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Outlook

We can look at magnetic reconnection from different angles
which stress different features:

as a process whereby magnetic energy inside highly
inhomogeneous regions is converted into plasma particle
energy, or as a process whereby the magnetic topology,
more precisely the connection of the magnetic field lines, is
altered;
as a process forced by large scale plasma motions with
time scales essentially determined by these motions, but
made possible by the presence of non ideal effects, or as
plasma instability where the non ideal effects play a
fundamental role, at least within linear theory, in
determining the reconnection rate.
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Solar landscape

A full-disk multiwavelength

extreme ultraviolet image

of the sun taken by SDO

on March 30, 2010.

Credit: NASA/Goddard/SDO

AIA Team



Laboratory Reconnection

Giovannozzi Nucl. Fus. 2004

soft x-ray tomography of a

magnetic island in a sawtooth

(Molibdenum impurities )

The dashed line marks the

sawtooth inversion radius



Relativistic Reconnection

Nilson et al, PRL 97, 255001

2006 - Proton deflectometry

images of aluminum target

taken 100 , 500 and 800 ps

after the beams arrive

at the target surface



Outlook

After some soul searching on the very nature of reconnection in
the first lecture, in the second lecture some well established
results will be presented within the MHD framework.
In my presentation I will adopt the point of view of an instability
that modifies the magnetic topology of an equilibrium
configuration, and I will briefly refer to different magnetic field
configurations and plasma regimes.

Taking an initial value problem may be a restrictive point of
view. For example in such an initial value formulation there
is no explicit external forcing (physically it is substituted for
by the “magnetic energy” that has been stored in the
current inhomogeneities).



Outlook

After some soul searching on the very nature of reconnection in
the first lecture, in the second lecture some well established
results will be presented within the MHD framework.
In my presentation I will adopt the point of view of an instability
that modifies the magnetic topology of an equilibrium
configuration, and I will briefly refer to different magnetic field
configurations and plasma regimes.

Taking an initial value problem may be a restrictive point of
view. For example in such an initial value formulation there
is no explicit external forcing (physically it is substituted for
by the “magnetic energy” that has been stored in the
current inhomogeneities).



Reconnection in high energy plasmas

Taking a wider perspective in a relativistic plasma we need to
change the MHD equation as the displacement current and
charge separation cannot be neglected.

In addition the meaning of magnetic connection or of
magnetic topology is not evident in the case of a relativistic
dynamics where the distinction between electric and
magnetic fields is frame dependent.
Note that a covariant formulation of the topological MHD
theorems can be derived (see Appendix and W.A.
Newcomb, Ann. Phys,, 3 347 (1958)).
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Magnetic connections

In an ideal MHD plasma if two plasma elements at~x1 and~x2 are
initially connected by a magnetic line, then for every following
time there will be a magnetic line connecting them1.

Consider the quantity δ~l×~B

if at t = 0 we have δ~l×~B = 0 then

d
dt

(
δ~l×~B

)
= 0, ∀t

and so δ~l×~B = 0 at every time.

1W.A. Newcomb, Ann. Phys,, 3 347 (1958)
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Connections at different times

Connection theorem

provides a meaning

to the expression

“Motion of a field line”



Magnetic connections Proof

d
dt

(
δ~l×~B

)
=

d
dt

δ~l×~B+δ~l× d
dt
~B

d
dt

δ~l =
(

δ~l ·~∇
)
~u(~l)

d
dt
~B = ~∇×

(
~u×~B

)
+
(
~u ·~∇

)
~B

d
dt

(
δ~l×~B

)
=−

(
δ~l×~B

)(
~∇ ·~u

)
−
[(

δ~l×~B
)
×~∇

]
×~u



Breaking of Magnetic connections

Not all terms that violate the ideal Ohm’s law break magnetic
connections

~E +
~u
c
×~B = η~J+

me

ne2
d~J
dt

+
1

nec
~J×~B− 1

ne
~∇ ·Πe

Resistivity breaks magnetic connections
Electron inertia breaks magnetic connections but
maintains generalized connections2 related to the
generalized magnetic field ~Be defined as

~Be = ∇× [~A−~ue(mec/e)]

2Important in the case of dissipationless magnetic reconnection also called
Hamiltonian reconnection.
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Breaking of Magnetic connections -

~E +
~u
c
×~B = η~J+

me

ne2
d~J
dt

+
1

nec
~J×~B− 1

ne
~∇ ·Πe

The Hall term does not break magnetic connections
between electron elements3 (moving at the electron fluid
velocity ~ue).
The pressure term does not break magnetic connections
when the electron pressure is a scalar (Isotropic pressure
Πe = pe I ) and a polytropic equation of state of the form
pe = pe(n) holds4.

