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1. Introduction
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Observational Evidence

O

> Itis estimated that more than 99.9 % of matter in the
Universe exists in the form of plasma;

> A plasma is a ionized gas where charged particles interact
via electromagnetic forces (electric and magnetic fields);

> Examples include stars, nebulae, galaxies, supernovae,
interstellar/galactic medium, jets, accretion disks, etc..

> Our knowledge limited by what we can actually observe
- emitting plasma.




Astrophysical Plasma Conditions

> Astrophysical Plasmas are characterized by a wide disparity in spatial and
temporal scales:

Stellar interiors \' 1010+ 1012 \l 1027 \' > 107 \l 0+ 500 || 1+ 10% |
Stellar winds | 108210 | 102:10° | 102203 | 200+ 4-10% | 105:10%
Neutron star \' 106 \l 1042 \' 106+ 10° \l - || 1012 |

interstellar Medium | 1022102 | 10%:10 | 102 | 1:30 || <105 |
Intergalactic Medium \' > 1024 \l <105 \' 105+ 106 \l 10 + 103 || <108 |
Jets from YSO | 102108 103:10* | 103+ 105| 100+500 || 10%:103]
Jetsin AGN | 1022102 | 1052103 | - | ~c | ~10% |

> Flows are compressible, magnetized, supersonic, and possibly relativistic;

> Several physical effects: advection, dissipative (non-ideal effects),
cooling/radiation, gravity, non-inertial effects, complex equations of state, stiff
reaction networks, etc...




Plasma Description

O

> Most theoretical models are based on a fluid description (L » A¢,) requiring
the solution of highly nonlinear hyperbolic / parabolic P.D.E., e.g.

% v (p’U) _— Euler equations
ot
d (pv
EiL)JrV-(pva)Jer = pa+V-II
OF
E+V-[(E+p)'v] = pv-a+V- (v I)+V- F,
dp . . . .
E%—V (pv) = 0 Single Fluid
3 (o) B? MHD equations
((é;(t —I—V-[JOUUT—BBT}—FV(})—FT) = pa—+ V- 11
i)_—?—Vx(fva) = —V x(nJ)
%+V-[(E+pT)v—(B-'v)B] = pv-a—V - -(nJxB)+V. (v 1)+ V. F,




Why numerical simulations ?

O

> Exact solutions possible under very restrictive assumptions, e.g.
stationarity (0/ot = 0), self-similarity, spherically symmetry or
similar.

» Nonlinear, time-dependent systems can be studied only by
means of numerical simulations.

> Grid-Based fluid approach via Finite Volume/Difference:

> Fluid variables are discretized on a spatial grid (static or adaptive) and
evolved in time.

» Numerical solution of hyperbolic PDE in presence of discontinuous waves
» Shock-Capturing (or Godunov-type) schemes.




A computational example:
Rayleigh-Taylar unstable flows

> Problem:

Supernova remnants morphology &
Rayleigh Taylor Instability
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A computational example:
Rayleigh-Taylar unstable flows

> Problem: 4

Supernova remnants morphology &

Rayleigh Taylor Instability heavy fluid,

» Choose computational domain

A\

Set the number of zones |_y
» Set initial conditions: N

L,

2 for y>0 1 2 light flui
P{ p=——pgy. vx=0, t?yzeRll+(:OS( y)] g ;_:::Id’

1 for y<0




A computational example:
Rayleigh-Taylar unstable flows

reflective
> Problem:
Supernova remnants morphology &
Rayleigh Taylor Instability heavy fluid,
p=2
» Choose computational domain
> Set the number of zones 9 .
© O
> Set initial conditions: 2 s
0, U
Q a
p{ Ut yeo Ty Tl LQZERIHC%(LJ] p=1

9]

» Set boundary conditions

reflective




A computational example:
Rayleigh-Taylar unstable flows

> Problem:

Supernova remnants morphology &
Rayleigh Taylor Instability

> Choose computational domain
> Set the number of zones

> Set initial conditions:

I = 0.00
IIIIIIIIIIIIIIIIIII

a5

2
p:
1

for y >0

for y <0

! 2y
p=——pgy. vx=0, vy=el|l+cos T

Y

> Set boundary conditions
> Set final integration time & Run!




2a. Basic discretization for hyperbolic PDE:

Linear advection Equation
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The Advection Equation: Theory

O

> First order partial differential equation (PDE) in (x,t):
gz, t) | O9(@,t) _
ot ox
> Hyperbolic PDE: information propagates across domain at finite
speed 2 method of characteristics

0

> Characteristic curves are the solutions of the equation
dx
> So that, along each characteristic, the solution satisfies

dg Oq | dxdq

dt ot  dt Oz
. ]

— a

O




The Advection Equation: Theory

O

» The solution is constant Physical domain of dependence
along the characteristic s p A |
curves. At any point (x,t) we t, q(x,t)
trace the characteristic
back to the initial position. A4

v

> This defines the physical domain of dependence.




