Lecture I: FLAT SPACE-TIMES

Einstein formulated the theory of special relativity in 1905. I am not going to
attempt to give a comprehensive description of it, but only mention briefly a few
aspects that will help us most in our approach to curved space-times.

1. SPACE-TIME DIAGRAMS; CAUSAL REGIONS

One of the most revolutionary concepts of special relativity is the idea of unifying
space and time into a single entity called space-time. Throughout these lectures, the
emphasis will be on the geometry of space-time, so it will often prove helpful to draw
space-time diagrams of what we are trying to study. It is not that easy to visualize
four-dimensional space-time, but many problems have sufficient symmetry so that
they reduce effectively to three or even two dimensions of space-time. For example,
consider two situations that are essentially three-dimensional:

i) a planet in circular motion around the Sun: the planet describes a helix in space-
time (Fig. I.1a);

ii) a circular wave produced by dropping a stone in a pond: the spreading ripples
will produce a cone in space-time (Fig. I.1b).

Sun planet

Fig. I.la A planet in circular motion Fig. I.1b Circular ripples produced by a
around the Sun stone thrown into a pond

Points in space-time are called events, and a world-line is the path traced out in
space—time by the events representing the history of a particular particle or light-ray.

Special relativity has two very important things to say about the speed of light
c: firstly, it is a constant in vecuo, and secondly it is a limiting speed for all
communication and for all motion of massive bodies; indeed it is the limiting speed
for propagation of all causal influences. In terms of space-time diagrams, the first of
these statements means that light-rays are straight lines. For convenience, we plot ct
against the spatial coordinates; then the light-rays are at 45° to the ct-axis. The light-
cone of an event O is the set of all light-rays through the event (Figs. 1.2a,b). The
second statement means that all world-lines of massive particles must lie within the
light-cone since their speeds are less than ¢, so the regions outside the light-cone are
inaccessible to causal influence by O and cannot influence O. We see that by knowing
the positions of the light-cones, we know a great deal about possible motion in the
space and about its causal properties.

2



INTRODUCTION

In these lectures, I want to give an introduction to general relativity, and in
particular to the aspects that are involved in cosmological models. The approach 1
am going to take is slightly unusual in that I am not going to use explicitly any tensor
calculus—not because I think it is unimportant or not useful, but because there is a
danger of getting lost in the details of tensor manipulation and losing sight of what I
feel is really important, the geometric structure of space-time. Therefore the lectures
will include many diagrams and only fairly simple equations.

Mainly for pedagogical reasons, I shall begin by discussing flat space-times. Many
of the techniques we use in studying curved space-times are used also for flat space-
times where it is usually easier to see what is going on. I shall then introduce
the idea of curved space-times, emphasizing the importance of the metric interval
and the resulting light-cone structure, which determines the causal properties of the
space—time. As examples of these ideas, I shall first describe the space-time around
an isolated spherically symmetric object and the possibility of collapse to a black
hole, with the associated formation of an event horizon, and secondly the space-time
produced by the matter in the universe as a whole, and the causal structure of simple
model universes. Throughout these lectures, I will be talking about the classical
theory, with only brief mention of some possible differences when quantum effects are
taken into account.

These lectures follow closely the book Flat and Curved Space-Times written
jointly with George Ellis and with diagrams by Mauro Carforo. I am very grateful to
both of them for this collaboration. I am also grateful to John Bell for inviting me
to give these lectures at CERN, and for the help, encouragement and inspiration he
provided. I dedicate these notes to his memory.
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2. MEASUREMENTS; THE DOPPLER SHIFT

To make measurements in space-time, we first of all assume the existence of ideal
clocks that measure time accurately along their world-lines. This time, measured
along the world-line, is called proper-time. (The usual t-coordinate is therefore the
proper-time for an observer at rest at the spatial origin O.) We then make use of the
invariance of the speed of light: we use radar to measure distances. We also use radar
or light to establish simultaneity, which is an important concept in special relativity,
and one about which observers in relative motion will disagree, as we shall see. Here
is an operational definition of simultaneity. Suppose an observer A sends a light signal
at event E. The signal is reflected back at point P and received again by A at R
(Fig. 1.3). Since the light travel-time must be the same for both the outward and the

ct' oy}

Fig. 1.3 The light-rays used by observer A to determine that P is
simultaneous with O

return journey, A concludes that the event O on his world-line, half-way between E and
R, is simultaneous with P. Similarly, all other points on the z-axis are simultaneous
with O, and so in general, for an observer at rest, the surfaces of simultaneity are just
the surfaces of constant ¢.