3Important in the context of reconnection in the whistler range
4This is not the case when the Landau resonance is included
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Related theorems

Closely related theorems are5

magnetic flux conservation (Alfvèn theorem)
Magnetic helicity density (~A ·~B) conservation
Linking number conservation6 (related to magnetic braids
of field lines.)

5All related to Kelvin theorem in inviscid gasdynamics
6H.K.Moffatt, R.L. Ricca, Proc. R. Soc. A , 439, 411 (1992).
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Braids



Self Destroying theorems

The above theorems represent strong constraints on the (low
frequency macroscopic ) plasma dynamics that limit the
accessible configuration space.

The net result of the nonlinear plasma dynamics is the local
build up of small scale structures (such as current layers) that
violate the very assumptions under which the ideal MHD
description is formulated.
Note that the terms that violate the ideal condition depend on
higher order spatial derivatives.



Reconnection and topology

Although a clear cut definition of magnetic reconnection is
not easy to formulate, its traditional definition refers to the
local violation of these topological theorems and in
particular to the local breaking of the structure of magnetic
connections
It is not yet clear to me how to implement this definition in
high energy fast developing relativistic plasma event (e.g.
in the “flaring” Crab Nebula)7 with large velocity gradients.

7Tavani, M., et al., Science. 331, 736 (2011).
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Detecting magnetic reconnection

Left: optical image of the inner nebula region on October 2,
2010. The pulsar position is marked with a green arrow. Arrows
mark interesting features compared to archival data. Right: the
same region on September 28, 2010. The pulsar does not
show in this map and below because of pileup.8

8Taken from Tavani, M., et al., Science, 331, 736 (2011).



Magnetic field annihilation events

My understanding is that, at the moment, in such systems
by magnetic reconnection one simply means a fast release
of magnetic energy and its conversion into particle energy.
I think the same applies to the “reconnection events” in
laser produced plasmas that should be probably more
correctly called “magnetic field annihilation events”.
No obvious role appears to be played here by magnetic
topology.
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Breaking of connections

Example of reconnection

due to a violation of the

connection theorem in the

localized shaded area with

larger spatial derivatives



Reconnection and geometry

There is also a strong interplay between the geometry of the
magnetic configuration and magnetic reconnection.

Seen as an instability magnetic reconnection is driven by
strong nonuniformities of the current density distribution9.
However the configuration may have additional sources of
instabilities (such as in a toroidal configuration magnetic
field curvature in the presence of pressure gradient).
Other sources of instability, not directly related to
geometry, come also into play in the onset and
development of magnetic reconnection.

9Not directly by the nonuniformity of the magnetic field.
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Mixing of instabilities

Thus is general magnetic reconnection is not a “pure” instability
driven by current inhomogeneities.

It couples (linearly and nonlinearly) to different instabilities
such as Rayleigh-Taylor type modes, Kelvin-Helmholtz
instabilities, drift waves and, in the presence of strong
current layers, to current instabilities (these latter
contributing nonlinearly to the violation of ideal Ohm’s law).
In the presence of anisotropy in velocity space10 a mixing
occurs between the Weibel instability and magnetic
reconnection with important effects on the instability
threshold and nonlinear development of reconnection
depending on the sign of the anisotropy (T||/T⊥−1).

10i.e. in the presence of an anisotropic pressure tensor that by itself violates
ideal Ohm’s law.
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Reconnection and geometry: initial configuration

The interplay between the geometry of the magnetic
configuration and magnetic reconnection is evident when we
compare two dimensional and three dimensional reconnection
events.
There are different sides to this distinction: initial configuration.

Very often, at least in analytical studies and as initial
conditions in numerical simulations, we consider magnetic
configurations where, in the absence of reconnection,
magnetic surfaces ψ(x,y,x) exist (globally)

~B ·∇ψ = 0.

