two features may be interpreted in terms of the population of
“potential escapers” resulting from the tidal interaction be-
tween the cluster and the host Galaxy (see Küpper et al. 2010;
Lane et al. 2012).

As to the proper motions data, the relevant profiles, al-
though limited to the central region, show a satisfactory agree-
ment with the model predictions (see Fig. 8). In the inter-
mediate regions (50 � R � 1000 arcsec) the model predicts
weak radial anisotropy and tangential anisotropy in the outer
parts. It would be interesting to acquire more spatially ex-
tended proper motion measurements to confirm this predic-
tion [in line with the results obtained for the anisotropy profile
of ω Cen (see Fig. 3)].

Rotation in the plane of the sky is not available from the
proper motions data set ofMcLaughlin et al. (2006). However,
as noted in Sect. 2, proper motion rotation has been measured
by Anderson & King (2003), by using the HST and by consid-
ering background stars of the Small Magellanic Cloud as an
absolute reference frame. The observed rotation corresponds
to a velocity of 4.97 ± 1.17 km s−1 (based on the assumed
distance of 4.5 kpc) at a projected radius of 5.7 arcmin (corre-
sponding approximately to the position of the rotation peak).
Within the uncertainties, this is consistent with our model,
which predicts a value of 4.13 km s−1 at 5.7 arcmin.

5.2. Dynamical distance
The comparison of the observed proper motion dispersion

profiles with the model predictions allows us to derive an es-
timate of the distance to the cluster (see Sect. 3.3). For 47
Tuc the best-fit distance is d = 4.15± 0.07 kpc, with associ-
ated reduced chi-squared �χ2

d = 1.35 inside the corresponding
90% CI. This value is consistent with the dynamical distance
reported by McLaughlin et al. (2006) d = 4.02 ± 0.35 kpc,
measured from the same proper motion data set used in the
present work, under the simple assumptions of spherical sym-
metry, isotropy, and absence of internal rotation. Our value is
lower than the standard value of d = 4.5 kpc reported in the
Harris catalog (Harris 2010) and lower than other distance es-
timates obtained by means of photometric methods, such as
main sequence fitting, RR Lyrae, and white-dwarf cooling se-
quence fitting (for a recent summary of results, see Table 1 of
Woodley et al. 2012 or Bono et al. 2008).

5.3. Deviations from spherical symmetry
Fig. 9 shows the ellipticity profile predicted by our model

plotted together with the ellipticity data available for 47 Tuc.
In this cluster, the deviations from spherical symmetry are
naturally explained by the selected model with a surprising
degree of accuracy. In fact, the ellipticity profile derived by
our model reproduces the radial variation of the observed el-

0 100 200 300 400
0.00

0.05

0.10

0.15

0.20

R !arcsec"

!

47 Tuc ! Ellipticity profile

Figure 9. Ellipticity profile for 47 Tuc. The solid line represents the profile
derived from our axisymmetric rotating model, the black dots mark the ob-
served ellipticities presented by WS87. Dotted and dashed lines indicate the
average values reported by WS87 and CC10, respectively.
lipticity over the entire spatial range covered by the data (the
flattening of 47 Tuc increases from a value of ε≈ 0 to a max-
imum value of ε≈ 0.12 at R ≈ 450 arcsec). We recall that the
ellipticity profile associated with the selected self-consistent
model is a structural property completely determined by the
dimensionless parameters and physical scales identified dur-
ing the model selection procedure. In this case we can thus
state with confidence that internal rotation is the physical in-
gredient responsible for the observed global deviations from
spherical symmetry. In this respect, we emphasize that the
relation between the shapes of the rotation profile and the el-
lipticity profile is highly nontrivial; in particular, the peak of
the rotation profile does not correspond to a peak in the el-
lipticity profile (at variance with what is often believed, e.g.
Meylan & Mayor 1986).

6. M15

The studies of the globular cluster M15 are largely focused
on its central region. In fact, the cluster is believed to be in
a post-core-collapse phase and mass segregation is thought
to play a role in its dynamics. In particular, the sharp gra-
dient of the central luminosity is thought to be the result of
the dynamical evolution of the cluster (e.g., see Baumgardt &
Makino 2003 and Murphy et al. 2011) or of the presence of a
central intermediate mass black hole (e.g., see Gerssen et al.
2002). The available kinematic data are limited to the central
regions and consist of 1 777 line-of-sight velocities and 703
HST proper motions (see Appendix A).

6.1. Photometry and kinematics
Remarkably, except for the most central region, the selected

model offers a good description of both the line-of-sight kine-
matic profiles and the surface brightness profile (see Fig. 10).
The line-of-sight velocity dispersion profile is reproduced by
the model out to the last available bin, located at approxi-
mately 0.5rtr.

