Hybrid Simulation Techniques for Space Plasmas

Fundamental processes in space weather, 2012

David Burgess Astronomy Unit Queen Mary University of London

With thanks to Dietmar Krauss-Varban

Space Plasmas: From Sun to Earth

Space Plasma

- Plasma is (mostly) electrons and protons
- Plasma is (mostly) fully ionized
- Plasma is (mostly) collisionless
- Plasma is (mostly) magnetized

- Collisionless Vlasov-Maxwell system
- Magnetized Fluid (MHD) system

The Problem: Plasma = Particles

•Problem:

•Vlasov-Maxwell system in terms of phase space density function f(x,v,t) which depends on x_i(t), v_i(t) of particles i=1..N where N enormously large

- Dimensionality of psd f(x,v,t) makes simulation difficult in terms of resources
 - Vlasov simulations, usually just 1d in space
- Kinetic effects are vital to explain collisionless plasmas

Solution 1: Fluid Simulation

Solution 2: Particle Simulation

Compute moments – use equations for macroscopic moments density, velocity

Plus fields => MHD

All quantities function time, can use grid based methods, etc as for ordinary fluid. (Or alternative methods.) Follow ion and electron macro-particles – compute moments on grid (PIC) for density, currents etc

Calculate field evolution on grid based on particle moments

Vlasov-Maxwell system with Lagrangian particles and Eulerian fields.

Kinetic scales

	lons	Electrons
Cyclotron frequency	$\Omega_{ci} = eB/m_p$	$\Omega_{ce} = 1836\Omega_{ci}$
	$ au_{ci} \sim 0.5 - 10$ s	
Plasma frequency	$\omega_{pi} = \left(\frac{ne^2}{\epsilon_0 m_i}\right)^{1/2}$	$\omega_{pe} = 40\omega_{pi}$
	$\omega_{pi}/\Omega ci \sim 100-10,000$	
Thermal gyro-radius	$ ho_i = v_{th,i}/\Omega_{ci}$ $ ho_i \sim 20-200 { m km}$	$\rho_e = \rho_i / 40 \ (T_e = T_i)$
Inertial length (skin depth)	$\lambda_i = c/\omega_{pi}$ $(ho_i/\lambda_i)^2 = eta \sim 0.5 - 10$	$\lambda_e = \lambda_i / 40$

Plasma Kinetic Scales

- Electron time scalesmuch shorter than for ions
- Electron lengths scales
 much smaller than for ions
- (At least for Solar Wind at 1AU)

Solution 3: Hybrid Methods

The BIG idea ... to get around scales problem

- Some of plasma = particles
- Some of plasma = fluid
- PIC method for one particle type
- Fluid (grid) methods for other species
- Fields on grid

Separation of scales required

- fluid-like at one of scales
- capture kinetic behaviour at different scale

Scales Again ...

Thought experiment...

- Energy at large scales
 - Cascade to smaller scales eg by steepening
 - Reaches ion scales
 - But electrons still behaving as a fluid
- Hybrid with particle ions and electron fluid
- Valid for certain range of scales
- There are other kinds of hybrid

Hybrid Codes: Ion PIC Method

- •"Finite size" ion particles
- Follow motion in E,B on grid
- Collect & interpolate moments onto grid
- Solve E.M. fields on grid

Where have the electrons gone?

Hybrid Method: System Equations

•Electrons

- massless, charge neutralizing fluid

$$en_e = q_i n_i$$

- Momentum equation

$$\frac{d}{dt}(n_e m_e \vec{v}_e) = 0 = -en_e(\vec{E} + \vec{v}_e \times \vec{B}) - \nabla P_e$$

-Closure relation for electron pressure:

- scalar pressure with constant temperature,
- scalar pressure with adiabatic law
- pressure tensor
- etc.

- Other types of electron fluid equation (eg with mass)

Hybrid Method: System Equations

• Particle ions

$$m_i \frac{d\vec{v}_i}{dt} = q_i (\vec{E} + \vec{v}_i \times \vec{B})$$
$$\frac{d\vec{x}_i}{dt} = \vec{v}_i$$

- Solve with standard PIC leap frog

 position and velocity out of
 synchronization by half time step
- Collect moments on to grid

Hybrid Method: System Equations

- Electromagnetic Fields
 - Faraday's Law

$$\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E}$$

- Ampere's Law

$$\nabla \times \vec{B} = \mu_0 \vec{J} = \mu_0 n_i q_i (\vec{V}_i - \vec{V}_e)$$

- Electron momentum equation

$$\vec{E} = -\vec{V}_i \times \vec{B} - \frac{1}{n_i q_i} \nabla P_e - \frac{1}{\mu_0 n_i q_i} \vec{B} \times (\nabla \times \vec{B})$$

- Electric field is a "state" quantity

Hybrid Method

- Faraday Law to advance B field
- State equation for E field
- Leapfrog for ion particle position and velocity
 - Information not necessarily available at "right" time
- Different algorithms:
 - Predictor-corrector
 - Moment method (CAM-CL)
 - One-pass

- Variations: Resistivity, finite electron mass, full electron pressure tensor, model electron energy equation, etc.