This is not a generic case.11

11It corresponds to the integrability of the magnetic Hamiltonian, i.e. to a
zero measure set, see Appendix



Reconnection and geometry - chaotic field line
configuration

If magnetic surfaces exist, they are preserved in time by
the ideal MHD evolution of the system12. Magnetic
reconnection may destroy such surfaces although it may
occur within field lines lying on a given surface.
If such surfaces do not exist and the magnetic field lines
are chaotic, the very concept of (global) magnetic topology
becomes unclear as magnetically connected points are
distributed in space in a disordered fashion13.
Magnetic topology may remain meaningful at scales
shorter than that of exponential divergence of field lines.

12If a Clebsch representation exists, ~B = ∇α×∇β , then dα/dt = dβ/dt = 0
13See A.H. Boozer, Plasma Phys. Control. Fusion, 52 124002 (2010).
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Reconnection and geometry - Closed field lines

Assume that magnetic surfaces exist. If we have toroidal
surfaces, as is the case in most fusion experiments in
magnetized plasmas, closed field lines occur on the so
called rational surfaces14 .
In this case there is an additional constraint on Ohm’s law
because the requirement that the instability electric field
component vanishes along field lines may be in contrast
with the induction equation unless the scalar electric
potential is taken to be multivalued15.
Rational surfaces with a field “winding ratio” corresponding
to the ratio of small integers are the most prone to
magnetic reconnection in magnetic fusion experiments.

14Rational surfaces are dense in the configuration
15In a linearized description the line integral of the perturbed electric field

along the unperturbed magnetic field must vanish.
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Magnetic toroidal surface



Closed field line on a toroidal surface.
Winding number = 1



Reconnection and geometry, null surfaces

Ideal Ohm’s law (~E +~u×~B/c) requires that the electric field be
balanced by the magnetic Lorentz force acting on the fluid
plasma. This is obviously not possible at locations where the
magnetic field vanishes (unless ~E vanishes too or the fluid
velocity becomes arbitrarily large).
The same problem arises if the velocity field ~u is such that
∇× (~u×~B) vanishes in the direction of ∇×~E 6= 0.
This may simply require that a given component of ~B vanishes,
not the total field and selects a subset within the possible
plasma motions (for linearized perturbations ~̃u(~x, t) it requires
(~B0 ·∇)~̃u = 0, i.e.~k ·~B0 = 0).



Reconnection and geometry, null surfaces

Consider the first case (vanishing of ~B) and assume that
magnetic surfaces exist. The magnetic field ~B can vanish at
separate points (3D configurations), or along extended curves
(2D configurations), or on surfaces (1D configurations).

3D: B = (x,y,−2z), null point x = y = z = 0



Reconnection and geometry, null surfaces

2D: B = (y,x,1), null line x = y = 0



Reconnection and geometry, null surfaces

1D: B = (0,x,1), null surface x = 0



Reconnection and geometry - Perturbations

Geometry comes into play also in the consequences of
reconnection.

If magnetic surfaces exist before the onset of a magnetic
reconnection instability, they are generally torn apart by its
development. This may lead to large scale loss of
confinement e.g., in fusion experiments.
However it is possible that new magnetic surfaces exist
even after the reconnection event (“single helicity
perturbations” in the fusion community slang).
In general after the onset of reconnection (e.g. in the
presence of multiple helicity perturbations) the new
magnetic Hamiltonian is not integrable and the field lines
are locally or even globally chaotic. This leads to enhanced
particle and energy diffusion.
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A simplified case of reconnection instability
mode threshold, structure and growth rate scaling

I will describe some basic features of magnetic reconnection in
a simple configuration in a regime that goes under the name of
“guide field reconnection” and within the framework of resistive
MHD16 limiting myself to linearized results.

Clearly such a linearized analysis has a limited range of
validity but is shows that within its framework the instability
must grow at a rate that is slower than the Alfvèn time and
that this growth rate must depend on the specific physical
mechanism that violates the ideal Ohm’s law.

16I will also mention how to substitute electron inertia for resistivity within
this analysis



Model geometry



Mode threshold, structure and growth rate scaling

I will consider a configuration with a large magnetic field
component B0 along the z direction and a smaller “shear field "
~Bsh in the x-y plane. In the initial configuration ~Bsh has only a y
component and is odd in x (thus vanishes at x = 0).

