

Una massa $m = 0.2 \ Kg$ puntiforme é appoggiata su una molla bloccata di costante $k = 400 \ N/m$ e compressa di un tratto $OO_1 = 20 \ cm$. La molla viene sbloccata a t=0. La massa si stacca dalla molla nel punto O (corrispondente alla posizione di molla a riposo). La massa sale verticalmente lungo il tratto $OA = 1.5 \ m$ e poi ruota su una guida circolare che finisce dopo un angolo $3/2\pi$. La guida ha raggio $R = 50 \ cm$. Tutto il percorso é senza attrito. Si chiede:

- **1.** Con che velocità \mathbf{v}_A e in quanto tempo t_A la massa arriva in A (escludendo il tempo per arrivare in O per il calcolo di t_A);
- 2. La velocità \mathbf{v}_{D} con cui la massa esce dalla guida in D;
- 3. La velocità \mathbf{v}_f di arrivo sul piano orizzontale passante per O;
- 4. La reazione vincolare N per un generico angolo θ e calcolarne il valore numerico in $\theta = 5\pi/4$.
- **5.** (a) La velocità minima v_{min} in B e (b) e la corrispondente compressione y_c della molla necessaria affinché la massa arrivi in B senza cadere ;

1. L:
$$\mathbf{v}_{A} = [v_{O}^{2} - 2g OA]^{1/2} \mathbf{j}$$
; $t_{A} = (v_{O} - v_{A}) / g$;
 $\{v_{O} = [(k/m) OO_{1}^{2} - 2g OO_{1}]^{1/2}\}$

1. N:
$$v_A = 6.78 \ m/s$$
; $t_A = 0.19 \ m$; { $v_O = 8.72 \ m/s$ }

2. L:
$$\mathbf{v}_D = -[v_O^2 - 2g(OA-R)]^{1/2} \mathbf{i}$$
; { OD = OA - R }

2. N:
$$v_D = -7.48 \ m/s$$

3. L:
$$v_{f,x} = v_D$$
; $v_{f,y} = -[2g(OA-R)]^{1/2}$;

3. N:
$$v_{f,x} = -7.48 \ m/s$$
; $v_{f,y} = -4.47 \ m/s$; $-[20^{1/2} \ m/s]$

4. L: N = -mg
$$\sin\theta + mv^2/R$$
; $v = [v_0^2 - 2gy]^{1/2}$; $y = OA + R\sin\theta$

4. N:
$$N = 22.64 N$$

5a. L:
$$v_{min} = [gR]^{1/2}$$
; $\{v_{Om} = [v_{min}^2 + 2g(OA+R)]^{1/2}\}$

5b. L:
$$y_c = -mg/k \pm [(mg/k)^2 + mv_{Om}^2/k]^{1/2}$$
 (segno meno per $y_c < 0$)

5a. N:
$$v_{min} = 2.24 \ m/s$$
;

5b. N:
$$y_c = -0.155 m$$

5b.
$$y_c = -[mg/k (2 OO_1 + 2 OA + 3R)]^{1/2} = -0.155 m$$