As to the line-of-sight rotation profile, a large scatter is
present in the central regions, due to the high measurement
errors, which have an average of 3.79 km s−1 (significantly
higher than the average errors of ω Cen and 47 Tuc: 1.98
km s−1 and 2.29 km s−1, respectively). Unfortunately, the
kinematic data set does not reach the region where the peak
of the rotation curve is expected. More accurate and better
distributed line-of-sight velocity measurements would be re-
quired to build a more reliable and complete rotation profile.

Ellipticities: White & Shawl (1987); Chen & Chen (2010)
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Fig. 10. Left panel: density profiles of each component and the total density profile for the best-fit model of 47 Tuc (NGC 104), obtained by the
procedure in which RG stars are not included in the heavy component (see text); right panel: corresponding density profiles for the best-fit model
of ω Cen (NGC 5139).

Then, we performed two different types of fit:

(i) In the first procedure, we consider the heavier component
made of only dark remnants. Therefore, the fit is similar to
that for elliptical galaxies in the presence of a dark matter
component. In other words, the photometric fit is carried out
by omitting the Σ2-term in Eq. (17). Then the kinematic fit is
performed by considering only the velocity dispersion profile
relative to the lighter component, which is the only compo-
nent assumed to be visible.

(ii) In the second type of fit, we include red giant stars (RGs)
in the group of heavier stars (see Appendix A). In this
case, both components contribute to the surface brightness
in the photometric fit . Thus, we explored two possible op-
tions: either (a) to assign a reasonable value for the ra-
tio (M/L)1/(M/L)2, based on the fraction of luminosity
expected to come from the RGs and main-sequence stars
present in the system; or (b) to leave the mass-to-light ratio
of the heavier component to be determined as a parameter
of the best-fit model, and thus to make a prediction on the
number of RGs contained in the system. We report only the
results given by option (a), as the best-fit models found with
the other option tend to underestimate the contribution of
RGs present in globular clusters3. In this procedure the kine-
matic fit considers the heavier component as the kinematic
tracer because most kinematic data come from spectroscopic
observations of RGs (i.e. the line-of-sight velocities of RG
stars are usually those that are detected for the construction
of the observed velocity dispersion profiles).

For the two-component models, the conversion from density pro-
files to luminosity profiles is not as straightforward as in the one-
component case because it depends on the structural character-
istics of the system. In particular, it reflects the interconnection
between mass segregation and the gradients of mass-to-light ra-
tios. In Fig. 11, we plot the cumulative mass-to-light ratio for

3 Typically, RGs are estimated to provide ≈60% of the total V-band lu-
minosity and ≈0.5% of the total mass of a globular cluster; these values
were computed by evolving a set of stars with masses distributed ac-
cording to the Kroupa IMF by means of the SSE package (Hurley et al.
2000).

two selected globular clusters in their central regions; the be-
haviour of this quantity as a function of the intrinsic radius r
changes according to the type of fit considered. On the one hand,
in the case in which RGs are not included in the heavier compo-
nent, the ratio M/L decreases with r (for the more relaxed cluster
47 Tuc, this trend is more evident). On the other hand, the case
in which RGs are included in the heavier component (and in the
fitting procedure) is characterized by a mild increase of the cu-
mulative mass-to-light ratio. For the former case, we recover a
behaviour of the cumulative mass-to-light ratio profile similar to
that found by van den Bosch et al. (2006) for the globular cluster
M15 (NGC 7078); they suggest that the gradient of the ratio M/L
at small radii is likely to be due to the presence of a centrally
concentrated population of dark remnants, an interpretation that
is also suited to describe the result of our fit.

We wish to emphasize that in this paper we are not aiming
at providing improved dynamical models for selected clusters.
Rather, we wish to demonstrate, by means of the mathemati-
cally simplest framework, how different ways of using a multi-
component dynamical model actually lead to different pictures
of the internal structure of globular clusters, especially in rela-
tion to mass segregation and gradients of mass-to-light ratios.

4.2. Fits with one-component models

The data sets that we consider are the same as used by ZBV12.
For convenience, in Table 1 we report some distinctive quantities
for the sample of 13 Galactic GCs selected for this paper.

In Fig. 12 we show the best-fit surface brightness and veloc-
itydispersion profiles for three of the selected GCs, which are
shown in order of increasing core relaxation time. The dimen-
sionless parameters of the fits and the values of the reduced chi-
squared are listed in Table 2. For the statistical analysis we fol-
lowed the procedure used by ZBV12. From an inspection of the
way the best-fit models are identified, we note that the present
models are characterized by significant degeneracy in parameter
space; this is a natural consequence of the introduction of the
additional parameter related to the truncation.

In general, the photometric fits by the f (ν)
T models are more

satisfactory than those performed by means of the King and
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c) Setting up a simple two-component model of globular clusters (each component 
is spherical and described by an anisotropic f^(\nu) distribution function):
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Fig. 11. Cumulative mass-to-light ratio as a function of the intrinsic radius r for the best-fit models of two globular clusters. The best-fit models
are found by means of two different procedures, that is, by taking the heavier component as made of only dark remnants or by including in the
heavier component the presence of red giants. The vertical lines indicate the position of the total half-mass radius.