In the limit of very large B0 this field component can be
assumed to remain unaffected by the instability, the plasma
motion can be taken incompressible and the Hall term in
Ohm’s law does not play a relevant role.
In the limit there is no decoupling between electrons and
ions and the scale di = c/ωpi does not appear17.

17If we introduce electron inertia effects with de = c/ωpe the validity of the
description requires that k⊥de� k||di.
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Mode threshold, structure and growth rate scaling

Note in passing that while in this limit the uniform component
B0~ez of the magnetic field does not enter the solution of the
MHD equations, it takes an important role in a kinetic modeling:
in a sheared magnetic field By = By(x) with B0~ez = 0, near the
null point (where By = 0), particles move along “Parker’s orbits”
(figure 8 orbits, meandering orbits) ) with characteristic
transverse length l ∼

√
LρL, where L is the scale length of the

By magnetic field component, and ρL is the asymptotic value of
the corresponding Larmor radius.



Reduced MHD

This plasma description goes under the name of Reduced
MHD (RMHD)18 (not to be confused wit Relativistic MHD)
and can be derived formally by a proper expansion
procedure19involving the geometry and the value of the β

parameter of the plasma.
We parameterize the magnetic field in the form:

~B = Bzêz + ~∇ψ(x,y, t)× êz

where ψ(x,y, t) is the magnetic surface function (equal in
this geometry to the z component of the vector potential)
and ψ(x,y, t = 0) = ψ0(x) is an even function of x.

18H.R. Strauss, Phys. Fluids, 20, (1977) 1354.
19See e.g. http://www.physics.wisc.edu/grads/courses/

726-f07/files/Section_13_Reduced_MHD_02.pdf
http://www.afs.enea.it/vlad/Papers/review_RNC_2_
latex2html/node28.html

http://www.physics.wisc.edu/grads/courses/726-f07/files/Section_13_Reduced_MHD_02.pdf
http://www.physics.wisc.edu/grads/courses/726-f07/files/Section_13_Reduced_MHD_02.pdf
http://www.afs.enea.it/vlad/Papers/review_RNC_2_latex2html/node28.html
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Reduced MHD

This plasma description goes under the name of Reduced
MHD (RMHD)18 (not to be confused wit Relativistic MHD)
and can be derived formally by a proper expansion
procedure19involving the geometry and the value of the β

parameter of the plasma.
We parameterize the magnetic field in the form:

~B = Bzêz + ~∇ψ(x,y, t)× êz

where ψ(x,y, t) is the magnetic surface function (equal in
this geometry to the z component of the vector potential)
and ψ(x,y, t = 0) = ψ0(x) is an even function of x.

18H.R. Strauss, Phys. Fluids, 20, (1977) 1354.
19See e.g. http://www.physics.wisc.edu/grads/courses/

726-f07/files/Section_13_Reduced_MHD_02.pdf
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Shear magnetic field



Reduced MHD

We take perturbations such that ∂/∂ z = 0
(This is simply a consequence of taking a single mode and
of the choice of the geometry)
We take the plasma flow in the x-y plane incompressible:

~∇ ·~u = 0 and write

~u = ~∇ϕ× êz

Note that the neglecting of the z component of the perturbed
magnetic field is equivalent to the assumption ∂A⊥/∂ t ≈ 0,
Thus the perpendicular electric field is purely electrostatic:
~E⊥ ≈ −~∇φ .
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Reduced resistive Ohm’s law

~E +
~u
c
×~B = η~J

Using the magnetic field representation in terms of the
magnetic surface function ψ, of the velocity ~u in terms of the the
stream function ϕ, Ohm’s law takes the form:

−~∇φ − 1
c

∂ψ

∂ t
êz+

1
c

(
~∇ϕ× êz

)
×
(

Bzêz + ~∇ψ× êz

)
= η~J.

In the perpendicular direction we obtain −~∇⊥φ ∼ Bz~∇⊥ϕ/c:
the perpendicular plasma motion is simply given by the ~E×~B
drift (no pressure terms and resistive effects do not count).