Flow Charts:

Simple Explicit Method vs. Predictor-Corrector

Moment Methods (CAM-CL)

- Use moment method to advance unknown velocity or current density 1/2 step ahead
- Faster than additional particle push required in P-C
- Collect appropriate moments and apply a separate equation of motion
- CAM-CL:
 - current density ightarrow easier to include multiple species
 - advective term absent (included via time centering)
 - no ion pressure tensor required

Numerical Properties: Drifting Plasma Regions with Anti-Parallel Fields

Numerical Properties: Dispersion Relation of Parallel Whistlers

Numerical Properties: **Dispersion Relation of Parallel Whistlers** 10 $t_{min} = dx/v_{ph}$ (Small dx) $t_{min} = dx^{**}2/\pi$ 1 Δt_{max} 0.1 0.01 1E-3 1E-4 0.05 0.1 2.0 dx

Hybrid methods and dispersive whistler waves

Hybrid codes lack electron kinetics

- Damping at "electron" scales is wrong
- Steepening gives large amplitude changes at small scales with fast propagation speed (via dispersion)
 - Good conditions for error build-up

SOLUTION(S)

- Don't make cell size too small
- "Improve" electron fluid, eg finite mass, explicit resistivity (what value?!)
- Hope(!) that numerical scheme has enough intrinsic diffusion/damping at small scales
- Help the numerical scheme with additional smoothing or filtering

Hybrid codes and low density regions

□ Alfven speed is a characteristic speed

□ V_A increases as density decreases

Errors larger as density decreases
 "Explosive" failures associated with low density regions

"Solution"

- Force density "floor" to maintain "finite" electric field
- > OK ... Provided low density region not too large

Plasma-vacuum boundaries are difficult in hybrid method

Historical Example

- Leroy et al., 1982, "The Structure of Perpendicular Bow Shocks"
- Based on earlier PIC codes (normalizations!)
- Explained bow shock observations of reflected ions, magnetic foot & overshoot structure

B/8

1980's Hybrid Code

- Reasons for success
 - Implicit field solver possible in 1D (always stable!)
 - Separation of scales
 - Ion reflection ensures ion kinetic scale dominant
 - Bow shock in parameter regime where electron heating is not large ie electron kinetic effects not dominant
 - Characteristic large scale to small scale steepening, so ion kinetic effects play a role before electron kinetics
- And not so successful ...
- One-dimensional (space) simulation means no parallel heating of ions

- But ... observations could not show ion parallel temperature accurately!

Hot flow anomalies at the heliospheric termination shock

- Schwartz et al (1985) discovered "active current sheets" in the solar wind near 1AU
 - large plasma temperature regions associated with rotations in the magnetic field
 - also known as "hot diagmagnetic cavities" and "hot flow anomalies" in the literature
- They are formed when a tangential discontinuity of a certain polarity interacts with Earth's bow shock
 - The particle drift is directed away from the shock

Schwartz et al, Nature, 1985

After Burgess (1989) and Thomas et al. (1993)

Effect of Current-Sheet Inclination on HFA structure

- The morphology of the HFA is much different for highly inclined shocks because the intersection point of the CS and shock moves along the shock very rapidly
- It is unlikely that a HFAs, like those observed near Earth, exist near the termination shock, except for transient ones

Dynamics of pick-up ions at Hot Flow Anomaly

- Large number of upstream energetic particles are produced by the interaction of the "active" current sheet with the shock.
- They are nearly ALL pickup ions (not thermal solar wind ions).

Microphysics at the Quasi-parallel Shock

An Example of Hybrid Simulation

Space Weather connections:

- Particle acceleration at CME and IP shocks
- Transmission of solar wind disturbances through bow shock

Terrestrial Bow Shock

Diffuse lons

Isotropic (on average)
 close to shock
 Spectra above 30keV
 exponentials in E/q
 e-folding distance
 increases with energy
 Anisotropic far from
 shock

Shock Transition

Quasi-parallel Shock Observations

Pulsations and Ion Distributions

Burgess et al SSR 2005

Quasi-parallel Simulations

Magnetic field

- "Reformation" of shock front associated with upstream pulsations convecting into shock
- Bursts of upstream directed ions linked to incident waves

8 8 6⁶-1 2 $\overline{}$ 320 280 340 300 260 280 320 340 300 $\times c/\omega_{ci}$ $\times c/\omega_{ci}$

Burgess, 1995

y of V×<0 ions and contour at 2.5B_o

Quasiparallel shock structure

Large amplitude magnetic pulsations are central to quasiparallel structure

Strong variations on short scales

Pulsation growth and shock "reformation"

Backstreaming ions removed far(ish) away from shock

Run B: Backstreaming ions removed near shock

Scholer and Burgess 1992

 $x(c/\omega_m)$

310

Thomas et al 1990

Pulsation Growth: Diffuse lons or Specular reflection?

Correlation pulsations and diffuse ion pressure

Cold reflected ion events

Giacalone et al. 1993

Hybrid Simulations of Diffuse Ions

Origin of Diffuse Ions - Hybrid

Kucharek and Scholer, JGR 1991

Quick Ion Acceleration/Injection

 Particles have phase trapping motion in convecting waves
 Deceleration of wave phase speed at shock leads to energy gain from "bouncing" between upstream wave and wave at shock front

Quick Ion Acceleration/Injection

Sugiyama et al 2001

Diffuse Ions Far Upstream

Sugiyama 2011

High Mach Number Quasiparallel

M_A=31

Gargate and Spitkovsky 2012

High Mach Number Quasiparallel

M_A=31 Large scale "reformation"

2D Global Hybrid Simulations

X(c/ωp)

Blanco-Cano et al 2006

Global Hybrid Simulations

Blanco-Cano et al 2006

Global Foreshock Simulations

Microphysics at Quasi-parallel Shock

- Ion coupling and shock "reformation", pulsation growth
- Links between ion microphysics and energetic particle acceleration
- Bigger and better simulations detailed analysis
- Electron microphysics ... What heats the electrons?

Hybrid Space Plasma Simulations

- Successful for space plasmas where there is appropriate separation of ion and electron scales
- A powerful method bridging MHD and full particle PIC
- History of successful application to space plasmas shocks, instabilities, etc.