Table 1. Selected sample of globular clusters.

Globular cluster d⊙ log Tc log TM Np Nk

NGC 362 8.6 7.76 8.93 239 8
NGC 7078 (M15) 10.4 7.84 9.32 310 35
NGC 104 (47 Tuc) 4.5 7.84 9.55 231 16
NGC 6121 (M4) 2.2 7.90 8.93 228 10
NGC 6341 (M92) 8.3 7.96 9.02 118 8
NGC 6218 (M12) 4.8 8.19 8.87 143 11
NGC 6254 (M10) 4.4 8.21 8.90 162 6
NGC 6656 (M22) 3.2 8.53 9.23 143 7
NGC 3201 4.9 8.61 9.27 80 16
NGC 6809 (M55) 5.4 8.90 9.29 114 13
NGC 288 8.9 8.99 9.32 85 6
NGC 5139 (ω Cen) 5.2 9.60 10.09 72 37
NGC 2419 82.6 9.87 10.63 137 6

Notes. For each globular cluster the following quantities are recorded:
distance from the Sun (kpc); logarithm of the core relaxation time
(years); logarithm of the half-mass relaxation time (years); number of
points in the surface brightness profile; and number of points in the ve-
locity dispersion profile (adapted from ZBV12).

f (ν) models, for every relaxation class considered (for a com-
parison of the values of the reduced chi-squared, see Table 4 in
ZBV12); indeed, for the majority of the clusters, the minimum
chi-squared is inside the 90% confidence interval. The improve-
ment with respect to the King and f (ν) models is mainly related
to the outer regions of the system, where the truncation of our
models accommodates the observed brightness profiles well.

In addition, the general trends found by ZBV12 for the
non-truncated models are not significantly affected by the trun-
cation. In particular, our models remain able to reproduce the
central peak in the velocity dispersion profiles that is character-
istic of the least relaxed clusters in the sample (NGC 2419 and
NGC 5139).

In Table 3 we report the values of the truncation radius rtr,
the projected core radius Rc (that is the radial location where
the surface brightness equals half its central value), and the

Table 2. Best-fit parameters for the one-component models.

NGC Ψ γ χ̃2
ph χ̃2

k
(1) (2) (3) (4) (5)
104 8.59 ± 0.01 19.2 ± 0.5 1.14 11.33
288 4.76 ± 0.13 4.52 ± 0.17 1.26 0.89
362 7.32 ± 0.03 47.2 ± 1.6 1.19 2.39
2419 5.55 ± 0.06 58 ± 2 1.15 0.54
3201 5.61 ± 0.17 31.7 ± 5 1.14 2.74
5139 4.81 ± 0.08 27.6 ± 1.6 3.05 2.45
6121 7.38 ± 0.07 4.07 ± 0.2 1.35 0.54
6218 5.60 ± 0.09 18.0 ± 1.1 1.12 0.68
6254 5.62 ± 0.9 46 ± 1.6 4.69 0.60
6341 7.41 ± 0.02 18.2 ± 0.8 6.43 2.96
6656 6.37 ± 0.13 12.7 ± 4 1.03 1.18
6809 3.75 ± 0.09 8.0 ± 0.23 1.15 2.00
7078 8.43 ± 0.01 46.6 ± 0.25 3.72 2.07

Notes. For each cluster, in Cols. (2) and (3) we provide the best-fit pa-
rameters that define the dynamical models together with their formal
errors. We then list the values of the photometric reduced chi-square
χ̃2

ph (Col. 4) and the kinematic reduced chi-square χ̃2
k (Col. 5).

intrinsic half-mass radius rM. Then we list other relevant quan-
tities, in particular, the total mass M, the central density ρ0, and
the V-band mass-to-light ratio (M/L)V . For our anisotropic mod-
els, we also calculated the intrinsic anisotropy radius rα defined
as the radius where α(rα) = 1 and the global anisotropy parame-
ter κ (see Sect. 2.4).

4.2.1. A comparison with the King models

No systematic trends are found. The only exception is repre-
sented by the truncation radius, which is generally larger for the
f (ν)
T models, in line with the general finding that the photomet-

ric profiles appear to possess a smoother truncation than that of
King models (see McLaughlin & van der Marel 2005).
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(III) SOME OPEN PROBLEMS

a) instabilities (collisionless systems)

b) external forcing

c) weakly collisional systems
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a) instabilities (collisionless systems)
Spherical, isotropic models with different types of truncation (see Part I).
1) What are the effects of the sharpness of the assumed truncation on the linear modes?

Spherical, anisotropic models, with excess of kinetic energy in the radial direction (see also Part 
IIc) are subject to the radial-orbit instability (Polyachenko & Shukhman 1981; REF 5).
Linear theory: 
2) What is the behavior of the unstable l=2 modes in the vicinity of marginal stability?
3) What about the structure of damped modes? (may be excited by tidal interactions)
4) What about modes with different l values, in particular l=1 and l=4? 
Nonlinear evolution:
5) Is there a general rule that would explain whether radial-orbit unstable equilibria would tend 
to evolve into prolate or oblate or triaxial shapes or is it just a matter of initial conditions? (See 
also the McLaurin-Jacobi-Dedekind transition.)