Reduced resistive Ohm’s law

The z component of Ohm’s law gives20

∂

∂ t
ψ +~u ·~∇ψ = cηJz

i.e.,
∂

∂ t
ψ +~∇ϕ× êz ·~∇ψ = cηJz

where ~∇ϕ× êz ·~∇ψ = ~∇ψ×~∇ϕ · êz

20Independently on the the condition of incompressibility, if we can neglect
the electrical resistivity the magnetic flux function ψ is a Lagrangian invariant
satisfying the equation: dψ/dt = 0



Momentum equation

∂

∂ t
~u +

(
~u ·~∇

)
~u = −

~∇P
ρ

+
1
c

~J×~B
ρ

Assume a barotropic closure P = P(ρ)

∂

∂ t
~u −~u×

(
~∇×~u

)
= −~∇

(
P
ρ
− 1

2
u2
)
+

1
c

~J×~B
ρ

Taking the z-component of its curl (as for the incompressible
Euler equation):

∂

∂ t
(~∇×~u) · êz − êz ·~∇×

[
~u×

(
~∇×~u

)]
=

1
c

êz ·~∇×
(
~J×~B/ρ

)



Two scalar equations

Expressing ~u in terms of the stream function ϕ and Jz in terms
of ψ we have êz ·~∇×~u =−∇2ϕ, Jz =−(c/4π)∇2ψ.
Normalizing spatial scales to the equilibrium length L and times
to the Alfvén time τA = L/cA with c2

A = B2
y0/(4πρ), the parallel

components of Ohm’s law and of the vorticity equation become

∂

∂ t
ψ + [ϕ , ψ] = εη∇

2
ψ

∂

∂ t
∇

2
ϕ +

[
ϕ , ∇

2
ϕ
]
=
[
ψ , ∇

2
ψ
]

with the Poisson brackets [ f , g] = ∂x f ∂yg − ∂y f ∂xg
and εη = τA/τR ,



Linearized reconnection equations

Consider perturbations of the form ψ(x),ϕ(x)exp(ikyy − iωt)
with ψ(x),ϕ(x) the perturbation amplitudes:

− iωψ − iψ ′0kyϕ = ε
2
η

[
−k2

y +
∂ 2

∂x2

]
ψ

iω

[
−k2

y +
∂ 2

∂x2

]
ϕ = − i kyψ

′
0

[
−k2

y +
∂ 2

∂x2

]
ψ − iky ψ ψ

′′′
0

The term ψ ′′′0 gives the current density inhomogeneity.
Translation:

ψ(x) is proportional to the x component of the perturbed
magnetic field,
ϕ(x) =−ωξx/ky, with ξx the x component of the displacement
vector.



Boundary layer approach

We search for modes where ω scales with a positive power
(smaller than one21) of εη and adopt a boundary layer
approach.

21otherwise we would be looking for resistive diffusion



Boundary Layer and asymptotic matching

When the length scales of the equilibrium field are larger than
those related not-ideal effects (δ � L) we can solve (to the
required order) the dynamical equations in two regions that
partly overlap and then match the solutions in the overlapping
region.

The condition δ � L implies that we can expand locally the
various quantities; the not-ideal terms are not negligible only in
the inner region (x∼ δ ) where the higher order derivatives
become larger.
The ideal equations, which are valid in the outer region, impose
the boundary conditions for the inner solution.



Outer solution

Leading order equations:

− iωψ − iψ ′0kyϕ = 0

0 = − i kyψ
′
0

[
−k2

y +
∂ 2

∂x2

]
ψ − iky ψ ψ

′′′
0

kyψ ′0 plays the role of k|| and vanishes for x→ 0. Take ψ ′′′0 ∼ 0
for |x| → ∞ (local current inhom.) ψout(|x| � 1) ∼ exp(−ky|x|)

The sign of ψ ′′′0 /ψ ′0 determines how the flux function “enters”
the inner region, i.e. the sign ∂ψout/∂x in the matching region.
If ψ ′′′0 /ψ ′0 < 0 so that (k2

y + ψ ′′′0 /ψ ′0)< 0 , the magnetic surface
function can turn convex near the matching region.



Outer solution

We have taken ψ(x) an even function; the x component of the
perturbed magnetic field must not vanish at x = 0.
With this choice the first derivative of ψ(x) is discontinuous for
|x|out → 0 while ξx is odd and diverges as 1/x.



