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1. Introduction 



Observational Evidence 

 It is estimated that more than 99.9 % of matter in the 
Universe exists in the form of  plasma; 

 A plasma is a ionized gas  where charged particles interact 
via electromagnetic forces (electric and magnetic fields); 

 Examples include stars, nebulae, galaxies, supernovae, 
interstellar/galactic medium, jets, accretion disks, etc.. 

 Our knowledge limited by what we can actually observe 
 emitting plasma. 



Astrophysical Plasma Conditions 

 Astrophysical Plasmas are characterized by a wide disparity in spatial and 
temporal scales: 

 

 

 

 

 

 

 

 
 Flows are compressible, magnetized, supersonic, and possibly relativistic; 

 Several physical effects: advection, dissipative (non-ideal effects), 
cooling/radiation, gravity, non-inertial effects, complex equations of state, stiff 
reaction networks, etc…  

L (cm) n (cm-3) T (K) v(Km/s) B (G) 

Stellar interiors 1010 ÷ 1012 1027 ≥ 107 0 ÷ 500 1÷ 104 

Stellar winds 1013 ÷ 1015 10-2 ÷ 103 102÷103 200 ÷ 4∙103 10-5÷10-3 

Neutron star 106 1042 106 ÷ 109 - 1012 

Interstellar  Medium 102÷1022 10-1 ÷ 10 102 1÷ 30 ≤ 10-5 

Intergalactic Medium ≥ 1024 ≤ 10-5 105 ÷ 106 10 ÷ 103  ≤ 10-8 

Jets from YSO 1016 ÷ 1018 103 ÷ 104 103 ÷ 105 100 ÷ 500 10-4÷10-3 

Jets in AGN 1021 ÷ 1024 10-5 ÷ 10-3 - ~ c ~10-3 



Plasma Description 

 Most theoretical models are based on a fluid description (L » λmfp) requiring 
the solution of highly nonlinear hyperbolic / parabolic P.D.E., e.g.  

 

 

 

 

 

 

 

 

Euler equations 

Single Fluid  
MHD equations 



 Exact  solutions possible under very restrictive assumptions, e.g. 
stationarity (/t = 0), self-similarity, spherically symmetry or 
similar. 

 

 Nonlinear, time-dependent systems can be studied only by 
means of numerical simulations. 
 

 Grid-Based fluid approach via Finite Volume/Difference:  
 Fluid variables are discretized on a spatial grid (static or adaptive) and 

evolved in time.  

 Numerical solution of hyperbolic PDE in presence of discontinuous waves 

 Shock-Capturing (or Godunov-type) schemes. 

 

Why numerical simulations ? 



A computational example:  
Rayleigh-Taylor unstable flows 

 Problem:  

     Supernova remnants morphology & 
Rayleigh Taylor Instability 
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A computational example:  
Rayleigh-Taylor unstable flows 
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A computational example:  
Rayleigh-Taylor unstable flows 

 Problem:  

      Supernova remnants morphology & 
Rayleigh Taylor Instability 

 

 Choose computational domain 

 Set the number of zones 
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A computational example:  
Rayleigh-Taylor unstable flows 

 Problem:  

      Supernova remnants morphology & 
Rayleigh Taylor Instability 

 

 Choose computational domain 

 Set the number of zones 

 Set initial conditions: 
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 Problem:  

      Supernova remnants morphology & 
Rayleigh Taylor Instability 

 

 Choose computational domain 

 Set the number of zones 

 Set initial conditions: 

 

 

 

 Set boundary conditions 

A computational example:  
Rayleigh-Taylor unstable flows 



A computational example:  
Rayleigh-Taylor unstable flows 

 Problem:  

      Supernova remnants morphology & 
Rayleigh Taylor Instability 

 

 Choose computational domain 

 Set the number of zones 

 Set initial conditions: 

 

 

 

 Set boundary conditions 

 Set final integration time & Run! 



2a. Basic discretization for hyperbolic PDE: 
Linear advection Equation 



The Advection Equation: Theory 

 First order partial differential equation (PDE) in (x,t): 

 

 

 Hyperbolic PDE: information propagates across domain at finite 
speed  method of characteristics 

 Characteristic curves are the solutions of the equation 

 

 

 So that, along each characteristic, the solution satisfies 

 



The Advection Equation: Theory 

 The solution is constant  

     along the characteristic  

     curves. At any point (x,t) we 

     trace the characteristic  

     back to the initial position. 