Spherical, anisotropic models, with excess of kinetic energy in the tangential directions.
6) Is there any evidence for instability? (largely unknown, because we do not have
reasonable equilibrium states to work on; see REF 4)

Nonspherical, rotating, anisotropic models, e.g. of the kind introduced in Part IIb.
7) Can we develop a linear modal analysis (see REF 6)?
(little has been done on this topic; some simulations show that even some rotating toroidal configurations appear to be stable, but when rotation is too strong instability occurs)

Pisa, 18 September 2017; dedicated to Francesco Pegoraro’s 70th birthday



b) external forcing (see Part IIa)

8) What can we say about external forcing for globular clusters not on a circular orbit?
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c) weakly collisional systems

Spherical, isotropic, truncated stellar systems, with a small amount of collisionality.

9) Can we prove that King, or King-like models, undergo the so-called gravothermal 
catastrophe? 
[Lynden-Bell & Wood (1968); GB & Trenti (2003). Note that a linear modal analysis of the 
kind reported in REF 5 should be adapted to the different outer boundary conditions 
imposed by the truncation on the models. Gravothermal catastrophe is expected also for 
systems made of stars with equal mass.]
10) Could we check the time-scale and the nature of the gravothermal catastrophe, which 
in a fluid model develops on the dynamical time-scale (see the study of the Ebert-Bonnor 
problem by Sormani & GB 2013)?
11) Could we quantify the establishment of equipartition and mass segregation? In 
particular, could the simple two-component models developed in Part IIc be better 
justified and more tractable for the purpose (see also REF 1 and REF 2)?
12) Could we describe the development of evaporation induced by collisionality, also as a 
function of the truncation imposed?
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A comment on the Gravothermal Catastrophe
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as found in Bonnor’s (1956) derivation. In this respect,
note that the term V 4/3 compensates for the two surface
integrals in Eq. (23). As shown below, the introduction
of a dimensionless quantity allows us to characterize and
summarize the properties associated only with the shape
of the cloud.

3.5.2. µ is scale invariant

It is easily verified that the form factor µ is scale invariant,
i.e. it does not change under the transformation x !→ tx,
with t > 0. In other words, the form factor depends on
the shape of the cloud but does not depend on its size.
Actually, the scale invariance is directly related to the fact
that µ is dimensionless and to the vectorial notation used
in its definition.

3.5.3. µ = 1 for a sphere

In the case of a sphere, the form factor reduces to unity.
In fact, in this case by symmetry

∥∥∇ξu(sx)
∥∥ is constant

on the surface of the sphere, so that

µ = 12π

(
3
4π

)1/3 V 4/3

S2
= 1. (26)

Here S is the area of the surface of the sphere. Thus, from
Eq. (25), we recover Bonnor’s (1956) result for the sphere.
Note that the numerical factors in the definition of µ have
been chosen precisely to recover µ = 1 for the sphere.

3.5.4. µ never exceeds unity

The form factor can be thought of as the product of two
terms, µ = µ1µ2, with (cf. Eq. (26))

µ1 = 12π

(
3
4π

)1/3 V 4/3

S2
· (27)

The first term, µ1, compares the volume V of the cloud
with its surface S. This quantity equals unity when the
cloud is a sphere and is always smaller than unity in the
non-spherical case. In fact, the sphere is the solid which
has the largest volume at given surface (this intuitive the-
orem has a far from trivial proof, due to De Giorgi 1958).
The second term, µ2, is the ratio between the generalized
harmonic mean of

∥∥∇ξu
∥∥ on the boundary ∂V and the

generalized simple mean of the same quantity. The har-
monic mean is always smaller than the simple mean, the
two being equal only when all the values involved are con-
stant. Thus µ2 ≤ 1 and µ2 = 1 if and only if

∥∥∇ξu
∥∥ is

constant on ∂V (this happens for the isothermal sphere).
In conclusion, µ ≤ 1 in general and µ = 1 only for the
sphere.
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Fig. 1. The p-V plot for an isothermal spherical cloud made of
molecular hydrogen at T = 10 K (cs ! 200 m s−1) with mass
M = 1 M". The isothermal lies on a simple pV = const. curve
at large volumes, but then at smaller sizes departs from it and
the cloud becomes unstable. The region of stability is on the
right side of point A (which corresponds to the maximum of
the boundary pressure pb). The solution spirals into the critical
point C.

4. The Bonnor instability

Equation (25) allows us to discuss the Bonnor instability
(often known as gravothermal catastrophe; see Lynden-
Bell & Wood 1968) for clouds of arbitrary shape. This
instability, we recall, is due to a change in the sign of the
derivative of pb with respect to V . If this derivative is neg-
ative, as normally happens when gravity can be neglected,
a slight decrease of the volume will produce an increase
of the cloud boundary pressure, which would tend to re-
store the initial configuration. If, instead, this derivative is
positive, then a small decrease in the volume of the cloud
would correspond to a reduction of the internal boundary
pressure and thus to a collapse of the cloud.