Instability parameter: ∆′

Take the limit for |x|out → 0 of the logarithmic derivative of ψ(x)

∆
′ = lim

|xout |→0

ψ ′out(|xout |) − ψ ′out(−|xout |)
ψout(|xout |)

∆′ = ∆′(ψ0,ky) depends on the chosen equilibrium and on the
wavelength of the perturbation.

Matching condition ψout ≈ 1 +∆′|x|/2
Reconnection is driven by the current inhomogeneity that
provides the (magnetic) energy from the outer domain, and is
made possible by the not-ideal parameters (here by resistivity).
∆′ measures the rate at which magnetic energy enters the inner
domain22.

22R White, Rev. Mod. Phys., 58, 183, (1986) and references therein



Inner equations

Order ∂/∂x� ky , expand ψ0(x) around x = 0 and use the
stretched variable x/δ

− iωψin − iψ ′0kyϕin = εηψ
′′
in

iωϕ
′′
in = − i kyψ

′
0ψ
′′
in

Length are normalized to the width of the inner domain δ .
The limit |x| → ∞ taken in the inner domain defines spatial
scales that can be “arbitrarily small” (i.e.: corresponds to the
limit |x| → 0) if seen from the outer region where scale lengths
are normalized with respect to L ( δ � L ).



Inner equations

Revert to more standard notation ω = − iγ and express ϕ in
terms of the displacement ξx (along x).

ψ + xξx =
εη

γ
ψ
′′

γ
2

ξ
′′
x = −k2

y xψ
′′

GENERAL RESISTIVE ORDERING

Assume x∼ δ , ∂/∂x∼ δ−1 (when acting on ψ and on ξx)
with ψ ∼ δ 0 and ξx ∼ δ−1. Set

δ ∼ ε
α
η , γ ∼ ε

β

η

0 = 1−2α−β , 2β −3α =−α, → resistive ordering

α = β = 1/3



Inner equations

The resistive ordering requires a large value of ∆′ (∆∼ 1/δ )
If this is not the case (as determined by the outer solution) we
can refine the ordering23 by assuming that
∂/∂x∼ δ−1 when acting on ξx while
∂ψ/∂x∼ δ 0 and ∂ 2ψ/∂x2 ∼ δ−1

Constant ψ ordering (Tearing ordering)

Set again δ ∼ εα
η , γ ∼ ε

β

η

0 = 1−α−β , 2β −3α = 0, → constant ψ ordering

α = 2/5, β = 3/5

23H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids, 6, 459 (1963)



Full solution and dispersion relation

The dispersion relation can be obtained by matching the inner
and the outer solutions in the matching region.

The asymptotic matching is also applicable in Fourier space24

→ a second order differential equation in the Fourier variable k.

Conditions in Fourier space: for a smooth ψ(x) its Fourier
transform must be at least exponentially decreasing as k→ ∞

The spatial matching in the matching layer is transformed into a
boundary condition for k < 1/δ .

24however, “distributions” are needed since the functions to transform are
not L2.



Dispersion relation

In k space the inner equations can be solved in terms on known
functions25 for all values of ∆′ i.e., without the need of resort to
to the ”constant ψ subordering”.
In this way we recover the FKR dispersion relation:

γ̂ = − 1
∆̂′

[
γ̂

9
4

8
Γ
[
(γ̂3/2−1)/4

]
Γ
[
(γ̂3/2 +5)/4

]]

where γ̂ = γ/(εη)
1
3 ≤ 1 and ∆̂′ = ∆′(εη)

1
3 .

Γ(γ̂3/2− ..) are Γ functions.

Instability requires ∆′ ≥ 0

25F. Pegoraro, T.J. Schep, Plasma Phys. Contr. Fus., 28, 647 (1986)



Dispersion relation in the resistive and in the tearing
orderings

In the general ε
1/3
η ordering the dispersion relation reads:

γ̂
5/4 = −8∆̂

′Γ
[
(γ̂3/2 +5)/4

]
Γ
[
(γ̂3/2−1)/4

]
γ̂ = 1 for ∆′→ ∞

In the tearing ordering we have γ̂ � 1 and the dispersion
equation becomes : γ̂5/4 = −8∆̂′Γ(5/4)/Γ(−1/4) i.e.,26

γ
5/4 = 2ε

3/4
η ∆

′Γ(5/4)
Γ(3/4)

recovering the γ ∼ ε
3/5
η ordering .