 

 

 

 

 

 This defines the physical domain of   dependence. 

 

 



The Advection Equation: Theory  

 for constant a: the characteristics are straight parallel lines and 
the solution to the PDE is a uniform shift of the initial profile: 

 

 

 Here                               is the initial condition 



Numerical Discretizations 

 

 

 

 Two popular methods for performing discretization: 

 
 Finite Differences (FD); 

 Finite Volume (FV); 

 

 For some problems, the resulting discretizations look identical, 
but they are distinct approaches; 

We begin using finite-difference as it will allow to quickly learn 
some important concepts. 

 



 A finite-difference method stores the solution at specific points 
in space and time; 

 

 

 

 Associated with each grid point is a function value, 

 

              

 

We replace the derivatives in our PDE with differences between 
neighbor points 

 

Finite Difference Approach 

i+1 i i-1 

i+½ i-½ 



Finite Volume Approach 

 In a finite volume discretization, the unknowns are the spatial 
averages of the function itself: 

 

     

 

 where i-½  and i-½  denote the location of the interfaces. 

 

 

 

 

 The solution to the conservation law involves computing fluxes 
through the boundary of the control volumes 

 

i+1 i i-1 

i+½ i-½ 



Discretization: the FTCS scheme 

We need to approximate the derivatives in our PDE 

 

 

 In time, use forward derivative, since we want to use information 
from the previous time level 

 

 

 

 In space, we use centered derivatives, since it is more accurate:  



The FTCS scheme 

 Putting all together:  

 

 and solving with respect to                gives  

 

 

 

    where                     is the Courant-Friedrichs-Lewy (CFL) number 

 

We call this method FTCS for forward in time, centered in space. 

 The value at the new time level depends only on quantities at 
the previous time steps  explicit method 



The FTCS scheme 

 At t=0, the initial condition is a square pulse with periodic 
boundary conditions: 



The FTCS scheme 

 After some time, the solution looks like this: 

 

 

 

 

 

 

 

 

 

 Something isn’t right… why ? 



von Neumann Stability Analysis 

 Let’s perform an analysis of FTCS by expressing the solution as a 
Fourier series.  

 

 Since the equation is linear, we only examine the behavior of a 
single mode. Consider a trial solution of the form 

 

 

 This is a spatial Fourier expansion. Plugging in the difference 
formula: 

 

 



von Neumann Stability Analysis 

 Defining the amplification factor                one obtains 

 

 

 

 a method is well-behaved or stable  when  

 

 however, for FTCS, one gets   

 

 Indipendently of the CFL number, all Fourier modes increase in 
magnitude as time advances 

 This method is unconditionally unstable! 



Forward in time, backward in space 

 Let’s use a difference approach. Consider the backward formula 
for the spatial derivative: 

 

 

 Apply von Neumann stability analysis on the resulting discretized 
equation: 

 

 

 Solving for the amplification factor gives 

 

 



Forward in time, backward in space 

 The method is stable when                                   

 

 for a < 0 the method is unstable, but 

 for a > 0 the method is stable  when    

 

t = 0.09 t = 0.18 t = 1 



Forward in time, forward in space 

 Repeating the same argument for the forward derivative 

 

 

 

 Gives 

 

 

 If a > 0 the method will always be unstable 

 

 However, if                              , then this method is stable; 

 



The CFL condition 

 Since the advection speed a is a parameter of the equation, x is 
fixed from the grid, the previous inequality is a stability 
constraint on the time step 

 

 

 

 t cannot be arbitrarily large but, rather, less than the time taken 
to travel one grid cell (CFL condition). 

 

 In the case of nonlinear equations, the speed can vary in the 
domain and the maximum of a should be considered instead. 

 



The first-order Godunov Method 

 Summarizing: the stable discretization makes use of the grid 
point where information is coming from: 

 

 

 

 

 

 This is ”upwind”: 

 

 

 This is also called the first-order Godunov method; 

a>0 a<0 



Conservative Form 

 We define the “flux” function 

 so that Godunov method can be cast in conservation form 

 

 

      

 

 

 

 The conservative form ensures a correct description of 
discontinuities in nonlinear system, ensures global conservation 
properties and is the main building block in the development of 
high-order finite volume schemes. 

a > 0 a < 0 



2b. Basic discretization for hyperbolic PDE: 
Finite Volume & Riemann Problem 



Finite Volume Formulation 

 The conservative form of the equations provides the link 
between the differential form of the equation, 

 

 

 

 and the integral form, obtained by integrating the equations over  

a time intervalt = tn+1 – tn and cell size x = xi+1/2 – xi-1/2 



Finite Volume Formulation 

 Performing the spatial integration yields 

 

 

 

     with                                                         being a spatial average. 