In order to illustrate the instability process in more
detail, let us first refer to the spherical case. We have
integrated the differential Eq. (25) numerically under the
boundary condition pbV = c2

sM for V → ∞. Figure 1
shows the case of a spherical cloud of molecular hydrogen
at T = 10 K (cs & 200 m s−1) with mass M = 1 M". The
plot clearly shows that the cloud follows approximately
the standard law pV = const at large volumes, but when
sufficiently compressed it exhibits the Bonnor instability.
In particular, the p-V curve has a maximum and then
spirals into a singular point. All points of the p-V curve
where the derivative is positive correspond to unstable
equilibria, since a small decrease of the volume will make
the cloud collapse. Bonnor has shown that actually, in the
case of a spherical cloud, all points in the p-V plot between
A and the critical point correspond to unstable equilibria
(below we will generalize this result to all clouds). The
idea is that a spherical cloud with pressure and volume
beyond A will present an instability for compressions of
some internal “core” (we will discuss this instability in the
general case below).

Lombardi & GB (2001) Astron. Astrophys.

Ebert (1955) Zeit. Astrophys.

Curiously, if we perform a linear modal analysis of an ideal, 
inviscid fluid model (assuming infinite thermal conductivity 
and isothermality) under the boundary conditions listed by 
Lynden-Bell & Wood (1968) in their study of stellar systems, we 
recover precisely the same critical points for the onset of 
instability with respect to radial modes, proving that the time 
scale of instability is the dynamical time scale (Sormani & GB, 
2013). 
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temperature parameter conjugate to the total energy is a, a
quantity directly related to the velocity dispersion in the
central regions. Basically, this was the Ansatz made in the
discussion of the possible occurrence of the gravothermal
catastrophe for the King models or for other sequences of
models (e.g., see Lynden-Bell & Wood 1968; Katz 1980;
Magliocchetti et al. 1998). Here we have proved that the
application of a rigorous derivation, which is available in
our case, gives rise to relatively modest quantitative changes
in the ðEtot; 1=TÞ diagram for values of ! close to and
beyond the onset of the catastrophe (see Fig. 3). However,
in x 6 we draw attention to an interesting, qualitatively new
phenomenon missed in the previous derivations based on
the use of the a-Ansatz.

In passing, we note that in this regime of relatively high
concentrations, the f (!) models possess one intrinsic prop-
erty that makes them more appealing than the widely
studied f1 models. This is related to the way the models
compare to the phase-space properties of the products of
collisionless collapse, as observed in N-body simulations
(van Albada 1982). In fact, one noted unsatisfactory prop-
erty of the concentrated f1 models was their excessive
degree of isotropy with respect to the models produced in
the simulations.1 Here we can easily check that the aniso-

tropy level of the concentrated f (!) models, while still within
the desired (radial orbit) stability boundary and still consis-
tent with the modest amount of radial anisotropy revealed
by the observations, seems much closer to that resulting
from N-body simulations of collisionless collapse; in partic-
ular, the anisotropy radius r", defined from the relation
"ðr"Þ ¼ 1, with " ¼ 2$ ðhv2#iþ hv2$iÞ=hv2r i, is close to the
half-mass radius rM (while for the f1 models it is about 3
times as large). This is illustrated in Figure 4. In any case, we
emphasize that, while we have been clearly taking inspira-
tion from simulations of collisionless collapse, our main
interest is in comparing the structure of our models with
that of observed objects rather than in providing a detailed
fit to the results ofN-body simulations.

5. THE INTERMEDIATE CONCENTRATION REGIME:
THE R1/4 LAW AND DEVIATIONS FROM IT

The intermediate concentration regime (the precise point
that marks the low-concentration regime will be identified
in the next section) is a regime in which the models appear
to be stable, with respect not only to the gravothermal catas-
trophe (following the arguments provided earlier; but we
should recall that the catastrophe is expected to require a
sufficiently high level of effective collisionality in order to
take off) but also to other instabilities (see the discussion
given by Bertin et al. 1994 and references therein). The rela-
tively wide variations, between! ¼ 3:5 and! ¼ 9, in all the
representative quantities that characterize the equilibrium
models suggest that this part of the sequence could be used
to model the weak homology of bright elliptical galaxies
(see Bertin, Ciotti, & Del Principe 2002), much like the
sequence of King models is able to capture observed system-