26Using the recurrence formulae of the Γ functions
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Some conclusions

In all cases in which a boundary layer theory applies, (i.e.,
the equilibrium and the reconnection scales are separated)
the linear growth rate width depends on fractional powers
of εη

Similar dependences on the microscopic physics that
makes reconnection possible are obtained (with the
appropriate scalings) when electron inertia effect are
considered (η ↔ γ/ω2

pe) and in general on the microscopic
physics that occurs in the reconnection layer (including ion
electron decoupling, “neoclassical effects”, anisotropic
pressure ...).
Temperature and density gradients (not included here)
change the dispersion relation significantly.
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Some conclusions

Geometric effects change these scalings: e.g., along a
neutral line (in a hyperbolic configurations) one finds
dependence of the type lnεη

27

The specific dependences of the growth rate on the
microscopic effect predicted by linear theory appear to be
“non-robust” (can be easily modified by a change of
regime)
How to apply these considerations to nonlinear regimes is
not straightforward

27I.J. Craig, P.G. Watson, Ap J 393, 385 (1992), or εη lnεη in the presence
of a guide field: M. De Benedetti, F. Pegoraro, Plasma Phys. Control. Fus., 37
103 (1995)
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Some conclusions

What determines the nonlinear time scales? Are they
Alfvènic? (linear resistive theory would predict ε

1/3
η scaling

even for infinitely strong ”drive” (∆′→ ∞).
Scale separation can be huge εη ∼ 10−8,10−10 (different
scalings are really different !) but the equilibrium scale may
shrink to the reconnection scale
In fully nonlinear regimes simulations cannot be run in
such extreme asymptotic regimes.
Open problems, trigger, time and space scale, energy
redistribution, particle acceleration, signatures ....
kinetic effects, anisotropy, instability mixing, relativistic
effects....
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Appendix - Relativistic “dynamo” equation

The dynamo equation for the magnetic field can be written
in general in three-dimensional notation although it is not
covariant

∂~B/∂ t−∇× (~v×~B) = 0

Ohm’s law Fµνuµ = 0 can be rewritten as a covariant
equation for the variation of the four vector potential along
the fluid motion in the (Lagrangian) form

∂Aν/∂τ = uµ(∂νAµ),

where ∂/∂τ = uµ∂µ .
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Appendix - Relativistic “dynamo” equation

From the equation for the vector potential we obtain a covariant
form for relativistic dynamo equation in terms of the field
tensor28

∂τFµν = (∂µuα)Fνα − (∂νuα)Fµα

In a given frame, by projecting this equation onto its
space-space and space-time components29 we recover
the non covariant equation for the magnetic field
∂~B/∂ t−∇× (~v×~B) = 0 and an associated equation for the
time derivative of the electric field ~E.

28∂µ ∂τ 6= ∂τ ∂ µ
29Here we use Fµν uµ = 0 when writing (∂µ uα )Fνα = γFνα ∂µ (uα/γ).



Appendix - Relativistic Connection theorem

Define the infinitesimal (spacelike) dlµ (distance between two
close events) such that

dlµFµν = 0.

In the frame where dlo = 0 this is equivalent to d~l×~B = 0 and
includes d~l ·~E = 0. Note that for such a four vector to satisfy the
above condition, the Lorentz invariant FµνF∗µν must vanish (i.e.
~E ·~B = 0).
If this condition is satisfied dlµ belongs to a 2-dimensional
hyperplane. If the Lorenz invariant E2−B2 < 0 (this is the case
we must consider since uµ is timelike), we can choose one
timelike (e.g., along uµ ) and one (dlµ ) spacelike direction.



Appendix - Relativistic Connection theorem

Using ∆xµ = uµ∆τ, ∆dlµ = [dlα(∂αuµ)]∆τ +uµ [dlα(∂α∆τ)] and
∂τFµν = (∂µuα)Fνα − (∂νuα)Fµα together with Fµνuµ = 0, we
obtain

∂τ(dlµFµν) =−(∂νuβ )(dlαFαβ ).

which is the covariant form of the 3D connection theorem.
Note that in a reference frame where dlo 6= 0 we can “project”
dlµ onto 3D space by defining dl′µ = dlµ −uµ dt without
changing the connection theorem since Fµνuµ = 0
Thus we simply have to reset the time by moving the endpoints
of the line connecting the two close events along their
trajectories in order to recover the standard form of the
connection theorem.