The Advection Equation: Theory

O

> for constant a: the characteristics are straight parallel lines and
the solution to the PDE is a uniform shift of the initial profile:

a(z,t) = p(z — at)

» Here ¢(x) = g(x,0) is the initial condition

A




Numerical Discretizations

O

86] | a@—o
ot  Ox

> Two popular methods for performing discretization:

> Finite Differences (FD);
> Finite Volume (FV);

> For some problems, the resulting discretizations look identical,
but they are distinct approaches;

> We begin using finite-difference as it will allow to quickly learn
some important concepts.




Finite Difference Approach

O

> A finite-difference method stores the solution at specific points
in space and time;

21> 245
|

——t——t——t——t————

> Associated with each grid point is a function value,
n e n
q;' = q(x;,t")

> We replace the derivatives in our PDE with differences between
neighbor points




Finite Volume Approach

O

> In a finite volume discretization, the unknowns are the spatial
averages of the function itself:
1 ‘I-z'.—l——})—
= : TL .
q q(z,t") dx
(@) = 7~ o

where 2-2 and -2 denote the location of the interfaces.

21> ’I:—/—‘/z

- -~

~
S~ -——— - — -]
= -

-
-
______

~
-~
______

i-1 i i+1
> The solution to the conservation law involves computing fluxes
through the boundary of the control volumes




Discretization: the FTCS scheme

O

> We need to approximate the derivatives in our PDE
dqg(x,t dg(x,t
g, t)  9q(x,1) _
ot Ox
> In time, use forward derivative, since we want to use information
from the previous time level

dq(w,t) ntl_gn

- q;

ot At

0

+O(AD)

> In space, we use centered derivatives, since it is more accurate:

Oq(x,t) G — Gity

+ O(Az?)




The FTCS scheme

O

. . Tl—f—l N n R [
> Putting all together: q; q; L (Qm Qm) _ 0

At 2Ax
> and solving with respect to Q?H gives

T T C T n
q; = q; — E (qz:+1 — Qi1>

where (' = a% is the Courant-Friedrichs-Lewy (CFL) number
0l
> We call this method FTCS for forward in time, centered in space.

> The value at the new time level depends only on quantities at
the previous time steps =2 explicit method




The FTCS scheme

O

> At t=0, the initial condition is a square pulse with periodic
boundary conditions:

IE)-(a-::t. _I
6 L FTCS




The FTCS scheme

O

> After some time, the solution looks like this:

IExact
6 | FTCS

i A \
. A TN
|l

» Something isn’t right... why ?




von Neumann Stability Analysis

O

> Let’s perform an analysis of FTCS by expressing the solution as a
Fourier series.

> Since the equation is linear, we only examine the behavior of a
single mode. Consider a trial solution of the form

= A" 0 =kAgx

> This is a spatial Fourier expansion. Plugging in the difference
formula:

n—+1 C

g =g = (g —a) = AT = A Al 1)

C




von Neumann Stability Analysis

O

n—+1
> Defining the amplification factor AA one obtains
An—i—l C'
T T E(em — 619) = 1—1Csin6
An+1
» a method is well-behaved or stable when ‘ I <1

p
— 14+ C?%sin’0 > 1

n+1

An

> however, for FTCS, one gets ‘

> Indipendently of the CFL number, all Fourier modes increase in
magnitude as time advances

» This method is unconditionally unstable!




Forward in time, backward in space

O

> Let’s use a difference approach. Consider the backward formula
for the spatial derivative:

oq(x,t)  q' —qiy
ox Ax

> Apply von Neumann stability analysis on the resulting discretized

equation: -
(A A S
At Ax

+ O(Ax)

> Solving for the amplification factor gives

2
=1—-2C(1—C)(1 —cos?)

An

‘ AnJrl




Forward in time, backward in space

O

> The method is stable when ‘

An—H
An

<1 2 20(1-C)>0

> for a < 0 the method is unstable, but

» for a > 0 the method is stable when ( < aﬁ_ <1

Ll it=0.09 | t=018 | t=1

..............




Forward In time, forward In space

O

> Repeating the same argument for the forward derivative

n-+1 n n n
q; — (; d;+1 — 4;
a — ()
AL ( Az )

9
=1+ 2C(1+C)(1 — cosh)

A-n- +1

An

> Gives |

> If a > 0 the method will always be unstable

. At . .
> However, if —1 < A < 0 , then this method is stable;




The CFL condition

O

> Since the advection speed a is a parameter of the equation, Ax is
fixed from the grid, the previous inequality is a stability
constraint on the time step

At < 22
a

> At cannot be arbitrarily large but, rather, less than the time taken

to travel one grid cell (CFL condition).

> In the case of nonlinear equations, the speed can vary in the
domain and the maximum of a should be considered instead.