1 Merritt, Tremaine, & Johnstone (1989) stressed this point and thus
argued that a better representation of N-body simulations would be
obtained by considering the f1 family of models extended to the case of
negative values of the coefficient a multiplying the energy in the exponent.
Unfortunately, their proposed solution, in terms of models characterized
by such a peculiar phase-space structure, is unable to reproduce both the
core velocity distribution observed in numerical experiments and the
modest amount of radial anisotropy revealed by observed line profiles. In
addition, their proposed solution is not viable because for negative values
of a the radial anisotropy level is so high that the models are violently unsta-
ble, on an extremely short timescale, with the result that their structural
properties would be drastically changed by rapid evolution (Stiavelli &
Sparke 1991; Bertin et al. 1994).
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Fig. 2.—Residuals l(!)–l1/4, in magnitudes, obtained by fitting the R1/4

law to the projected density profile of f (!) models for ! ¼ 1 and some values
of!.
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Fig. 3.—Instability spiral of f(!) models with ! ¼ 1. The solid line refers
to the results obtained with the a-Ansatz (with âa ¼ %$4=5M̂Mð!þ1Þ=ð5!Þ

&Q̂Q$4=ð5!Þ). Crosses represent the global temperature from the definition
@S=@Etot; other symbols indicate estimated points for which the adopted
numerical differentiation is less reliable. The values of ! and & for points A
and Bwith a vertical tangent remain unchanged.
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sent the specific energy and the specific angular momentum
square of a single star subject to a spherically symmetric
mean potential !(r). As shown elsewhere (Stiavelli & Bertin
1987), this extremization process leads to the following
family of distribution functions

f ð!Þ ¼ A exp $aE $ d
J2

jEj3=2

 !!=2
2

4

3

5 ; ð2Þ

where a, A, and d are positive real constants. One may
think of these constants as providing two-dimensional
scales (for example, M and Q) and one dimensionless
parameter; the dimensionless parameter can be taken to be
" ¼ ad2=!=ð4#GAÞ. In principle, ! is any positive real num-
ber; in practice, we focus on values of ! % 1. The f (!) non-
truncated models are constructed by taking this form of the
distribution function for E & 0, a vanishing distribution
function for E > 0, and by integrating the relevant Poisson
equation under the condition that the potential ! be regular
at the origin and that it behaves like $GM=r at large radii.
This integration leads to an eigenvalue problem (see the
Appendix) for which a value of " is determined by the choice
of the central dimensionless potential, " ¼ "ð"Þ, with
" ¼ $a!ðr ¼ 0Þ.

The main point of the following analysis is the determina-
tion of the Boltzmann entropy SðM;Q;"Þ and of the total
energy EtotðM;Q;"Þ along the sequence of models, i.e., as a
function of the concentration parameter " defined above.
These functions, at constant M and Q, are illustrated in
Figure 1. They have been obtained by noting that, from the

definitions of S and f (!),

S ¼ $M lnAþ 3aEtot þ dQ : ð3Þ

From the definitions Q ¼ Aa$9=4d$1$3=!Q̂Qð"Þ and
M ¼ Aa$9=4d$3=!M̂Mð"Þ and the definition of ", we can
express the variables (A, a, d ) in terms of the variables (M,
Q, ") and thus find that the entropy per unit mass can be
written as S=M ¼ S0ðM;QÞ þ $ð"Þ, where S0 is constant
when the values ofM andQ are fixed, with

$ ¼ $ ln M̂M 4!$6ð Þ=ð5!ÞQ̂Q6=ð5!Þ"$9=5
! "

þ 3ÊE

M̂M
þ Q̂Q

M̂M
: ð4Þ

Here ÊE ¼ ÊEð"Þ is the dimensionless total energy defined
from Etot ¼ Aa$13=4d$3=!ÊE. From the identity aEtot=M ¼
ÊE=M̂M and the expression of a ¼ aðM;Q;"Þ obtained previ-
ously, we find Etot=M ¼ HðM;QÞ%ð"Þ, with

% ¼ "4=5M̂M$ 9!þ4ð Þ=ð5!ÞQ̂Q4=ð5!ÞÊE : ð5Þ

The factor H(M, Q) is a constant when M and Q are taken
to be constant. The quantities "("), M̂Mð"Þ, Q̂Qð"Þ, and ÊEð"Þ
that enter the expression of $ and % depend only on " and
are evaluated numerically on the equilibrium sequence.

This completes the derivation that allows us to draw the
analogy with the classical paper of Lynden-Bell & Wood
(1968). This step, straightforward for the f (!) models, is by
itself interesting and new. In fact, other attempts at applying
the paradigm of the gravothermal catastrophe to stellar
dynamic equilibrium sequences were either based on an
unjustified Ansatz for the identification of the relevant tem-
perature (e.g., see Appendix V in the article by Lynden-Bell
& Wood 1968; Katz 1980; Magliocchetti et al. 1998) or on
the use of nonstandard entropies (for less realistic models;
Chavanis 2002).

4. THE HIGH-CONCENTRATION REGIME:
GRAVOTHERMAL CATASTROPHE

When the f (!) models were constructed (Stiavelli & Bertin
1987), it was immediately realized that they have general
properties similar to those of the f1 models (Bertin &
Stiavelli 1984); in particular, for values of ! % 1, sufficiently
concentrated models along the sequence tend to settle into a
‘‘ stable ’’ overall structure, except for the development of a
more and more compact nucleus as the value of" increases,
and are characterized by a projected density profile very well
fitted by the R1/4 law characteristic of the surface brightness
profile of bright elliptical galaxies. This property is illus-
trated in Figure 2.