 

 A second integration in time gives 
 

 

 

     where                                                                 is a temporal average     



Finite Volume Formulation 

 Rearranging terms yields 
 
 
 

    with spatial and temporal averages given by 
 
 
 
 

 We have derived an EXACT evolutionary equation for the spatial 
averages of q. 

 This relation provides an integral representation of the original 
differential equation. 

 The integral form does not make use of partial derivatives! 

Integral form 



The Riemann Problem 

 The previous relations are exact.  

 However, since the solution is known only at tn, some kind of 
approximation is required in order to evaluate the flux through 
the boundary: 

 

 

 This achieved by solving the so-called “Riemann Problem”, i.e., 
the evolution of an inital discontinuity separating two constant 
states. The Riemann problem is defined by the initial condition: 



The Riemann Problem 

qL 

qR 

Left State 

Right State 

x 

Cell Interface 

i i+1 i+½ 

Initial Discontinuity 



The Riemann Problem 

qL 

qR 

Left State 

Right State 

x 

Cell Interface 

i i+1 i+½ 

Discontinuity Breakup 

Solution on the axis 



2c. Basic discretization for hyperbolic PDE: 
Systems of Linear Equations 



System of Equations: theory 

We turn our attention to the system of equations (PDE) 

 

 

     where                                       is the vector of unknowns. A is a m 

x m constant matrix. 

 

 The system is hyperbolic if A has real eigenvalues,  1  …  m 
and a complete set of linearly independent right and left 
eigenvectors   rk  and lk  (rj lk =jk) such that 
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@ t
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System of Equations: theory 

 In this form, the system decouples into m independent advection 
equations for the characteristic variables: 

 

 

   

     where                         (k=1,2,…,m)  is a characteristic variable. 

 

 Each equations has the exact analytical solution 

 

 

      i.e., the initial profile of wk  “shifts” with uniform velocity k 
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System of Equations: Exact Solution 

 Once the solutions in characteristic form are known, we can 
solve the original system via the inverse transformation 

 

 

 

 

 The characteristic variables are thus the coefficients of the right 
eigenvector expansion of q. 

 

 The solution to the linear system reduces to a linear combination 
of m linear waves traveling with velocities  k . 

 



System of Equations: Numerics 

We suppose the solution at time level n is known as qn and we 
wish to compute the solution qn+1 at the next time level n+1. 

 

 Our numerical scheme can be derived by working in the 
characteristic space and then transforming back: 

 

 

 

 

     where 

 

     is the Godunov flux for a linear system of advection equations. 



The Riemann Problem 

 If q is initially discontinuous, one or more characteristic variables 
will also have a discontinuity. Indeed, at t = 0, 

 

 

 

 

 In other words, the initial jump qR - qL is decomposed in several 
waves each propagating at the constant speed k  and 
corresponding to the eigenvectors of the Jacobian A: 

 

 

     where                                            are the wave strengths  

 



The Riemann Problem 

 For the linear case, the exact solution for each wave at the cell 
interface is: 

 

 

 

 The complete solution is found by adding all wave contributions: 

 

 

 

 and the flux is finally computed as  



The Riemann Problem 

 

 

 

 

qL qR 

q*L 

q*R 

x=1t 
x=2t 

x=3t 

x 

t 

xi+½-2t 

(xi+½,t) 

xi+½-3t xi+½-1t 

Point (X0,T) falls to the right of the 1 characteristic emanating from  

the initial jump, but to the left of the other 2, so the solution is: 



2d. Basic discretization for hyperbolic PDE: 
Nonlinear equation 



Nonlinear Advection Equation 

We turn our attention to the scalar conservation law 

 

 

 

Where f(u) is, in general, a nonlinear function of u.  

 

 To gain some insights on the role played by nonlinear effects, we 
start by considering the inviscid Burger’s equation: 



Nonlinear Advection Equation 

We can write Burger’s equation also as 

 

 In this form, Burger’s equation resembles the linear advection 
equation, except that the velocity is no longer constant but it 
is equal to the solution itself. 

