
Compitino di Fisica I, 2 Febbraio 2010

Laurea in Matematica

Nome	Cognome, matricola:	
· (0111 0 ,	cognome, mameria.	

Due masse $m_1 = 2 Kg$ e $m_2 = 2 m_1$ si trovano agli estremi di una molla di costante $k_1 = 3 N/m$ e compressa di una lunghezza $x_1 = 1.73 cm$. Le masse non sono saldate alla molla. Il sistema scorre su una guida orizzontale priva di attrito e da un lato, in fondo alla guida, è presente una seconda molla, fissata ad una estremità, di costante $k_2 = 12 N/m$. Si sblocca la prima molla assumendo che, non appena arrivati alla situazione corrispondente a quella di molla a riposo, le due masse si muovano liberamente. Si chiede:

- 1. la velocità v₁ di m₁ non appena staccata dalla molla;
- 2. la velocità v₂ di m₂ non appena staccata dalla molla;
- 3. La compressione massima Δx della seconda molla ;
- **4.** Il tratto L_x percorso dalla massa m_2 dopo essersi staccata nel caso in cui la guida abbia attrito con coefficiente dinamico $\mu = 0.75 \ 10^{-3}$ (si suppone che l'attrito sia nullo prima di staccarsi dalla molla). Si utilizzi $g=10 \ m/s^2$.

Formula risolutiva, solo lettere; Valore numerico con dimensioni

1. L:			
1. N:			
2. L:		 	
2. N:			
3. L:		 	
3. N:			
4. L:	 		
4. N:			