Now, by inspection of Figure 1 and by analogy with the
study of the isothermal sphere (Lynden-Bell &Wood 1968),
we can identify the location at " % 9 as the location for the
onset of the gravothermal catastrophe. This sequence of
models thus has the surprising result that the value of" that
defines the onset of the gravothermal catastrophe is pre-
cisely that around which the models appear to become real-
istic representations of bright elliptical galaxies. We leave to
other papers (see Bertin & Stiavelli 1993) the detailed
discussion of the issues that have to be addressed when com-
parison is made with the observations.

We note that in this regime of high concentration the gen-
eral properties of the gravothermal catastrophe are reason-
ably well recovered by the use of the Ansatz that the
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Fig. 1.—Specific entropy and total energy along the equilibrium
sequence of f (!) models with ! ¼ 1 [as a function of the concentration
parameter ", at constant M and Q, and thus expressed by means of the
functions $ð"Þ and %ð"Þ defined in the text]. Note that for "d3:5 the
models are characterized by a negative temperature because the derivatives
of S andEtot have opposite signs.
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GB & Trenti (2003) Astrophys. J.

From the fact that the f^{\nu} distribution function can be derived by extremizing the Boltzmann 
entropy under suitable constraints, it was possible to provide a formal derivation of Lynden-Bell’s 
conjecture on the gravitational catastrophe for stellar systems:
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Fig. 5. Scatter plot (final vs. initial values) for the single-particle spe-
cific angular momentum. Comparison between a clumpy simulation
(run C4.2; left panel) and its symmetrized version (run S 4.2; right
panel). Units for J are pc2/yr, see Sect. 2.

Therefore, the threshold of instability should provide an upper
limit to the global anisotropy of objects produced by collision-
less collapse.

Our simulations largely confirm the general validity of this
picture and the general applicability of the Polyachenko &
Shukhman (1981) criterion. In particular, simulations C2.3 and
C2.4 are characterized by a value of κ > 1.7 and lead to more
flattened configurations than C2.1 and C2.2. Also the drop in
the central concentration in simulation C1.10 with respect to
C1.9 might be related to the action of the radial-orbit instabil-
ity. Most of the end states are characterized by relatively high
anisotropy (generally κ > 1.5, and values around 1.7 are not
infrequent) and thus it seems that evolution tends to prefer a
state very close to the stability boundary (as studied for the f (ν)

family of models in Paper I by means of an extensive set of
simulations). (An interesting finding is that symmetrized initial
conditions, although artificial, can lead to spherical final states
still able to sustain a large number of radial orbits (κ ≈ 2.1 for
simulation S 4.2)).

5.3. Angular momentum mixing

Simulations with homogeneous initial conditions generate
quasi-equilibrium final configurations that not only suffer from
significant mass loss, but also exhibit unusual features in their
anisotropy profiles (see Sect. 7.3 and Fig. 8).

If the degree of symmetry in the initial conditions is exces-
sive, little room is left for relaxation in the (E, J2) phase space
even if the process itself may be violent and lead to mass shed-
ding. This is confirmed by the fact that little or no mixing is ob-
served in the single-particle angular momentum distribution for
homogeneous simulations, as reported in Fig. 5 (see also May
& van Albada 1984). In fact, if the system evolves remaining
close to spherical symmetry, the conservation of single particle
angular momentum imposes severe constraints on the dynam-
ical properties of the end-state of the collapse. On the other
hand, a certain degree of clumpiness, even if limited to either
position or velocity space, leads to angular momentum mixing.
This is confirmed by two test simulations, CV5.1 and CP5.2∗,
where mixing indeed turns out to be quite efficient and leads
to J relaxation much like in the left panel of Fig. 5 (see also
Appendix).
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Fig. 6. Evolution of the virial ratio during run C4.4, characterized by
the presence of many small cold clumps. The insert box zooms in on
the evolution at the beginning of the simulation, when a first collapse
occurs, followed by an expansion of the clumps while collapsing to-
ward the center of mass of the system. The virial ratio in the final
stages of the simulation is slightly above unity because of mass loss.

Clumps thus help the system reach a “universal” final state
from a variety of initial conditions, which can explain the sim-
ilarity of the density profiles observed in the final products of
collapse simulations (see Sect. 7).

5.4. Dependence on the degree of clumpiness

A few simulations with a large number of clumps (400 in C4.5
and 80 in C4.3) and a spatial filling factor above unity confirm
that, in the limit of large NC, the evolution of the system ap-
proaches that of collapse simulations based on homogeneous
conditions, with end-states characterized by a flat core and a
low anisotropy content. A number of clumps of order 10 to
20 thus seems to be optimal for an efficient violent relaxation.