The first-order Godunov Method

O

> Summarizing: the stable discretization makes use of the grid
point where information is coming from:

a>0 a<0
R . ” ( n+1 n alt n n
> Thisis “upwind”: q; = ¢; — A-@(% - Qi—l) for a>0
n+1 n (lAt n n .
\qﬁ q'i_A_x(qi+l_q'i> for a <0

> This is also called the first-order Godunov method;




Conservative Form

O

H o ) H T a (i (e’ a
> We define the “flux” function Fli=3 (¢ + ) — % (¢ —af)
> so that Godunov method can be castin conservation form
At
n+l _ n __ Fn A )
! i A’L ( +3 i—3
a>0 a<o0

n+1 __ n aAf n+l1 n (IAI'L
q; = {; — AfL (QL o QL 1) qz} — Qi A (QH—l o qz )

> The conservative form ensures a correct description of
discontinuities in nonlinear system, ensures global conservation
properties and is the main building block in the development of
high-order finite volume schemes.




2b. Basic discretization for hyperbolic PDE:

Finite Volume & Riemann Problem
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Finite Volume Formulation

O

> The conservative form of the equations provides the link
between the differential form of the equation,

dq OF
ot Ot

and the integral form, obtained by integrating the equations over

— 0

a time interval At = t"*1 — t" and cell size Ax = Xis1/2 = Xi1/2

[ [ (G ) e

ILﬂ,—|—1




Finite Volume Formulation

O

> Performing the spatial integration yields

.tn-i—l l
N F 1 _F 1 1 —
/ﬁ [A:r;dt< i+ (Fiy )] it =0

-1

1 ‘I'i—i—%

Az q(x,t)dx  being a spatial average.

with (g), =
-

> A second integration in time gives
Ar((@) " (@) ) + o (Bl —FLy) =0

F (q (xii%a f)) dt is a temporal average




Finite Volume Formulation

> Rearranging terms yields

' ' At iy ~n
?1+1 n | t If
<Q>f;: — <Q>?; — A_:L‘ (FH% — Fil) ntegral form

with spatial and temporal averages given by

[R]

tn—l—l

1 ‘IH'% ~n 1 ‘
<q>z, — A_Qj . Q(ﬂfqt) dx F'ii% — Kt /tﬂ F(q(ﬂf?ié. t)) dt

1
2

> We have derived an EXACT evolutionary equation for the spatial
averages of g.

> This relation provides an integral representation of the original
differential equation.

> The integral form does not make use of partial derivatives!




The Riemann Problem

O

> The previous relations are exact.

> However, since the solution is known only at t7, some kind of
approximation is required in order to evaluate the flux through

the boundary:

1 ,t’!’l—l—l
F'i:t — Kt . F(q(af?il, t)) dt

1

2 2

> This achieved by solving the so-called “Riemann Problem”, i.e.,
the evolution of an inital discontinuity separating two constant

states. The Riemann problem is defined by the initial condition:

qr for <1
q(z,0) = T o= g(x,a,t) =T
qr for x> iy L ’




The Riemann Problem

O

q,

/> Cell Interface

Left State

Right State

ar

Initial Discontinuity

) 14> 141




The Riemann Problem

/ Cell Interface

Left State . _
q Solution on the axis
r\f
N
Right State
aqr

Discontinuity Breakup

) 14> 141




2c. Basic discretization for hyperbolic PDE:

Systems of Linear Equations
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System of Equations: theory

> We turn our attention to the sys;em of equations (PDE)
0 0
_q + A - _q
ot 0x
where 4 = {q1, 492, ---@m } is the vector of unknowns. Aisam
X M constant matrix.

=0

> The system is hyperbolic if A has real eigenvalues, A! <... <A™
and a complete set of linearly independent right and left
eigenvectors 7% and I* (77 -I* =§) such that

Ak = \eph
|

for k=1,....m




System of Equations: theory

O

> In this form, the system decouples into m independent advection
equations for the characteristic variables:

ow Ow Ow"
W )W AR VN
o TN o = o N o

where w® = 1" . q (k=1,2,...,m) is a characteristic variable.

> Each equations has the exact analytical solution

w*(z,t) = w*(x — A", 0)

i.e., the initial profile of w* “shifts” with uniform velocity Ak




System of Equations: Exact Solution

O

> Once the solutions in characteristic form are known, we can
solve the original system via the inverse transformation

k=m
q(z,t) = 1" - q(x — \*t, 0)r"
k=1

> The characteristic variables are thus the coefficients of the right
eigenvector expansion of g.

> The solution to the linear system reduces to a linear combination
of m linear waves traveling with velocities A¥.




System of Equations: Numerics

O

> We suppose the solution at time level n is known as g" and we
wish to compute the solution g"*! at the next time level n+1.

» Our numerical scheme can be derived by working in the
characteristic space and then transforming back:

” At
n—l—l Zwk +1 k _ qz A:E (FZ:_% o F?_%)

. q; +q@ n
where FH% = A2 ——Z’)\k’lk Qi1 —q;)r"

is the Godunov flux for a linear system of advection equations.