 The characteristic curve for this equation is 

 

 

 

 u is constant along the curve dx/dt=u(x,t)  characteristics  
are again straight lines: values of u associated with some fluid 
element do not change as that element moves. 



Nonlinear Advection Equation 

 From 

 

     one can predict that, higher values of u will propagate faster than 
lower values: this leads to a wave steepening, since upstream values 
will  advances faster than downstream values. 



Nonlinear Advection Equation 

 Indeed, at t=1 the wave profile will look like: 

 

 

 

 

 

 

 

 

 

 the wave steepens… 



Nonlinear Advection Equation 

 If we wait more, we should get something like this: 

 

 

 

 

 

 

 

 

 

 A multi-value functions ?!  Clearly NOT physical ! 



Nonlinear Advection Equation 

 The correct physical solution is to place a discontinuity there:  

     a shock wave.  

 

 

 

 

 

 

 

 Since the solution is no longer smooth, the differential form is 
not valid anymore and we need to consider the integral form. 

Shock position 



Nonlinear Advection Equation 

 This is how the solution should look like: 

 

 

 

 

 

 

 

 

 

 Such solutions to the PDE are called weak solutions. 



Nonlinear Advection Equation 

 Let’s try to understand what happens by looking at the 
characteristics. 

 Consider two states initially separated by a jump at an interface: 

 

 

 

 

 

 

 Here, the characteristic velocities on the left are greater than 
those on the right. 

uL 

uR 

u(x) 

x 



Nonlinear Advection Equation 

 The characteristic will intersect, creating a shock wave: 

 

 

 

 

 

 

 

 The shock speed is such that (uL) > S > (uR). This is called the 
entropy condition.  

t 

x 

t 

x 



Nonlinear Advection Equation 

 The shock speed S can be found using the Rankine-Hugoniot 
jump conditions, obtained from the integral form of the 
equation: 

 

 

 

 For Burger’s equation f(u) = u2/2 so that one finds the shock 
speed as 



Nonlinear Advection Equation 

 Let’s consider the opposite situation: 

 

 

 

 

 

 

 

 Here, the characteristic velocities on the left are smaller than 
those on the right. 

uL 

uR u(x) 

x 



Nonlinear Advection Equation 

 Now the characteristics will diverge: 

 

 

 

 

 

 

 

 Putting a shock wave between the two states would be incorrect, 
since it would violate the entropy condition. Instead, the proper 
solution is a rarefaction wave.  

t 

x 

t 

x 

tail 

head 



Nonlinear Advection Equation 

 A rarefaction wave is a nonlinear wave that smoothly connects the left 
and the right state. It is an expansion wave. 

 

 The solution between the states can only be self-similar and takes on 
the range of values between uL and uR 

 

 The head of the rarefaction moves at the speed (uR), whereas the tail 
moves at the speed (uL). 

 

 The general condition for a rarefaction wave is (uL)<(uR) 

 

 Both rarefactions and shocks are present in the solutions to the Euler 
equation. Both waves are nonlinear. 

 



Nonlinear Advection Equation 

 These results can be used to write the general solution to the 
Riemann problem for the Burger’s equation: 

 If uL > uR  the solution is a discontinuity (shock wave). In this case 

 

 

 
 If uL < uR   the solution is a rarefaction wave. In this case 

 



Nonlinear Advection Equation 

 Solutions look like 

 

 

 

 

 

 

 

 

   for a rarefaction and a shock, respectively. 



2e. Basic discretization for hyperbolic PDE: 
Nonlinear Systems 



Nonlinear Systems 

Much of what is known about the numerical solution of 
hyperbolic systems of nonlinear equations comes from the 
results obtained in the linear case or simple nonlinear scalar 
equations. 

 

 The key idea is to exploit the conservative form and assume the 
system can be locally “frozen” at each grid interface. 

 

 However, this still requires the solution of the Riemann problem, 
which becomes increasingly difficult for complicated set of 
hyperbolic P.D.E.   



Euler Equations 

 System of conservation laws describing conservation of mass, 
momentum and energy: 

 

 

 

 

 

 Total energy density E is the sum of  

     thermal + Kinetic terms: 

 

 Closure requires an Equation of State (EoS).  

