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OUTLINE

-The physics of the interplanetary medium: the solar wind plasma
- How to model a plasma? a statistical approach

- The kinetic dynamics of a collision-free plasma: the Vlasov
equation

- The physics of wave-particle resonant interaction (linear and
nonlinear regime)

- Plasma wave echoes

- The numerical approach, for the solution of the Vlasov equation
- Few words about finite'difference schemes

- Eulerian algorithms for Vlasoev: simulations

- Distribution of particle velocifies. in space plasmas

- The tail at short spatial scales of turbulence in the solar wind:
Hybrid Vlasov-Maxwell simulations

- State of the art and work in progress



Everywhere in the Universe, from near-Earth environments, like for
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Plasma as an ideal, classical and collisionless gas

Plasma parameter Low density and high

temperatures
g = ( T ) l Ideal gas with rare
collisions
3 e’
1K1 & E/I:T > s ‘

The mean free path of a particle in the solar wind is about 1AU

Debye length and Debye potential
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Collective behavior of a plasma
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A statistical description of a plasma
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Many instead of one particle in phase space (x,v):

4 . =

f(x,v,t)dxdv . : -
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Average number of particles in dxdv
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Distribution function



Macroscopic variables of a plasma
.
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— fa':fﬂi(vaft)

/fa(x* v.t)dxdv = N,

The macroscopically observable quantities are found

from the velocity moments of the d.f. :

Number of particles, Current density:

nat) = [ £.x,v,0) av

JE(X‘I t) = qung(x: t)va(xﬁt) =4, /vfﬂ(xi v, t) dv

Pressure tensor, Scalar pressure:
P t) = m, [(v= V(v = VoS, v,1) dv

1
b, = E(p:m: +pyy +pzz) = naTa



— The Vlasov Equation

In the absence of collisions the Vlasov equations describes
the evolution of the distribution function under the effects
of self-consistent and external electromagnetic fields

Ofe o v x B
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ot Ma
ff_’-'t — f&(xzvrt)
dx
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df when calculated on the at
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Properties of the Vlasov equation

Invariants of the Vlasov equation:
I"(t) = /fa”(x,v,t) dx dv = cste

Any power of the d.f. is a constant of motion.

More generally, any function G(f) of f is a con-
stant of motion:

G dG df
dt  df dt

For example, the entropy of the system is a con-
stant:

5—/ﬂmmmm

This is consistent with the fact that the Vlasov equation neglects the process (binary
collisions) which causes statystical systems to increase their entropy and evolve toward a
Maxwell-Boltzmann distribution



Vlasov-Maxwell equations (mean-field theory)

NO COLLISIONS!!

Vlasov equation coupled to Maxwell equations is a nonlinear problem, whose analytical solution
is availaible only in few simplified cases



Linear regime of wave-particle interaction
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Electron distribution function; fixed ions
with constant density

Vlasov-Poisson (1D-1V)
Equilibrium configuration

e e ENL me'*n m
ot "~ or T m v (ot =0) = e 0 [_ ‘-"@2]
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Small amplitude perturbations

felz,v,t) = fe(v,t =0)+0fe(x,v,1)
E(x,t) =0FE(x,t)

ON THE VIBRATIONS OF THE ELECTRONIC PLASMA
By L. LANDAU

Institute for Physical Problems, Academy of Sciences of the USSR

(Received June 2, 1945) SE(x,t) ~ exp [iky — iwpt + wit]

The vibrations of the electronic plasma are considered, which arose as a result of an arbit-
& rary initial non-equilibrium distribution in it. It is shown that the vibrations of the field in

¢/ plasma are always damped, and the dependence of the frequency and of the damping decrement WR = Wpe
4  on the wave vector is determined for small and for large values of the latter,
- The penetration of a periodical external electric field into the plasma is considered. The d'fe (1’3 t= 0)
_ ¢ case of the frequency of the external field being almost at resonance with the proper frequency wr X
i "of plasma is considered separately, : dv

¥ U:Ud’



A simple case of wave damping
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— Electric sinusoidal perturbation

Electron distribution function ('n The IClb fr‘ame)
SE(z'.t) = Esin(ka’ — wt)
resonant electrons . A )
main prt 0FE(x.t) = Esin(kx) Inthe wave frame

1w One can calculate the wave damping

coefficient by setting the rate of increase of
kinetic energy of resonant particles equal to
the rate of decrease of wave energy