The Riemann Problem

O

> If g is initially discontinuous, one or more characteristic variables
will also have a discontinuity. Indeed, at t = 0,

7

wh =1".q, if v < T

wh(x,0) =1 g(x,0) = {

L .
wh, =1"-qp if T >

» In other words, the initial jump g; - g, is decomposed in several
waves each propagating at the constant speed A% and
corresponding to the eigenvectors of the Jacobian A:

1,1 2,.2
dp —qr =o' r +a°r +---4+a"r"

where ak — lk : (QR _ qL) are the wave strengths




The Riemann Problem

O

> For the linear case, the exact solution for each wave at the cell
interface is:

k : k
qﬂk ( t) k ( 1 _.Akt O) wry, if A >0
s it w% if N < 0

> The complete solution is found by adding all wave contributions:

Q(JUH%J) — Z wirk+ Z ’wgrk

k: A\ >0 k: AL <0

» and the flux is finally computed as FH% =A-q (x,“r%? t)




The Riemann Problem

O

q*.

(X z#%’t)a

X=A3t

.
PRGN

’,
’
’,
’
’
4
’
v
,
’
v
’
.
’
’
v
,

X A X, ~A% X, AL

Point (X,,T) falls to the right of the A! characteristic emanating from
the initial jump, but to the left of the other 2, so the solution is:

IS 2,2 3.3
q(x,i%?t) = WRT +wWrr  +wir




2d. Basic discretization for hyperbolic PDE:

Nonlinear equation
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Nonlinear Advection Equation

O

> We turn our attention to the scalar conservation law

ou Of(u)
E+ Ox =0

> Where f(u) is, in general, a nonlinear function of u.

> To gain some insights on the role played by nonlinear effects, we
start by considering the inviscid Burger’s equation:

Ou | 9 (W) _y
ot oz \ 2 /)




Nonlinear Advection Equation

@ ou ou

> We can write Burger’s equationalsoas ~— L u— =10
ot Ox
> In this form, Burger’s equation resembles the linear advection

equation, except that the velocity is no longer constant but it
is equal to the solution itself.

> The characteristic curve for this equation is

d_:c du Ou Oudx

= u(x,t — —=—+——=0

dt (1) dt ot Oz dt

> =2 u is constant along the curve dx/dt=u(x,t) = characteristics
are again straight lines: values of u associated with some fluid

element do not change as that element moves.




Nonlinear Advection Equation

ou ou @

one can predict that, higher values of u will propagate faster than
lower values: this leads to a wave steepening, since upstream values
will advances faster than downstream values.

t=0 -

1r >

0.8

0.6

u(x)

0.4

0.2

) e LT




Nonlinear Advection Equation

O

> Indeed, at t=1 the wave profile will look like:

u{x}

> the wave steepens...




Nonlinear Advection Equation

O

> If we wait more, we should get something like this:

?

/

> A multi-value functions ?! = Clearly NOT physical !




Nonlinear Advection Equation

O

> The correct physical solution is to place a discontinuity there:
a shock wave.

Shock position

~

/ s

s I

> Since the solution is no longer smooth, the differential form is
not valid anymore and we need to consider the integral form.




Nonlinear Advection Equation

O

> This is how the solution should look like:

;

111
M=o

ucx)

» Such solutions to the PDE are called weak solutions.




Nonlinear Advection Equation

O

> Let’s try to understand what happens by looking at the
characteristics.

> Consider two states initially separated by a jump at an interface:

u(x)‘ U,

Ur

»
»

X

> Here, the characteristic velocities on the left are greater than
those on the right.




Nonlinear Advection Equation

O

> The characteristic will intersect, creating a shock wave:

» The shock speed is such that A(u,;) >S > A(ug). This is called the
entropy condition.




Nonlinear Advection Equation

O

> The shock speed S can be found using the Rankine-Hugoniot
jump conditions, obtained from the integral form of the
equation:

flugr) — flur) = S(ur — ur)

> For Burger’s equation f(u) = u?/2 so that one finds the shock
speed as
U + UpR

S = 5




Nonlinear Advection Equation

O

> Let’s consider the opposite situation:

u(x) - Ug

> Here, the characteristic velocities on the left are smaller than
those on the right.




Nonlinear Advection Equation

O

> Now the characteristics will diverge:

it

X

> Putting a shock wave between the two states would be incorrect,
since it would violate the entropy condition. Instead, the proper
solutionis a rarefaction wave.




Nonlinear Advection Equation

O

> A rarefaction wave is a nonlinear wave that smoothly connects the left
and the right state. It is an expansion wave.

> The solution between the states can only be self-similar and takes on
the range of values between u, and u,

> The head of the rarefaction moves at the speed A(u;), whereas the tail
moves at the speed A(u,).

> The general condition for a rarefaction wave is A(u,)<A(uz)

> Both rarefactions and shocks are present in the solutions to the Euler
equation. Both waves are nonlinear.




