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Everywhere in the Universe, from near-Earth environments, like for Everywhere in the Universe, from near-Earth environments, like for 

example planetary magnetospheres and solar atmosphere, to further example planetary magnetospheres and solar atmosphere, to further 

systems, like radio galaxies and supernovae, the dynamics is driven by systems, like radio galaxies and supernovae, the dynamics is driven by 

plasma processesplasma processes



A plasma is a collection of discrete charged particles globally 
neutral, behaving as a collective system, dominated by long 
range (electromagnetic) interactions

1.  Astrophysics; space plasmas 
2.  Laboratory plasmas (fusion, ...) 
3.  Laser plasmas interaction 

Plasma Physics



Plasma as an ideal, classical and collisionless gas

Plasma parameter

Debye length and Debye potential

Ideal gas with rare 

collisions

Low density and high 

temperatures

The mean free path of a particle in the solar wind is about 1AU



Collective behavior of a plasma

A simple view: background of 
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Collective behavior of a plasma



A statistical approach

Many instead of one particle in phase space (x,v): 

Average number of particles in

f  x,v,t dxdv
dxdv

f= f  x,v,t 
Distribution function

A statistical description of a plasma



Macroscopic variables of a plasmaa

nα r , t =∫ f α r , v , t dv



The Vlasov Equation

In the absence of collisions the Vlasov equations describes 
the evolution of the distribution function under the effects 

of self-consistent and external electromagnetic fields

when calculated on the 
characteristics



Properties of the Vlasov equation

This is consistent with the fact that the Vlasov equation neglects the process (binary 
collisions) which causes statystical systems to increase their entropy and evolve toward a 
Maxwell-Boltzmann distribution



Vlasov-Maxwell equations (mean-field theory) 

Vlasov equation coupled to Maxwell equations is a nonlinear problem, whose analytical solution 
is availaible only in few simplified cases

NO COLLISIONS!!!



Linear regime of wave-particle interaction

Electron distribution function; fixed ions 
with constant density

Vlasov-Poisson (1D-1V)
Equilibrium configuration

Small amplitude perturbations



A simple case of wave damping

Electric sinusoidal perturbation 
(in the lab frame)

In the wave frame

Electric sinusoidal perturbation 
(in the lab frame)

One can calculate the wave damping 
coefficient by setting the rate of increase of 
kinetic energy of resonant particles equal to 
the rate of decrease of wave energy

The solution for the perturbed distribution function
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Electric sinusoidal perturbation 
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A simple case of wave damping

Electric sinusoidal perturbation 
(in the lab frame)

In the wave frame

Electric sinusoidal perturbation 
(in the lab frame)

One can calculate the wave damping 
coefficient by setting the rate of increase of 
kinetic energy of resonant particles equal to 
the rate of decrease of wave energy

The Landau damping rate



What happens to the wave energy?

The energy of this waves can be 
dissipated through Landau damping

Suppose you have a 
perturbation of the form

However, in absence of collisions, the memory of the 
initial perturbation cannot be lost, but it remains 
locked in the distribution function, as a perturbation 
in the form

Ballistic contribution

If a second wave is launched into the 
plasma after the first wave has been 
Landau damped A third wave called plasma echo will 

apperar after a certain delay time



Plasma wave echoes



Plasma wave echoes



Nonlinear regime of wave-particle interaction



Nonlinear effects: Particle trapping

L. Landau (1946) linearized the VP equations in 
the perturbation amplitudes

O’Neil (1965) showed that nonlinear 
effects are no longer negligible for 
times comparable to

For an electron moving at velocity close to 
the wave phase speed:

Nonlinear effects get important when 
resonant particles are trapped in the wave 
potential well



Trapping process

Linear approximation no longer valid in 
the resonant region

Phase space particle trajectories



Eulerian algorithms for Vlasov simulations
The Vlasov equation is discretized on a grid in phase 

space and the field equations on a spatial grid. 

Different numerical approaches



Eulerian methods

Numerical integration of the Vlasov equation in phase space

Electrostatic case. fixed ions with constant density. 1D-1V phase space (x,v) for 
the sake of simplicity, but the generalization to multi-dimensional geometry is 
straightforward

∂ f e
∂ t

v
∂ f e
∂ x

a
∂ f e
∂ v

=0
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Advection equation in 
phase space

VLASOV-POISSON SYSTEM



Phase space and time discretization 

x i= i−1 Δx

i=1,N x

Δx=
L x
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Time discretization:

tn=nΔt
n=0,nstep

Δt≤min {Δx
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} CFL stability condition 



Splitting method for the Vlasov equation

∂ f x
∂ t

v
∂ f x
∂ x

=0

∂ f v
∂ t

a
∂ f v
∂ v

=0

Advection in physical space (describes translation 
in physical space) 

Advection in velocity space (describes 
translation in velocity space)

The time evolution of the distribution 
function is divided into two steps:

1) EVOLUTION  in physical space
2) EVOLUTION in velocity space

Distribution function in physical space

Distribution function in 
velocity space



The time splitting algorithm

∂ f x
∂ t

v
∂ f x
∂ x

=0⇒ f x tΔt =Λx Δt  f x  t 

∂ f v
∂ t

a
∂ f v
∂ v

=0⇒ f v tΔt =Λv Δt  f v  t 

Translation 
operators

Finite differences for the translation operators

Centred difference



Δt

x

v nΔt

Calculate E

Calculate E

Calculate E

The time splitting algorithm



The time splitting algorithm

Δt

x

v nΔt

Calculate E

Calculate E

Calculate E

Chen and Knorr, JCP (1977)
Mangeney et al. JCP (2002)