   For an ideal gas one has 



Euler Equations: Characteristic Structure 

 The equations of gasdynamics can also be written in “quasi-
linear” or primitive form. In 1D: 

 

 

 

 

 

    where V = [,vx,p] is a vector of primitive variable, cs = (p/)1/2  
is the adiabatic speed of sound. 

 

 It is called “quasi-linear” since, differently from the linear case 
where we had A=const , here A = A(V). 



Euler Equations: Characteristic Structure 

 The quasi-linear form can be used to find the eigenvector 
decomposition of the matrix A: 
 
 
 
 
 

 Associated with the eigenvalues: 
 
 
 

 These are the characteristic speeds of the system, i.e., the speeds at 
which information propagates. They tell us a lot about the structure of 
the solution. 



Euler Equations: Riemann Problem 

 By looking at the expressions for the right eigenvectors, 

 

 

    

 

  we see that across waves 1 and 3, all variables jump. These are 
nonlinear  waves, either shocks or rarefactions  waves. 

 

 Across wave 2, only the density jumps. Velocity and pressure are 
constant. This defines the contact discontinuity. 

 

 The characteristic curve associated with this linear wave is dx/dt = u, 
and it is a straight line. Since vx is constant across this wave, the flow is 
neither converging or diverging. 



Euler Equations: Riemann Problem 

 The solution to the Riemann problem  looks like 
 
 
 
 
 
 
 
 
 
 
 

 The outer waves can be either shocks or rarefactions. 
 The middle wave is always a contact discontinuity. 
 In total one has 4 unknowns:                         , since only density jumps across 

the contact discontinuity. 

x 

t (contact) 

(shock or rarefaction) 
(shock or rarefaction) 



Euler Equations: Riemann Problem 

 Depending on the initial discontinuity, a total of 4 patterns can 
emerge from the solution: 
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Euler Equations: Shock Tube Problem 

 The decay of the discontinuity defines what is usually called the “shock tube 
problem”,  

 

 Left Values: 

 

 

 Right Values: 



Euler Equations: Shock Tube Problem 

 The one dimensional jet problem reduces to a shock-tube with a S-C-S 
structure: 

 

 Left Values: 

 

 

 Right Values: 



Riemann Problem in MHD 

 7 wave pattern, 

 across the contact wave, for Bn0, only density has a jump; 

 across Alfven waves, []=[pgas]=[vx]=0 

Fast [S/R] 

fast  [S/R] 

x 

Alfven 

entropy slow [S/R]  
Alfven 

UL, left state UR, right state 

t 
slow [S/R]  



An example 



Solving the Riemann Problem 

 The full analytical solution to the Riemann problem for the Euler 
equation can be found, but this is a rather complicated task (see 
the book by Toro).  

 

 In general, approximate methods of solution are preferred.  

 

 The advantage of using approximate solvers is the reduced 
computational costs and the ease of implementation. 

 

 The degree of approximation reflects on the ability to  “capture” 
and spread discontinuities over few or more computational 
zones.   



Solving the Riemann Problem 

 Exact Riemann solvers (nonlinear) 
 Full nonlinear solution:  

 Expensive / impracticable for heavily usage in upwind codes; 

 

 Linearized Riemann solvers (Roe type) 
 require characteristic decomposition in eigenvectors 

 may be prone to numerical pathologies 

 

 HLL-type Riemann solvers (guess-based) 
 based on guess to the signal speeds and on the integral average of the 

solution over the Riemann Fan; 

 fewer waves are considered in the solution; 

 preserve positivity; 



Resolution of Contact Discontinuity  



Example: Kelvin-Helmholtz Instability 



2f. Basic discretization for hyperbolic PDE: 
High-order Schemes 



High order Integration in time 

 A simple and effective way to achieve 2nd or 3rd order accuracy 
in time is to treat the PDE in semi-discrete form: 

 
 

 

 In such a way the PDE becomes a regular ordinary differential 
equation (ODE) in time; 

 

 

 

 Standard integration based on predictor/corrector schemes can 
then be used to solve ODEs. 

 
 

 



Second-order Runge-Kutta  

 Using the trapezoidal method, the solution of our ODE writes: 

 
 

 

 Problem: the unknown              appears on both side of the equation!!! 

 Solution: use an estimate (predictor) for                with Euler method: 

 

   

 

    

 

 This is the second-order explicit Runge-Kutta method (or Heun’s method) It is 
2nd order  accurate. 