Nonlinear Advection Equation

O

> These results can be used to write the general solution to the
Riemann problem for the Burger’s equation:

» If u,> u; the solution is a discontinuity (shock wave). In this case

uj, it z—5t<0

ur, +u
S:L R

u(®,t) = up if z=z-—5t>0 "~ 2

» Ifu < up the solution is a rarefaction wave. In this case

( Uuy, if a:/tguL
u(z,t) = < z/t if up <z/t<up

ur if x/t>ug

\




Nonlinear Advection Equation

O

> Solutions look like

=) — T
1 — 0 ——
2 — 1 _
0.8
0.6
-~
% X
= =
0.4
0.2
B s KRS
<4 2 O 2 4

> for a rarefaction and a shock, respectively.




2e. Basic discretization for hyperbolic PDE:

Nonlinear Systems
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Nonlinear Systems

O

» Much of what is known about the numerical solution of
hyperbolic systems of nonlinear equations comes from the
results obtained in the linear case or simple nonlinear scalar
equations.

> The key idea is to exploit the conservative form and assume the
system can be locally “frozen” at each grid interface.

> However, this still requires the solution of the Riemann problem,
which becomes increasingly difficult for complicated set of
hyperbolic P.D.E.




Euler Equations

O

> System of conservation laws describing conservation of mass,
momentum and energy:
dp

o +V-(pv)=0 (mass)
0 (;tv) +V.|[pvv+1Ip| =0 (momentum)
E
%—t +V-[(E+p)v]=0 (energy)
> Total energy density E is the sum of v2
L _ E = pe+ p—
thermal + Kinetic terms: 9
> Closure requires an Equation of State (EoS). D
P€ = =

For an ideal gas one has




Euler Equations: Characteristic Structure

O

> The equations of gasdynamics can also be written in “quasi-

linear” or primitive form. In 1D:
/ Ve P 0 \
A% A%
A0, A= 0 w 1/p
ot O |
\ 0 p (f (O )

where V = [pv,,p] is a vector of primitive variable, c, = (yp/0)"?
is the adiabatic speed of sound.

> Itis called “quasi-linear” since, differently from the linear case
where we had A=const, here A =A(V).




Euler Equations: Characteristic Structure

O

> The quasi-linear form can be used to find the eigenvector
decomposition of the matrix A:

1 1 1
r'=| —c/p |, =10, =] c/p
c? 0 c

S S

> Associated with the eigenvalues:

1 2 3
A :UZE_CS) A :U.fl:) A :vx_|_08

> These are the characteristic speeds of the system, i.e., the speeds at
which information propagates. They tell us a lot about the structure of
the solution.




Euler Equations: Riemann Problem

O

> By looking at the expressions for the right eigenvectors,

1 1 1
r'=| —c/p |, =] 0|, =] c/p
c? 0 c

S S

> we see that across waves 1 and 3, all variables jump. These are
nonlinear waves, either shocks or rarefactions waves.

> Across wave 2, only the density jumps. Velocity and pressure are
constant. This defines the contact discontinuity.

> The characteristic curve associated with this linear wave is dx/dt = u,
and it is a straight line. Since v, is constant across this wave, the flow is
neither converging or diverging.




Euler Equations: Riemann Problem

O

> The solution to the Riemann problem looks like

o T = ut
t | de = (v — ¢g)dt (contact)
(shock or rarefaction)

dr = (v, + cg)dt
(shock or rarefaction)

(pL,ver,PL) (PR, ViR, PR)

> The outer waves can be either shocks or rarefactions.
> The middle wave is always a contact discontinuity.

> Intotal one has 4 unknowns:pz, p*R, v;,p* since only density jumps across
the contact discontinuity.




Euler Equations: Riemann Problem

O

> Depending on the initial discontinuity, a total of 4 patterns can
emerge from the solution:

A

tf R C S i s C R

Py
w
w




Euler Equations: Shock Tube Problem

O

> The decay of the discontinuity defines what is usually called the “shock tube

problem?”, N EEEEITEEL REELELEL ] g ]
[ Density [ Pressure
08 0.8}
> Left Values: o8l | oef
(pp,ver,pr) = (1,0,1) o4 ] L
_ 0.2} 0.2f
» Right Values: , , , , | , : ,
10 S S 2_0:_ ................... .
1 1 oal Velocity ; L Entropy
(pRﬂUﬂ_’?ijR) — _707 T~ 1.8
8 10/ L4t ] ;
=0 1.6
0.4f 1 1.4F
o2l ] r2p
[ 1.0F
0.0 ;
i . : i : 0.8t : : . :
02 04 08 08 02 04 0& 08

X X




Euler Equations: Shock Tube Problem
> The one dimensional jet problem reduces to a shock-tube with a S-C-S
structure: i NN 15 b A S N
sof Density 10f Pressure ]
2.5 ok
> Left Values: 20 ;
ér
1.5 :
(IOLa UxLJpL) — (017 10? 1) 1.0 +Z_
. 0.5 2F
» Right Values: . . | . , . . ,
1 Velocity ] :z """"""""""""""""" Entropy
(PR; UmRapR) — (17 0, 1) 8_ i
[ 40 F
6f




Riemann Problem in MHD
O

slow [S/R] entropy  slow [S/R]

Alfven Alfven

fast [S/R]
Fast [S/R]

U,, left state Ug, right state

> 7 wave pattern, A" (Ufrf) - Ug)) =F (Uiﬁ)) -F (Ug))

» across the contact wave, for B, #0, only density has a jump;

> across Alfven waves, [p]=[p,,.|=[v,]=0




time
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Solving the Riemann Problem

O

> The full analytical solution to the Riemann problem for the Euler
equation can be found, but this is a rather complicated task (see
the book by Toro).