Vphase

The solution for the perturbed distribution function

5f(37-31-’-.t) =0f(v.t =0)cos(kx — kvt) —

—E ) [cos (kx) — cos (kx — kuvt)

felv,

ov kv



A simple case of wave damping
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M— Electric sinusoidal perturbation
Electron distribution function (In The IClb fr'(]me)
SE(z'.t) = Esin(ka’ — wt)
resonant electrons . A
main part 0FE(x.t) = Esin(kx) Inthe wave frame
L) One can calculate the wave damping
coefficient by setting the rate of increase of
kinetic energy of resonant particles equal to
the rate of decrease of wave energy
Y \\Vphase
2
. _ . A2 .. ptoo E .
Sf(x,v,t) =d6f(v,t =0)cos(kx — kut) — dby; _ mim / d—l’/ dofv+? oF
dt 2 Jan AN o k| ot
e .. 0 cos (kx) — cos (kx — kvt A
—E—f.(v,t=0) (k) ( ) dE” 59
m - v kv Tl 2wiE



A simple case of wave damping
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M— Electric sinusoidal perturbation

Electron distribution function (In The IClb fr'(]me)
SE (2! t) = Esin(ka’ — wt)
resonant electrons . A
main part 0FE(x.t) = Esin(kx) Inthe wave frame
L) One can calculate the wave damping
coefficient by setting the rate of increase of
kinetic energy of resonant particles equal to
the rate of decrease of wave energy
Y \\Vphase
2
. E A2 +oo w\ i
5f(:1?,-t-*,t) = d0f(v,t =0)cos(kx — kvt) — P / e / dvofv+= 007
v A k| ot
—E f(0.t=0) cos (kx) — cos (kx — kvt) dEQ .,
dv v —— = 2wk
dt
2 oot
@ = — d(E = W] = ng wr_ | dfe(v,t =0) The Landau damping rate
dt df 8;; 2 PCL2n, dv .
V=



What happens to the wave energy?
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However, in absence of collisions, the memory of the
Suppose you have a

turbation of the initial perturbation cannot be lost, but it remains
perturbation ot The or'm/ locked in the distribution function, as a perturbation

in the form

~ exp [ik1r — iwprt + wrt . .
P [ih1 wrt +wrt ~ exp [ik1x — iwprt + wit] @
The energy of this waves can be

dissipated through Landau damping

Ballistic contribution

If a second wave is launched into the

plasma after the first wave has been
Landau damped \ A third wave called plasma echo will

apperar after a certain delay time

OFs >~ exp [ikox — -iwg}f. + w}g)f]

0 fo ~ exp [ikax — -i:.ug)t + wl(rg)f] + exp |ikax — ikaut]



Plasma wave echoes

VoLUuME 19, NUMBER 3 PHYSICAL REVIEW LETTERS 31 JuLy 1967

PLASMA WAVE ECHO*

R. W. Gould
California Institute of Technology, Pasadena, California

and

T, M. O’Neil and J. H, Malmberg
General Atomic Division of General Dynamics Corporation,
John Jay Hopking Laboratory for Pure and Applied Seience, San Diego, California
iReceived 29 DMay 1967)

It is shown that if a longitudinal wave is excited in a collision-free plasma and Landau-
damps away, and a second wave is excited and also damps away, then a third wave (i.e.,
the echo) will spontaneously appear in the plasma.

VOLUME 20, NUMBER 3 PHYSICAL REVIEW LETTERS 15 JANUARY 1968

PLASMA WAVE ECHO EXPERIMENT*

J. H. Malmberg, C. B. Wharton, R. W. Gould,f and T. M. O’Neil
General Dynamics, General atomic Division, John Jay Hopkins Laboratory
for Pure and Applied Science, San Diego, California
(Received 22 September 1967)

Experimental observation of a new nonlinear plasma phenomenon, the plasma wave
Jot ok Mikmbery echo, is reported.
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Nonlinear regime of wave-particle interaction

THE PHYSICS OF FLUIDS VOLUME 8, NUMBER 12 DECEMEBER 1965

Collisionless Damping of Nonlinear Plasma Oscillations

THOoMAs O'NEIL*
Department of Physics, University of California, San Diego, La Jolla, California
(Received 12 July 1965)

It iz well known that the linear theory of collisionless damping breaks down after a time r =
{m/egk)}, where k is the wavenumber and & is the amplitude of the electric field. Jacobi elliptic
functions are now used to provide an exact solution of the Vlasov equation for the resonant electrons,
and the damping coefficient is generalized to be valid for times greater than ¢ = r. This generalized
damping coefficient reduces to Landau’s result when t/r < 1; it has an oscillatory behavior when
1/r is of order unity, and it phase mixes to zero as {/r approaches infinity. The above results are all
shown to have simple physical interpretations.