Improving spatial accuracy 

 High order reconstruction can be carried inside each cell by 
suitable oscillation-free polynomial interpolation: 

 
Piecewise  

constant 

 

 

Piecewise  

Linear 

 

 

Piecewise  

parabolic 



Reconstruction Constraints 

 Must be consistent with data representation 

 

 

 

 

 Satisfy monotonicity constraints:      

 

  

  

 

 no new extrema allowed  (Total Variation Diminishing (TVD)    
schemes) 

 Oscillation free solution 

 



Example: 2nd order linear reconstruction 

 For 2nd-order interpolant, we use 
 
 
 
 
 
 
 
 

 Use slope limiters to avoid  
     introducing  new extrema: 

 
 Example 

 
 
 
 

i-1/2 

i+1/2 
i 

Undesired new minimum 



Comparison 

 Improving reconstruction decreases the  amount of numerical 
dissipation: 



Equivalent advection/diffusion equation 

 A discretized PDE gives the exact solution to an equivalent 
equation with a diffusion term; 

 

 Consider 

 

 Use upwind discretization: 

 

 Do Taylor expansion on                and    

 The solution to the discretized equation satisfies exactly  



Reconstruct-Solve-Average  

 Start from zone averages, 
break the problem into 3 
pieces: 

 

1. Piecewise polynomial 
reconstruction 

 

 

 

2. Solve Riemann problem between 
left and right states 

 

3. Form new averages (evolve) 

 



Multi Dimensional Integration 

 Integration in more than one dimensions can be achieved using 
two distinct approaches: 
 

 Dimensionally Split schemes: solve the PDE as a sequence of 1-D sub-
problems.  

 

 

 

 

 

 Dimensionally Unsplit schemes: solve the full problem: 

   

qn 

 

       q* 
qn+1 = 



3a. Astrophysical Applications: 
Accretion Disks 



Accretion Disks: open problems 

 Accretion disks form because gas  

     falling onto a gravitating object  

     inevitably has some angular 

     momentum (a.m.) that forces it  

     to orbit around the  object; 

 

 Gravity causes material to spiral  

     inward towards the central body  

     only  if a.m. is transported outwards; 

 

 Infalling matter must loose gravitational energy and momentum: 
Angular momentum extraction at the origin of the jet paradigm. 

 

 

1Shakura & Sunyaev, 1973; 2Velikhov 1959; 3Chandrasekhar 1960; 4Balbus & Hawley (1990) 



Accretion Disks: open problems 

 Turbulence possible source of  

      angular momentum transport in  

      accretion disks1; 

 

 Problem: microscopic viscosity  

     not sufficient 

     turbulent enhanced viscosity  

    what is its origin ?  

 

 Magnetorotational instability (MRI2,3) re-discovered by Balbus & 
Hawley (1991) proposed as the main process at the base of angular 
momentum transport in accretion disks.  

 

1Shakura & Sunyaev, 1973; 2Velikhov 1959; 3Chandrasekhar 1960; 4Balbus & Hawley (1990) 



Accretion Disks: axisymmetric models 

 To reduce computational cost, previous models 
adopted considerable simplifications, e.g., 
axisymmetry: 

 

 

 

 

 

 

 

 

Compact Objects 

Orbiting accretion torus 



Accretion Disks: 3D local models 

 Local approach based on ShearingBox models: based on a local 
expansion of the tidal forces in a reference frame corotating with the 
disk at some fiducial radius R0.  (shearing box approximation) 

 allows to reach much higher resolutions1:   



The Shearing Box Approximation 

 Validity restricted to a small Cartesian box with a steady flow consisting of a 
linear shear velocity, normally considered as the basic flow. 
 
 
 
 
 
 
 
 
 
 
 

 While the computational box is periodic in the azimuthal (y) and vertical (z) 
directions, radial (x) boundary conditions are determined by “image” boxes 
sliding relative to the computational domain. 



MRI: Channel Solution 

 Simulations show intermittent behavior 
with episodes of efficient AM transport 
(“channel solutions”) 

 High correlation between components of 
magnetic field and velocity perturbations. 

 Disruption by parasitic instabilities. 

 However:  

 dominance of the channel seems 
peculiarity induced by an overly 
constrained geometry; 

 Increasing the aspect ratio, the system 
has more difficulty in forming the 
channel1. 