> In general, approximate methods of solution are preferred.

> The advantage of using approximate solvers is the reduced
computational costs and the ease of implementation.

> The degree of approximation reflects on the ability to “capture”
and spread discontinuities over few or more computational
zones.




Solving the Riemann Problem

O

> Exact Riemann solvers (nonlinear)

» Full nonlinear solution:
> Expensive / impracticable for heavily usage in upwind codes;

> Linearized Riemann solvers (Roe type)
» require characteristic decomposition in eigenvectors
» may be prone to numerical pathologies

> HLL-type Riemann solvers (guess-based)
» based on guess to the signal speeds and on the integral average of the
solution over the Riemann Fan;

> fewer waves are considered in the solution;

> preserve positivity;




Resolution of Contact Discontinuity

Time: 0.00, 100 zones, HLL Riemann Salver
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Example: Kelvin-Helmholtz Instability

Varticity, LF, 128x128 5 @ --------------------- Vorticity, HLLC, 128x128
20 : 20 :
10 : 10 .
0 - 0 E—— 0.
-10 - -10 A
-20 : =20 X
| 10 20 30 40 30 10 20 30 40 50
Varticity, LF, 256x2586 Vorticity, HLLC, 256x256

4=

10 20 30 40 &0

10 20 30 40 50



2f. Basic discretization for hyperbolic PDE:

High-order Schemes
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High order Integration in time

O

> A simple and effective way to achieve 2nd or 3rd order accuracy
in time is to treat the PDE in semi-discrete form:

dq dq j’gN
1 F _ 1 _ _F.
/(6t+v )dV 0 = o dS

> In such a way the PDE becomes a regular ordinary differential
equation (ODE) in time;

d(__] n+1
— =Rl@gt)=R = (_In+1—(_1n:/ Rdt

> Standard integration based on predictor/corrector schemes can
then be used to solve ODEs.




Second-order Runge-Kutta

O

> Using the trapezoidal method, the solution of our ODE writes:

A
gt =q" + 715 (R” + R”“) + O(At?)

> Problem: the unknown (_]n+1ppears on both side of the equation!!!

> Solution: use an estimate (predictor) for R"ith Euler method:

— %

q = q" + AtR" + O(At?)

At
gt = q" + - (R” + R*) + O(At3)

> This is the second-order explicit Runge-Kutta method (or Heun’s method) It is
2nd order accurate.




Improving spatial accuracy

O

> High order reconstruction can be carried inside each cell by
suitable oscillation-free polynomial interpolation:

Piecewise

constant .
Piecewise | ‘ \

Linear N S P

Piecewise I S

S~
~~
~~
~
~~
~
~.
~.

parabolic b T I

4
e
.
-

4
e
P
_____




Reconstruction Constraints

O

> Must be consistent with data representation

1 T, 1
—/ i3 P,L(:c)d:c — ’ITL@'
A:Ui r. 1
‘T2

> Satisfy monotonicity constraints:
min(P;(xz)) > min (ﬂz’—laﬂiaﬂi—l—l)
max(P;(z)) < max (ﬁi—la’sz‘,ﬁz'-u)

> no new extrema allowed (Total Variation Diminishing (TVD)
schemes)

> Oscillation free solution




Example: 2"d order linear reconstruction

O

> For 2nd-order interpolant, we use oV
A P Vi) =V, + —(z — z;)
. Air1/2

Az

L]
.....

>
Undesired new minimum

> Use slope limiters to avoid _

oV; = lim (Ai—l/% Ai+1/2)

introducing new extrema:

x if |z| <l|y|l,zy >0
minmod(z,y) =< vy if |y| <|z|,zy >0
0 if zy<O

> Example




Comparison

O

> Improving reconstruction decreases the amount of numerical

Time: 0.00, First order Time: 0.00, 2™ order
2.2 T T T T 2.2 T T T T
20F 20F
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1.4 1.4
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L [ 220 r 11
I'UE ”o Tlime: 0.?0, 2m olrder (Iiml) 1ok :
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08 L 2 ] o8l . . . . . .
a.0 2'0: 1 4.0 Q.2 1.8 -
1-3:‘ ] 1.6F .
1.6:— — 1.4-:— 1
I'+._ _. 1.2:_ -
1.2F . I
L 1 1.0 —— —
1.0 (— ---é 08: , ,
1 Q.0 0.2 0.4 0.6 0.8 1.0
0.8 1

0.0 0.2 0.4 0.6 0.8 1.0




Equivalent advection/diffusion equation

O

> A discretized PDE gives the exact solution to an equivalent
equation with a diffusion term;

0 9,
> Consider —q+a—q:0, a >0
ot ox
L R N ek
> Use upwind discretization: N +a N 0

> Do Taylor expansion on QF’H and q,"
» The solution to the discretized equation satisfies exactly

. ) 2
@+ Jdq  aAx (1—(1Af> 0°q

ot de 2 A Ox?