Vlasov simulations of Landau damping

E x,t=0 =E0 sin  kx 

E 0=0 . 02;k=
2π
L x

=0 .5

Electric field spectral component

Exponential damping 
in time

Comparison with 
linear theory of 
Landau damping

Initial electric perturbation

Periodic boundary conditions in the 
physical domain

ωR
2
=ω p

2
13k 2 λD

2




k 2=0 . 8λD
−1

Plasma wave echoes (Vlasov simulation)

k1=0 .4λD
−1

k echo=k 2−k 1=0 . 4λD
−1



O’Neil found that, due to nonlinear 
effects, the Landau damping rate of the 
wave starts oscillating around zero on the 
trapping time scale with decreasing 
amplitude.

Nonlinear saturation of Landau damping

SATURATION OF DAMPING

Vlasov simulations
E x,t=0 =E0sin  kx 

E 0=0 . 2 ;k=
2π
L x

=0 . 5

Landau linear predictionLandau linear prediction



Nonlinear saturation of Landau damping

Vlasov simulations
E x,t=0 =E0sin  kx 

E 0=0 . 2 ;k=
2π
L x

=0 . 5

Phase space distribution function

Signature of trapping



Nonlinear saturation of Landau damping

Vlasov simulations
E x,t=0 =E0sin  kx 

E 0=0 . 2 ;k=
2π
L x

=0 . 5

Phase space distribution function

Signature of trapping



Be careful with numerical Vlasov simulations

Trapping region

Galeotti and Califano, PRL (2005)

dxdvln(f)fS(t)

dxdvt)v,(x,f(t)N 3
3

∫
∫

−=

=



Filamentation problem

ΔvLv ≈
When the typical size of the velocity 
structures gets smaller than the 
numerical resolution…

Small-scale structures are generated in 
the phase space distribution function 
due to trapping

The numerical algorithm is not able to 
resolve them anymore…The topology of 
phase space is changed

NUMERICAL VISCOSITY



Energy conservation

Valentini et al. PRE (2005) 
Valentini et al. JCP (2005)



Velocity distributions in space plasmas

Generation of 
accelerated beams

Solar wind protons
Solar wind electrons

Generation of 
suprathermal tails

The velocity distributions in space plasmas are source of free energy 
for many instabilities and kinetic processes



Turbulence and kinetic effects in space plasmas

ω <<i
FLUID REGIME

ω≥ i
KINETIC REGIME

i

Link beween low frequency (fluid) 
dynamics and high frequency 
(kinetic) dynamics

the understanding of the 
physical processes that govern 
the system dynamics at 
frequency of the order and 
beyond the ion-cyclotron 
frequency is of key relevance in 
space physics

Energy cascades 
towards small scales

Dissipation (?)
Turbulent cascade

Hydro range Kinetic range



Investigation of cross-scale interactions: from fluid to kinetic scales
“A challenge in computational plasma physics”

Kinetic effects in the 
energy transfer across 
ion cyclotron frequency

OBSERVATION DATA: Magnetic & 
electric field, density, velocity, PDF, …

Kinetik Vlasov  
hybrid simulations

MHD and HMDH 
SIMULATIONS

Future (tera-petaflop): full Vlasov!

Today (Giga-teraflop): Vlasov-hybrid

Frontier problem in plasma physics



Hybrid Vlasov-Maxwell equations (dimensionless units)

Quasi-neutrality

Faraday equation

Current Density (low frequency approximation)

Vlasov equation for ions

Ohm's law 

Equation of state

Valentini et al, JCP 2007



Numerical algorithm

Splitting scheme (Chen and Knorr, JCP, 
1977), for the time advance of the Vlasov 
equation; third order Van Leer scheme 
for spatial and velocity derivatives

Hybrid Current Advance Method for 
the evolution of the electromagnetic 
fields 

For details, see Valentini et al. 
JPC, 2007; and Mangeney et 
al. JCP, 2002

Parallelization strategy 
The code is parallelized in 
physical space using the MPI 
directives. 

For details, see Mangeney et 
al. JPC, 2002



provaHybrid Vlasov-Maxwell simulations of 2D plasma turbulence

x

z

y

B background magnetic field 

Simulation plane 

Simulation of decay turbulence
Servidio, Valentini, Califano and Veltri, PRL (2012) 



provaHybrid Vlasov-Maxwell simulations of 2D plasma turbulence

The contour plot of the out of plane 
current density shows the presence 
of magnetic reconnection events 
(black crosses)  

Local temperature anisotropy  



provaHybrid Vlasov-Maxwell simulations of 2D plasma turbulence

Statistical analysis of the local temperature anisotropy  



provaHybrid Vlasov-Maxwell simulations of 2D plasma turbulence



provaFirst attempt of 3D-3V Vlasov turbulence

The first example of Valov turbulence 
has been realized with relatively low 
resolution both in physical and velocity 
space

This was a preparatory run performed on 
SP6 Machine at CINECA

On the new FERMI machine at CINECA, 
within a PRACE research project, we plan 
to run Hybrid Vlasov-Maxwell simulations 
wih a phase space resolution:

!!!

B 

OR LARGER?!? ASK CAVAZZONI!!!



prova First attempt of 3D-3V Vlasov turbulence



That's all !!!



Francesco Valentini Francesco Valentini 
Dipartimento di Fisica, Dipartimento di Fisica, 
Università della CalabriaUniversità della Calabria prova
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