Appendix - Relativistic Magnetic helicity

3D Magnetic helicity is the time component of the four vector

Kµ = F∗µνAν

which obeys the standard gauge transformations (for Aν →
Aν +∂νψ a four divergence ∂ν(F∗µνψ) is added since Maxwell’s
equations give ∂νF∗µν = 0) and satisfies the conservation
equation

∂µKµ = F∗µν(∂µAν) = F∗µνFµν/2 = 0

which is the covariant form of the three-dimensional continuity
equation for the helicity density.



Appendix No quasineutrality

Note that the relativistic Ohm’s law Fµνuµ = 0 is obtained
independently of any quasineutrality assumption.
Taking the four divergence of the above equation we obtain
an Eulerian relationship involving the fluid four velocity and
vorticity tensor and the electromagnetic field tensor and
four current density

−uν∂µFµν = (4π/c)uν jν = Fµν(∂µuν −∂νuµ)/2.

This equation cannot be used in standard quasineutral
nonrelativistic MHD.
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Appendix Magnetic Hamiltonian

Introduce three (curvilinear) coordinates χi, i = 1,2,3. Write the
electromagnetic vector-potential ~A as:

~A′ = A′1~∇χ1 + A′2~∇χ2 + A′3~∇χ3

Use gauge invariance and choose a scalar function K satisfying
~∇K = K1~∇χ1 + K2~∇χ2 + K3~∇χ3 where K3 = −A′3 .
This means K = −

∫ χ3
0 A′3 (χ1,χ2,ξ3)dξ3.

Then
~A = ~A′ + ~∇K = A1~∇χ1 + A2~∇χ2

and
~B = ~∇×~A = ~∇A1×~∇χ1 + ~∇A2×~∇χ2

Assume ~B 6= 0, and take

~B ·~∇χ1 6= 0 ⇔
(
~∇A2×~∇χ2

)
·~∇χ1 6= 0



Appendix Magnetic Hamiltonian

If ~B ·~∇χ1 6= 0 the Jacobian determinant of the coordinate
transformation (χ1, χ2, χ3)→ (χ1, χ2, A2) is non-zero, and the
transformation is locally invertible. Using

~B = ~∇A1(χ1,χ2,A2)×~∇χ1 + ~∇A2×~∇χ2

and d~l×~B = 0 we obtain

(d~l ·~∇A1)~∇χ1 − (d~l ·~∇χ1)~∇A1 + (d~l ·~∇A2)~∇χ2 − (d~l ·~∇χ2)~∇A2 = 0

This leads to three scalar equations:

(d~l ·~∇A2) − (d~l ·~∇χ1)
∂A1

∂ χ2
= 0 ⇒ dA2

dχ1
=

∂A1

∂ χ2

(d~l ·~∇χ1)
∂A1

∂A2
+ (d~l ·~∇χ2) = 0 ⇒ dχ2

dχ1
= −∂A1

∂A2

(d~l ·~∇A1) − (d~l ·~∇χ1)
∂A1

∂ χ1
= 0 ⇒ dA1

dχ1
=

∂A1

∂ χ1



Appendix Magnetic Hamiltonian

We can interpret these results in terms of Hamiltonian
mechanics:

χ1 can be considered as the “time” variable.
χ2 and A2 play the role of the two canonical coordinates:
dχ2↔ dq and dA2↔ d p.
A1(χ2,A2,χ1) becomes then the “Hamiltonian” H .

Integrability requires the existence of a constant of the motion:
e.g., the energy if the Hamiltonian does not depend on χ1.
In this latter case we have that A1 = const corresponds to a
magnetic surface: ~B ·~∇A1 = ~∇A2×~∇χ2 ·~∇A1(χ2,A2) = 0



Magnetic Hamiltonian

In this case it can be shown that the ideal MHD evolution
corresponds to a canonical transformation of the the
Hamiltonian A1 and of the coordinates A2 and χ2 depending
parametrically on time t and that Ohm’s law plays the role of the
equation for the generating function (related to the scalar
electric potential).