+ H.O.T.




Reconstruct-Solve-Average

©

» Start from zone averages, _— I

1.

uj(z) = Pi(x), forz,_1 <z <x;,

2.

3.

break the problem into 3 — Uy
pieces:

V

Piecewise polynomial /\_
reconstruction 7Q‘¥

1
2 2

Solve Riemann problem between 4
left and right states up = Piiq ($¢+1)
2

Form new averages (evolve —n+1l _ -n
g ( ) Uu- =yt - — fi-|—




Multi Dimensional Integration

O

> Integration in more than one dimensions can be achieved using
two distinct approaches:

» Dimensionally Split schemes: solve the PDE as a sequence of 1-D sub-

M

problems.
qQ-=q" — AtL,(

.

=g — AtL,(q")

» Dimensionally Unsplit schemes: solve the full problem:

q" =q" — AtL,(q") — AtL,(q")




3a. Astrophysical Applications:
Accretion Disks
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Accretion Disks: open problems

> Accretion disks form because gas
falling onto a gravitating object
inevitably has some angular
momentum (a.m.) that forces it
to orbit around the object;

> Gravity causes material to spiral
inward towards the central body
only if a.m. is transported outwards;

> Infalling matter must loose gravitational energy and momentum:
Angular momentum extraction at the origin of the jet paradigm.

IShakura & Sunyaev, 1973; 2Velikhov 1959; 3Chandrasekhar 1960; “Balbus & Hawley (1990)




Accretion Disks: open problems

O

angular momentum transport in

> Turbulence possible source of
accretion disks!;
> Problem: microscopic viscosity

not sufficient
— turbulent enhanced viscosity

- what is its origin ?

> Magnetorotationalinstability (MRI%>3) re-discovered by Balbus &
Hawley (1991) proposed as the main process at the base of angular
momentum transport in accretion disks.

IShakura & Sunyaev, 1973; 2Velikhov 1959; 3Chandrasekhar 1960; “Balbus & Hawley (1990)




Accretion Disks: axisymmetric models

O

» To reduce computational cost, previous models Log p. t = 0.
adopted considerable simplifications, e.g.,
axisymmetry:

1.00

0.1

Foq-0.38

F 1-1.08

-1.77

—2.45

-3.15




Accretion Disks: 3D local models

O

> Localapproach based on ShearingBox models: based on a local
expansion of the tidal forces in a reference frame corotating with the
disk at some fiducial radius R,. (shearing box approximation)

> allows to reach much higher resolutions?:




The Shearing Box Approximation

O

> Validity restricted to a small Cartesian box with a steady flow consisting of a
linear shear velocity, normally considered as the basic flow.

\

LW~

___________________

=t

> While the computational box is periodic in the azimuthal (y) and vertical (z)
directions, radial (x) boundary conditions are determined by “image” boxes
sliding relative to the computational domain.




MRI: Channel Solution

O

> Simulations show intermittent behavior
with episodes of efficient AM transport
(“channel solutions”)

> High correlation between components of
magnetic field and velocity perturbations.

> Disruption by parasitic instabilities.
» However:

> dominance of the channel seems
peculiarity induced by an overly
constrained geometry;

» Increasing the aspect ratio, the system
has more difficulty in forming the
channel.

1Bodo et al., A&A(2008), 487,1B




Toward Global Simulations of Accretion Disks

> Shearing-box approximation
probably unable to capture the
physics of MRI in disks.

» Future simulations will tackle
the full disk structure;

> Challenge: the scale disparity from global disk to the turbulent
dissipative scale is enormous and inaccessible to computation;

> However: calculations with sufficient scale separation may give
important answers = need for very high resolution (> 10° points, disk
storage>200 TB).




Stratified Simulations of Magnetized Disks

Turbulence and Accretion in 3D Global
MHD Simulations of Stratified Protoplanetary Disk

Grid Resolution: 384 x 192 x768
Code: PLUTO
Author: Flock et al, ApJ (2011) 735 122







Extragalactic Jets: Morphology

O

> Supersonic, highly collimated plasma ejecta
propagating away from the central engine

> Fundamental questions:

» how can jet survive fluid instabilities ? Confinement ?

» Morphology <> physical properties (density,
composition, magneticfields...) ?

» Jetemission mechanism?
»> how do they decelerate ?

> Understanding the processes leading to momentum,
energy and mass transfer to the environment is
crucial and still largely unanswered.

Hotspot

i s .




