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An interaction potential is considered long-range if it scales at greater distances as r−α with
α < d, with r the inter-particle distance and d the spatial dimension, and their phenomenology
includes unusual features such as negative heat capacity, ensemble inequivalence and long last-
ing non-Gaussian quasi-stationary states [1]. and stay in such regime for times that diverge with
number of particles.

The Vlasov Equation (VE) describes the statistical state of a Hamiltonian system ofN classical
particles in the N → ∞ limit. Numerical solutions of the VE are extensively used for plasmas and
gravitational systems, among others. Analytical solutions are difficult to obtain since it is a non-
linear integro-differential equation, but on can look for particular solutions using generalizations
of the Lie symmetries methods to such equations [2]. In this work we present a classification of
group-invariant solutions of the VE for some one-dimensional representative models of interest in
the field of statistical mechanics of long-range interacting systems. The models considered are:
The Hamiltonian Mean Field, the Ring and the self-gravitating sheets models [4, 3, 5]. A great
deal of the computations required are performed using the package SADE in computer algebra for
the determination of infinitesimal Lie symmetries and its generalizations [6]. A discussion and
physical interpretation of the obtained solutions are provided.
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