Even when limited to either position or velocity space,
clumpiness can be important and still lead to end-states with
general properties similar to those of the standard clumpy sim-
ulations considered in this paper (see CV5.1 and CP5.2 entries
in Tables 1–2 and Sect. 7.5).

We also studied the dependence of the results of collision-
less collapse on the spatial filling factor of the clumps. To
do this, we took advantage of the ability of GyrFalcON to
deal with systems with different scales and ran a simulation
(C4.4) initialized with 80 small cold clumps (i.e. with a radius
RC = 2.8 kpc distributed in a sphere of radius 40 kpc). For
this simulation, evolution basically occurs in two stages, with a
first collapse in which strongly bound structures are formed in
a very short time, followed by subsequent merging (see Fig. 6).
Interestingly, the outcome of this simulation is highly isotropic
(α ≈ 0 out to the half-mass radius) and very concentrated. We
will see (Sect. 7.5) that, even in this case, the density profile
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Incomplete violent relaxation (collisionless systems; see Lynden-Bell 1967)
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van Albada (1982)

With Massimo Stiavelli, we constructed 
simple distribution functions able to 
incorporate the qualitative behavior of the 
results of incomplete violent relaxation at 
small and large radii [GB & Stiavelli (1984); 
Stiavelli & GB (1985)].

Surprisingly, the resulting self-consistent 
models (obtained from the solution of the 
Vlasov-Poisson system of equations) proved to 
be an excellent tool to match the 
observations.......
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Fig. 11. Comparison between the C3.4 simulation and the best-fit
f (ν) model (5/8; 5.4), shown as in Fig. 9.

7.4. Comparison at the level of phase space

At the level of phase space, we have performed two types of
comparison, one involving the energy density distribution N(E)
and the other based on N(E, J2). The chosen normalization fac-
tors are such that:

M =
∫

N(E)dE =
∫

N(E, J2)dEdJ2. (2)

The energy distributions N(E) that we find (see Fig. 9–11),
qualitatively similar to those obtained in earlier investigations
(see Fig. 2 in van Albada 1982 and Fig. 10 in Udry 1993), are
characterized by an approximate exponential behavior at low
energies (N(E) ∝ exp (−aE)) with a rapid cut-off near the ori-
gin, which is argued to go as |E|5/2 because the potential is
Keplerian in the outer parts (Udry 1993; see also the discus-
sion by Jaffe 1987; and by Bertin & Stiavelli 1989). The final
states of the simulations also show the presence of particles
with positive energy, escaped from the system.

In Fig. 9 (bottom right frame) we plot the final energy den-
sity distribution for the simulation run C3.5 with respect to the
predictions of the best-fit model identified from the study of the
density and pressure anisotropy distributions. Similar plots are
given in the following figures for other simulations. The agree-
ment is very good (〈|∆E|〉 ≈ 0.2, see Table 3), especially for
the strongly bound particles. In particular, this means that we
are correctly describing the innermost part of the system. The
energy distribution for less bound particles (i.e. those associ-
ated mostly with the outer parts of the system) is less regular
and sometimes presents a double peak (e.g., see Fig. 10), which
obviously cannot be matched in detail by our models. This is
an interesting example of the way some memory of the initial
state can be preserved (the extra-peak is indeed related to the
initial distribution of binding energies) and a direct sign of the
incompleteness of violent relaxation.

Finally, at the deeper level of N(E, J2), simulations and
models also agree rather well, as illustrated in the four panels
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Fig. 12. Final phase space density N(E, J2) (left column) for the simu-
lation C3.5, compared with that of the best fitting (1/2; 6.2) f (ν) model
(right column).
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Fig. 13. Final phase space density N(E, J2) (left column) for the simu-
lation C2.1, compared with that of the best fitting (1/2; 4.8) f (ν) model
(right column).

of Figs. 12–14. For the cases shown, the distribution contour
lines are in good agreement in the range from Emin to E ≈ −4;
however, the theoretical models show a peak located near the
origin, not present in the simulations, which is related to the
Jacobian factor arising from the transformation of the f (ν) dis-
tribution function from the (x,w) to the (E, J2) space.

7.5. An additional test to characterize clumpy initial
conditions

As an additional test to characterize the detailed effects of
clumpiness, we studied the end-products of the CV5.1 and
CP5.2∗ simulations, by comparing them with the f (ν) models.

Although these two runs start from initial conditions rather
different from our standard choice (cf. C1–C3), being homo-
geneous either in position (CV5.1) or in velocity (CP5.2∗)
space, we note that they can be fitted very well by our family
of models: (3/4; 5.4) for CV5.1 and (1; 6.2) for CP5.2∗ (with
〈|∆ρ/ρ|〉 ≈ 0.1). The good match at the level of the anisotropy

...about 20 years later, we went back to the general problem and found that the so-called 
f^{\nu} models also provided a very accurate representation of the results of numerical 
simulations of violent relaxation (Trenti, GB, van Albada, 2005).
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