Nonlinear effects: Particle trapping

‘ ‘ L. Landau (1946) linearized the VP equations in
Ofe n ,Uafe el Ofe —0 the perturbation amplitudes
ot ox m ov
OE o .
— = 4me [no — | fe(x. v, t)d.*v] O'Neil (1965) showed that nonlinear m o\ 1/2
oz effects are no longer negligible for 7= ( ka)

. € :
times comparable to

For an electron moving at velocity close to Therefore, the charge oscillates with period

the wave phase speed: - | moor
d?r B om\l ekE, wp
meo s = —clysin (k) ~ eEkx

Damping rate time behavior

7(®)

Nonlinear effects get important when
resonant particles are trapped in the wave — Of—f—bfrm e A Lo N e
potential well

)
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Phase space particle trajectories

Elz,t) = asin(lkr —wt); &z, t) = (a/k)cos(kz — wi)

2

Particle energy. W = %mtr

— e = csie

The simple harmonic motion in the trough of the
plasma wave is a -

major perturbation of the particle orbit

non-resonant paricle

resonant particle

porential well

Linear approximation no longer valid in
the resonant region



Eulerian algorithms for Vlasov simulations

The Vlasov equation is discretized on a grid in phase
space and the field equations on a spatial grid.



Eulerian methods
[

Numerical integration of the Vlasov equation in phase space

Electrostatic case. fixed ions with constant density. 1D-1V phase space (x,v) for
the sake of simplicity, but the generalization o multi-dimensional geometry is
straightforward

0f o, S0, 00 | > oo
=0
8 [ a X a %

f f (X \% t) a——% VLASOV-POISSON SYSTEM

OFE

™ —=4ne|n, —f f(xv,t)dv |




— Phase space and time discretization

X;= v, =KkAv
i=1N k=—N_ )N
Vmax
Ax = AV:N

Time discretization:

t =nAt
n
n= O’nstep
. |AX Av
At<min , CFL stability condition
Vmax amax




Splitting method for the Vlasov equation

I
E— —
I
I
Distribution function in physical space
8 : a f X _ 0 Advection in physical space (describes translation
-V — in physical space)
ot 0Xx
a@ | 6 fv _ O Advection in velocity space (describes
8 - d 8 " — translation in velocity space)
Distribution function in The time evolution of the distribution
velocity space function is divided into two steps:

1) EVOLUTION in physical space
2) EVOLUTION in velocity space



The time splitting algorithm

of, of, )
S0 £ (HAY=A,(AY) (1)

> Translation
0 f ) @ f operators

——=0=f (t+At)=4 (At) f (1)

Ot 8v

Finite differences for the translation operators
flrie1) = f(x )+Ar(j‘i) +;A (ﬁf) + o(Ax?) (1)
Floien) = o) = e ) cae(f ) +o(Ad?) )

Centred difference



The time splitting algorithm

F(nAL) = {A(AL/2)A (A AL(AL/2)}" fo + o AF)

T~ Calculate E




The time splitting algorithm

Calculate E

T~ Calculate E

™~ Calculate E

FAL) = {AL(AL/2)A(AD AL (ADA(AD]" AL (AL/2)) £,

Chen and Knorr, JCP (1977)
Mangeney et al. JCP (2002)



Vlasov simulations of Landau damping
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E(x,t=0)=Esin(kx)

ar0f—————————— E,=0.02k=2"=0.5
L

0,008 ]j .
F goof]

oo e

PRI R ...\
5 s Exponential damping
in fime

a)i:a}i(l +3k2/lé)

_E' v T T 3
Eiﬁ-w
3E _ _ _
1) HHT%I‘ T
E_ug ‘ ﬂﬂqﬁlﬁ .-*.‘H Comparison with ”3;_ x{/j’ ]
' |§ linear theory of e :
_Eu-. Iul} ::.::l J::I .“] Landau damplng .\“: *‘/x’.ﬁ,
e - X



Plasma wave echoes (Vlasov simulation)
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Nonlinear saturation of Landau damping

Damping rate time behavior
O'Neil found that, due to nonlinear

7@
i"{\"" effects, the Landau damping rate of the
[ wave starts oscillating around zero on the
o trapping time scale with decreasing

amplitude.

|IIII II\J{II
]

