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Critical Current triggers helical state
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Constant helical flux surfaces define the topology of plasma
equilibrium: all measured quantities can be correctly interpreted in
terms of the dominant helicity.

R. Lorenzini et al., Nature Physics § (2009) 570-574



The energy lanscape.
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Critical gradient argument — instability pins profile to local marginal stability.
Used in solar convection — tokamak ion temperature gradient modes ... etc.

argument for Ballooning modes due to Connor, Taylor and Turner 1984
And for stellarators Kulsrud and Ho 1985

Actual pressure profile.

_ Critical pressure
profile.

Pressure profile
without Ballooning
modes
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 Llavrrian
 Farrisol

Total duration of eruption about 80 us.
Rapid 20 ps initial phase.
Alfven speed 1 metre per ys (10m/s).

Approximate Field line length top to bottom
om.

Initial phase is only a few Alfven times.



D-alpha Intensity
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Leaning against the ballooning boundary?
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Red line is approximately marginally stable
to ideal MHD instability.



What do the ballooning modes do?



Bo= —BoRo{f(Vrx VS §=¢—q(r)

Surface S=0

r = flux surface label, ¢ = toroidal angle,

0 = straight field line poloidal angle



Consider elliptical flux tube aligned along surface S

tube width = 01, length = 0o, 01 < 09




Elliptical flux tube slides out along surface S parting field lines




r, original flux surface of
a field line

r = 7“(7“, 6’75) ¢ =q(r)f

Equations for perturbed field line



Force across the Tube

Field lines outside tube effectively
Rotated picture unperturbed if

61L < &3

Force across tube =2

B? B?
Din + % = DPout T ;ut

Time to equalise pressure along tube —» pzn — p(’rO)

Unperturbed field and L L
pressure outside tube — Pout =— p(T) Bout — BO (Ta 9)

Linearly 07 ~ In~t 6y ~ Ln~1/2

)



Force on the Tube

Rotated picture

B:
Din + 2m = Pout T ;ut,
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Force Ho 2
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Ho LN
We can get this from “Archimedes” buoyancy

shape and strength of field force



Ballooning Equation

[ = length along field line and ¢ = (1, g, t)

B, = B Bo+ Bie,
B = Bj(¥0,1) Bi = Bi(%o,l)

Equlibrium
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q, safety factor

This models the internal transport barrier — in this talk we take:

Generalized s - a EBeks

We take circular flux surfaces with a narrow region with a small pressure jump.
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Generalized s - o EEGST

Drag evolution vv - e | =F'| yields nonlinear s-alpha equation for 7 = 7“(7“0, 9, t).

y (8_) [1+ (asing — s6)2)] =F} = (Bx(ro) — Bn(r)) [cos 0 + sin 8(s0 — a sin 0)]

ot
(8, (v () ) -4 ), (3),omr-

B (r) = 2oy o) =~ o) = )/

Linearising yields familiar s-a force equation to test for linear instability.



We also define an nonlinear potential energy for this r = T(Toa 0, t)

Aé’:/ do

} / a0 [(A(r, 7o) cosd -+ Blr, ro)0sin 0 — C(r, o) (sin )]

— o0

% (%)2 (14 (asing — s6)?)

To

Atrir) = [ (Bw(r') = Bolro)dr
ro Drag motion minimises
this energy. Always locally

Brro) = [ (Bu() = Bro))str)ar Sl

Clr,m) = (B(r) — Br(ro))’
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s, magnetic shear

Stable profile

s-alpha diagramra=0.7 rs=0.72 ep=0.1
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Perturbing a little




Perturbing more
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What affects the tube cross sectional shape.
We are working on calculation for edge of tokamak — ELMs.

Transport of heat and particles caused by highly displaced tubes
needs study.

Reconnection of tubes

We need to find non disruptive high confinement states.
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