1Bodo et al., A&A(2008), 487,1B  



Toward Global Simulations of Accretion Disks  

 Shearing-box  approximation   

     probably unable to capture the  

     physics of MRI in disks.  

 

 Future simulations will tackle 

     the full disk structure; 

 

 Challenge: the scale disparity from global disk to the turbulent 
dissipative scale is enormous and inaccessible to computation; 

 However: calculations with sufficient scale separation may give 
important answers  need for very high resolution (> 109 points, disk 
storage> 200 TB).  



Stratified Simulations of Magnetized Disks 

Grid Resolution:  384 x 192 x768 
Code: PLUTO  
Author: Flock et al, ApJ (2011) 735 122 



3b. Astrophysical Applications: 
Relativistic Jets from AGN 



Extragalactic Jets: Morphology 

 Supersonic, highly collimated plasma ejecta 
propagating away from the central engine 

 Fundamental questions: 
 

 how can jet survive fluid instabilities ? Confinement ? 

 Morphology  physical properties (density,  
composition, magnetic fields…) ?  

 Jet emission mechanism ?  

 how do they decelerate ? 

 

 Understanding the processes leading to momentum, 
energy and mass transfer to the environment is      
crucial and still largely unanswered. 

 

3C 31 

3C 98 

FR II 

FR I 



3D Simulations of Relativistic Jets 

 3D simulations by U. of Torino1 ( 2·105 CPU hours) confirm that the field 
topology is essential in determining the dynamics; 

Poloidal (vertical) magnetic field: 

1Mignone et al. (MNRAS, 2009)  



 

3D RMHD Jet 

- Poloidal Field - 

 

Grid Size: 

640x1600x640 

 

Simulation  

105 Hours on 

IBM Power 6 

Cineca (Italy) 

4 TB Data 

 

Code:  

PLUTO 



3D Simulations of Relativistic Jets 

 3D simulations by U. of Torino1 ( 2·105 CPU hours) confirm that the field 
topology is essential in determining the dynamics; 

Poloidal (vertical) magnetic field: Toroidal (azimuthal) magnetic field 

1Mignone et al. (MNRAS, 2009)  



 

3D RMHD Jet 

- Toroidal Field - 

 

Grid Size: 

640x1600x640 

 

Simulation  

105 Hours on 

IBM Power 6 

Cineca(Italy) 

4 TB Data 

 

Code:  

PLUTO 



3D Simulations of Relativistic Jets 

 3D simulations by U. of Torino1 ( 2·105 CPU hours) confirm that the field 
topology is essential in determining the dynamics; 

Poloidal (vertical) magnetic field: Toroidal (azimuthal) magnetic field 

 Jet wiggling/beam deflection due to kink instabilities (m=1); 

  multiple sites where the jet impacts on the ambient forming shocks (compatible  

      with multiple hotspots observed in several radiogalaxies); 

 Backflow asymmetry replicates observational appearance of several objects. 

1Mignone et al. (MNRAS, 2009)  



Axisym (“2.5” D) Fully 3-D 

Relativistic MHD jets: 2D vs 3D 



Pressure distribution 

 

 
Hydro Poloidal Toroidal 

secondary shocks 



Simulation credits: The PLUTO Code 

 PLUTO is modular parallel code providing a multi-physics as well as a 
multi-algorithm framework for the solution of conservation laws in 
astrophysics; 
 

 Target: compressible, high-mach number flows with shocks in 
multiple spatial dimensions: 
 Compressible Euler / Navier Stokes equations; 
 Classical (ideal/resistive) Magnetohydrodynamics (MHD); 
 Special Relativistic hydro and MHD; 
 Heating/cooling processes, chemical network  

 

 Variety of numerical methods: 
 Finite Volume  / Finite Difference 
 Riemann solvers; 
 2nd – 5th order interpolation techniques; 

 

 Support  static grid and Adaptive Mesh Refinement (AMR) computation  



The PLUTO Code 

 PLUTO is freely distributed at http://plutocode.ph.unito.it; 

 More than 300 downloads in one year; 

 

 

 

 

 

 

 

 

 References:  
 Mignone et al, Astrophys. J. Suppl. S. 170 (2007) 228. (static version) 

 Mignone et al, Astrophys. J. Suppl. S. 198 (2012) 7.      (AMR version) 

http://plutocode.ph.unito.it/
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