J
! SATURATION OF DAMPING

Landau linear prediction E (X t—O)—E sin(kx)
YT

Vlasov simulations Eozo_z-k:ﬁ:o 5
) L ¢

X

0.10
0.08

-~ (.06

L
=

Y 0.04

0.02
0.00

o 500 1000 1500
tirne



Nonlinear saturation of Landau damping

Damping rate time behavior

i

sin ( kx) Phase space distribution function

s

L

X

Vlasov simulations =0 2k

0.10
0.08
~ 0.06
= 0.04

0.02
0.00

o TO0 200 300 400

0 500 1000 1500 Signature of trapping

tirne

azZ5

.20
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Nonlinear saturation of Landau damping
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Damping rate time behavior

T e Y T B
E /h\
- [ / \
J"(t) / r / \'\
0.3 ?'/ \
/ \
!’ \\
Ot-- / )
\ ' 02 .‘ I\
1 / I 1
/ / I\
g / \
r / 1y
0.1F / ™
. F ‘,‘.‘
?L E j \\\
0.0F vl e

Vlasov simulations =0 2k

azZ5

.20

o5

o TO0 200 300 400

0 200 1000 1500

o Signature of trapping



Be careful with numerical Vlasov simulations

Galeotti and Califano, PRL (2005)

N, (1) =J'f ’(x,V,t)dxdv
S(t) = —J'f In(f) dxdv

foorET

1000 =

0895

0. ogs

0087 E

0,998

1 1 1 1 1 1 1 L 1 L 1 1 1 1 1 1 1
a 200 400 [fale} HOd oo

1.003F

Trapping region ,w_gé_

100t F

S
ToOo0

] 200 400 i8] S0 1000



Filamentation problem

Small-scale structures are generated in
the phase space distribution function
due to trapping

L =Av

When the typical size of the velocity
structures gets smaller than the
nhumerical resolution...

The numerical algorithm is not able to
resolve them anymore...The topology of
phase space is changed

!

NUMERICAL VISCOSITY




Energy conservation
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LiiubAA Al

0.02

|

o (1 ., E*

4

1 . E*
f(aﬂ‘v + ?) dr = cost

0.014
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e
=

JE.. OE,. OE,,
o
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-0.02

Wl

Valentini et al. PRE (2005)
Valentini et al. JCP (2005)
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Velocity distributions in space plasmas

The velocity distributions in space plasmas are source of free energy
for many instabilities and kinetic processes

Helios 1 - 1976/06% 15:04:05 - R = C.504 Al
T T T

w012 _
m-ll»_ -
A strahl
1;,0-13_ i
; =
0.504U ; LB kmis 0154 AU I B18 krnis
H 0 e VT i, w0 1
g . G, A N\
10-2 . #\\9 .
et \ :1 :
v(10%m 8]
Generation of
suprathermal tails
03940 I.Bf.-k;r-’s 0.294U ' 781 kmis Gener-aﬂ on Of

accelerated beams



— Turbulence and kinetic effects in space plasmas

R
Spectral density per unit mass
1015 _ < Kineticrange *===" g
[ y : Energy cascades
L g M ] towards small scales
10§ ol 4
o 10 ik f P -
N i . e
= sF Ll ] the understanding of the
2 107 o p,,?,’,(ﬁ.,.,, 1 physical processes that govern
.., A . :
2 : : : ] the system dynamics at
— 00:- — ’f : J frequency of the order and
& 1 Turbulent cascade : \ beyond the ion-cyclotron
sl < . o ‘D'Ss'pa“on (°)' frequency is of key relevance in
107 F g space physics
f,-qu =
|0'10

0% 109 102 100 102 10%
f (Hz)

0 << ‘Qi FLULD REGIME Link beween low frequency (fluid)

dynamics and high frequency



Frontier problem in plasma physics

— Investigation of cross-scale interactions: from fluid to kinetic scales
"A challenge in computational plasma physics”
o MHD and HMDH 4 OBSERVATION DATA: Magnetic &

Mariner 2 r

SIMULATIONS electric field, density, velocity, PDF, ...

Kinetic effects in the
energy transfer across
ion cyclotron frequency

power spectral density (Xz/Hz)

Today (Giga-teraflop): Vlasov-hybrid

rre ncy,(Hz,' : e Future (tera-petaflop): full Vlasov!




Hybrid Vlasov-Maxwell equations (dimensionless units)
[
BN |——
I .

