Asymptotic behaviour of stationary solutions to the Vlasov–Poisson system in a polygon

F. Karami¹, <u>S. Labrunie</u>², B. Pinçon²

¹ ESTE, Université Cadi Ayyad, Essaouira, Morocco ² Institut Élie Cartan, Université de Lorraine, Nancy, France

Consider the stationary solution to the Vlasov–Poisson system in a domain $\Omega \subset \mathbf{R}^d$, corresponding to the Maxwell–Boltzmann distribution: $f(t, \boldsymbol{x}, \boldsymbol{v}) \propto \exp{-(\frac{1}{2}|\boldsymbol{v}|^2 + \phi(\boldsymbol{x}) - \phi_e(\boldsymbol{x}))}$. This distribution function models the equilibrium of a population of charged particles under the effect of its self-consistent potential ϕ and of an external (confining) potential ϕ_e created by "fixed" charges and/or an applied voltage. Integrating in the kinetic variable \boldsymbol{v} , we find that the former is solution to the nonlinear *Boltzmann–Poisson problem*:

$$-\Delta\phi = \kappa e^{\phi_e - \phi} := \rho \text{ in } \Omega, \quad \int_{\Omega} \rho \, \mathrm{d}x = M, \quad \phi = 0 \text{ on } \Gamma_1 \cup \Gamma_2, \quad \partial_{\nu}\phi = 0 \text{ on } \Gamma_3. \tag{1}$$

where the mass M > 0 of the distribution is given and $\kappa > 0$ is unknown; while the latter is solution to the linear problem:

$$-\Delta\phi_{\rm e} = \rho_{\rm e} \text{ in } \Omega, \quad \phi_{\rm e} = 0 \text{ on } \Gamma_1, \quad \phi_{\rm e} = \phi_{\rm in} \text{ on } \Gamma_2, \quad \partial_\nu\phi_{\rm e} = 0 \text{ on } \Gamma_3. \tag{2}$$

Above, we have set: $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$, with Γ_2 and Γ_3 possibly empty.

When Ω is non-convex and non-smooth, the potentials ϕ , ϕ_e are *singular*: and their gradients (which make up the electrostatic field) are unbounded near re-entrant edges or vertices (the well-known *point effect*). In the case of a polygon in \mathbb{R}^2 , the singular part of the solution is described by a finite number of *singularity coefficients* λ , λ_e : in local polar coordinates $\phi(r, \theta) = \lambda r^{\alpha} \sin(\alpha \theta) + \phi_{reg}(r, \theta)$, with $\phi_{reg} \in H^2(\Omega)$.

We are interested in the asymptotic behaviour of the coefficients κ , λ under various limits, such as $M \to +\infty$ and $\phi_{in} \to +\infty$. The usual boundary layer techniques *do not work*, as the limiting problems seem to be ill-posed. We introduce a new approach [1], based on the theory of *large* solutions to the *boundary blow-up problem*

$$\Delta u = p(x) e^{u} \text{ in } \Omega, \quad u \to +\infty \text{ near } \Gamma_{B}, \quad u = g_{D} \text{ on } \Gamma_{D}, \quad \partial_{\nu} u = g_{N} \text{ on } \Gamma_{N}, \tag{3}$$

where Γ_D and Γ_N can be empty, but: $\Gamma_D \neq \emptyset \implies \Gamma_N \neq \emptyset$ and $\overline{\Gamma}_B \cap \overline{\Gamma}_D = \emptyset$. The problem (3) has been studied by many authors in the case $\Gamma_B = \partial \Omega$; see [2] for a review. Under "reasonable" conditions, we show that it has a unique solution when Ω is a polygon. Using large solutions as auxiliary variables, we determine the asymptotic behaviour of κ and λ .

References

- [1] F. Karami, S. Labrunie, B. Pinçon, Math. Models Methods Appl. Sci. 23 1029 (2013)
- [2] C. Bandle, An. Univ. Craiova Ser. Mat. Inform. 32 1 (2005)