3D Simulations of Relativistic Jets

O

> 3D simulations by U. of Torino! (~ 2:10° CPU hours) confirm that the field
topology is essential in determining the dynamics;

Poloidal (vertical) magnetic field:

IMignone et al. (MNRAS, 2009)




3D RMHD Jet
- Poloidal Field -

Grid Size:
640x1600x640

Simulation

10°Hours on
IBM Power 6
Cineca (ltaly)

4 TB Data

Code:
PLUTO




3D Simulations of Relativistic Jets

O

> 3D simulations by U. of Torino! (~ 2:10° CPU hours) confirm that the field
topology is essential in determining the dynamics;

Poloidal (vertical) magnetic field: Toroidal (azimuthal) magnetic field

IMignone et al. (MNRAS, 2009)




3D RMHD Jet
- Toroidal Field -

Grid Size:
640x1600x640

Simulation

10°Hours on
IBM Power 6
Cineca(ltaly)

4 TB Data

Code:
PLUTO




3D Simulations of Relativistic Jets

O

> 3D simulations by U. of Torino! (~ 2:10° CPU hours) confirm that the field
topology is essential in determining the dynamics;

Poloidal (vertical) magnetic field: Toroidal (azimuthal) magnetic field

Jet wiggling/beam deflection due to kink instabilities (m=1);

- multiple sites where the jet impacts on the ambient forming shocks (compatible
with multiple hotspots observed in several radiogalaxies);

Backflow asymmetry replicates observational appearance of several objects.

IMignone et al. (MNRAS, 2009)




Relativistic MHD jets: 2D vs 3D
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Pressure distribution

| secondary shocks




Simulation credits: The PLUTO Code

O

PLUTO is modular parallel code providinga multi-physics as well as a
multi-algorithm framework for the solution of conservation laws in
astrophysics;

Target: compressible, high-mach number flows with shocks in
multiple spatial dimensions:

o Compressible Euler / Navier Stokes equations;

O Classical (ideal/resistive) Magnetohydrodynamics (MHD);

O Special Relativistic hydro and MHD;

O Heating/cooling processes, chemical network

Variety of numerical methods:
O FiniteVolume |/ Finite Difference

O Riemann solvers;

o 2"—xthorderinterpolation techniques;

Support static grid and Adaptive Mesh Refinement (AMR) computation




The PLUTO Code

» PLUTO s freely distributed at htip:/plutocode.ph.unito.it;
* More than 300 downloadsin oneyear; e o wmmmms wom o

@“ ~ | &) http:/fplutocode.ph unito.it/ ][4 [x ol
Fie Modfica Visudlzza Preferti Strumenti 2
wreeniana
n ; »
w ‘@P\utn-amudu\armdefuv computational astrophysics ‘ | - B ® v hPagina v () Strumenti -
-~/ ~
F, Finland m
" s PLUTO
S n
i g

A modular code for computational astrophysics

What is PLUTO ?

] g Kazakhstan 2

'::’flﬁc Morth, "y % Home PLUTO is a modular Godunov-type code intended mainly for astrophysical applications

i %m: Irad- jran- Afghanistan System Requi " and high Mach number flows in multiple spatial dimensions. The code embeds different

Algerla | | jpys |4 Pakl ysiem Requirements hydrodynamic modules and multiple algorithms to solve the equations describing
o Saudi T T E
México Egypt T s Documentation Newtdqma:n. refativistic, MHD, or relativistic MHD fluids in Cartesian or curvilingar E

Mauritania coordinates
e o g Sudan, Download

Venezuela Nigeria” Ethiopla PLUTO is entirely written in the C programming language and can run on either single

Cotombla | 1 7 Test Gallery processor machines or large parallel clusters through the MPI library. A simple user-

T e O ongs IRena SR EEEEE : interface based on the Python scripting language is available to setup a physical

. Bl anzams Publications problem in a quick and self-explanatory way.
Per(l

Computations may be carried on either static or adaptive (structured) grids, the latter
functionality being provided through the Chombo adaptive mesh refinement library.

L = \Braz Angola
Bolivia
L] | Madagascar
South Chile J South &
Pacific Atlantic
Ocean Ocean
Africa

4Argenllnn — = . PLUTO is developed at the Turin Astronomical Observatory in collaboration with the
= Department of General Physics of the Turin University.

Current Release: PLUTO 3.1.0 (August 2010)

IVain developer: Andrea Mignone (mignone@ph.unito.it)
Dipartimento di Fisica Generale, Universita’ di Torino, Torino (ITALY)
INAF Osservatorio Astronomice di Torine, Pine Torinese ([TALY)

Contributors: P Tzeferacos, C. Zanni, O Tesileanu, T.Matsakos, G. Bodo

» References: : R

O Mignone et al, Astrophys. J. Suppl. S. 170 (2007) 228. (static version)
O Mignone et al, Astrophys. J. Suppl. S. 198 (2012) 7. (AMR version)



http://plutocode.ph.unito.it/
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