I
Jof
Y E+vxB|- be =0 Vlasov equation for ions
L. 1 2172 -
E=—-uxB+—-jxB—-—-VFP, +|V°E+...| Ohm'slaw
n n
V x E = _O_B Faraday equation
ot
V xB= J Current Density (low frequency approximation)
Ne 2 Ny =2 N Quasi-neutrality Vy = B
o (dmp)t
Pe =n’ Equation of state () — b
" omyc
g Vi g M,
0 Y my

Valentini et al, JCP 2007



Numerical algorithm

Splitting scheme (Chen and Knorr, JCP,
1977), for the time advance of the Vlasov

equation; third order Van Leer scheme \ . o
for spatial and velocity derivatives For details, see Valentini et al.
JPC, 2007; and Mangeney et

1 / al. JCP, 2002

Hybrid Current Advance Method for

the evolution of the electromagnetic
fields

The code is parallelized in
Parallelization strategy  emm———p Physical space using the MPT

directives.

For details, see Mangeney et
al. JPC, 2002




Hybrid Vlasov-Maxwell simulations of 2D plasma turbulence

B=2v;/Vi=2
T,/T: =1
B background magnetic field /

N, =512, N, = 512; Ny, = 51; Ny, = 51; Ny, = 51
Simulation of decay fturbulence
Servidio, Valentini, Califano and Veltri, PRL (2012)

Y

Simulation plane

TABLE I. Initial amount of magnetic fluctuations (second
column), system size (third column), and time of the peak of
the turbulent activity (last column).

Sb/BO Lg/di T* (!2;1)
Run I 1/7 27 X 30 150
Run II 1/3 277 X 20 50

Run III 1/3 27 X 10 20




Hybrid Vlasov-Maxwell simulations of 2D plasma turbulence
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The contour plot of the out of plane
current density shows the presence
of magnetic reconnection events
(black crosses)

Power Spectrum

10710 :. Laig

FIG. 1 (color online). (a) Shaded contours (zoom) of j. to-

gether with a, (isolines) and its X points (black crosses).
(b) Power spectra of ion density (green dotted), ion bulk velocity 0 0 X/;ioo 150
(red dashed), magnetic field (black solid), and electric field (dot-
dashed blue). The Kolmogorov expectation k3 (gray dashed) i
FIG. 8: Temperature anisotropy, defined as A1 /A3 [see Eq. (7)

is reported as a reference, while the vertical dashed line repre-
sents the ion skin depth wave number. and text below], in turbulence.



Hybrid Vlasov-Maxwell simulations of 2D plasma turbulence
L
[

4

Statistical analysis of the local femperature anisotropy

1 11 12 13 1.4 15 16 1.7
Aq/ha

FIG. 2 (color online). (a) PDF of the temperature anisotropy
A/ A5 for all runs (arrows represent averages): (b) shaded-
contour (zoom) of the anisotropy together with the inplane
magnetic field lines (black):




Hybrid Vlasov-Maxwell simulations of 2D plasma turbulence
—
[ ]

4

y/di

80 90 100 1 120 130 140

FIG. 3 (color online). (a) Isosurfaces of the velocity distribu-
tion function f(x*,v). at a given spatial position x* =
(60, 119)d;. (b) Two-dimensional cut of f in the minimum
variance frame. Thin (red) and thicker (blue) axis indicate ¢é,
and &5, respectively. The magnetic field direction B is repre-
sented with a thick (magenta) tube.

y/di

FIG. 10: Zoom of Fig. 8 (top) together with |§b|*> (bottom).
A correlation between the anisotropy and the magnetic field
strength is evident.

0 100 1o 120 130 140
=/ di




First attempt of 3D-3V Vlasov turbulence

Fig. 8 Velociry field in Viasov
o, turbulence. Many vortical
“¥wycures can be recognized..

The first example of Valov turbulence
has been realized with relatively low
resolution both in physical and velocity
space

N, =32, N, = 32; N. = 32; Ny, = 31; Ny, = 31; Ny, =31

This was a preparatory run performed on
SP6 Machine at CINECA

On the new FERMI machine at CINECA,

Fig 9. 3D shaded contowr of the proton

within a PRACE research project, we plan cabe & repored e e o s (4

. . . with their respective colors (red, green,
to run Hybrid Vliasov-Maxwell simulations e Tie plsna ot v conetd
wih a phase space resolution: e

N, = 128; N, = 128; N, = 128; Ny, = 51; Ny, = 51; Ny, = 51

OR LARGER?!? ASK CAVAZZONT!!!

f 0 2500Gh = 2.5Th



First attempt of 3D-3V Vlasov turbulence

Fig. 10, Total magneric field B (red spaghetiil. from different perspectives, iogether with the high-iniensity isosurfaces of
P (blue bubbles).

Fig. 11 Zoom af the magnetic field flucruations
b (withoui mean field), iogether wiith i blue
isosur faces). A magnetic structure ( 30 vortex,
or flux-nube) is identified




That s all !l



Francesco Valentini
Dipartimento di Fisica,
Universita della Calabria
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