Now consider a second observer, B, moving with constant speed v relative to A.
He goes through exactly the same process, determining that P’ is simultaneous with
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Fig. 1.6 Light signals between observers A and B in relative motion

O, which is half-way between E' and R'. From the geometry of Fig. 1.4 we see that P’
must be above the z-axis and so does not coincide with any of the events that were
simultaneous with O for A. In fact the events that are simultaneous with O for B are
on a straight line through O, and it can be proved that the angle of this line to the
z-axis is the same as the angle of B's world-line to the t-axis. Now B’s world-line is
his time axis, t' say, and his surface of simultaneity through O, ' = 0, is the z'-axis
(Fig. 1.5). However, we cannot read off from a space-time diagram drawn from A’s
point of view what measurements B will make (that will come later!). What we can
see is that space-time is split differently into space (surfaces of simultaneity) and time
(measured along world-lines) for observers in relative motion.

Now let us look at one of the simplest measurements we can make, that of the
Doppler shift (and hence the red-shift). Suppose that light signals are sent by A at an
interval of T and received at an interval of T' by B, moving with speed v relative to
A (the times being measured by their respective clocks) (Fig. 1.6). The Doppler shift
K is defined by

K=T/T.

A standard way of measuring K is from the observed wavelength of
electromagnetic radiation, provided the intrinsic wavelength is known. Since the
periods A7, and Ar, of the emitted and observed radiation, for observers in relative
motion, are related by
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Aty = KA,
then the emitted and observed wavelengths are related by
Ao =K .
The red-shift parameter z is defined by

_ change in wavelength X, — )

emitted wavelength Yo K-1.

We see that z > 0 and K > 1 correspond to a red-shift of the radiation and that
-l < z< 0and 0 < K <1 correspond to a blue-shift. By measuring red-shifts
from distant galaxies, astronomers can determine their speed of recession by using the
formula which we will now derive.
We must first assume uniformity of K (i.e. that it is independent of T and constant

in time) and reciprocity, which is a consequence of the principle of relativity. (If B
is moving away from A with speed v, then A is moving away from B with speed v,
so Kap = Kpa). Suppose, now, that B is moving with speed v relative to A and
that they coincide at the origin O. At time T, A sends a signal to B which is received
at time T' according to B, and then reflected back to A who receives it at time T"
(Fig. 1.7). Then we have

T'=KT ,

T = KT' = K*T .

According to A, the travel time for the light is

T"-T=(K*-1T,

so the distance measured to B is

D::-;—C(I{z—l)T.

This is the distance to B at a time

t=-;-(T+T")-_—%(K2+1)T.

t'/B

Fig. 1.7 Light signals by which A can determine the relative

t=0 velocity of B




Thus B’s velocity relative to A is

2 _
va__c(K 1)

t K241

Solving this formula for K, we obtain

k- (L)

(a formula usually derived from the Lorentz transformation).
By similar arguments, using what is known as Bondi’s K-calculus, one can derive
all the kinematic effects of special relativity.

3. THE LORENTZ TRANSFORMATION;
INVARIANTS AND THE METRIC FORM

3.1 Active and passive transformations

In the conventional treatment of special relativity, one starts from the Lorentz
transformation relating the coordinates of relatively moving observers and derives
the kinematic effects from it. However, it is possible—and perhaps more appealing
intuitively—to derive the Lorentz transformation from arguments about surfaces of
simultaneity, etc., in space-time diagrams, using the K-calculus. I will not go through
the derivation here, but merely state the result.

Consider an observer B moving with speed v in the z- and z'-directions relative
to A. The Lorentz transformation between the coordinates of a point P in A’s frame
and in B’s frame (Fig. 1.8) is given by

!

' =qt—-vz/c?), T'=xy(z—-vt), Y=y, 2=z,
with v = (1 — v?/c?)71/2,
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Fig. 1.8 The event P has coordinates (t,,y,z) in A’s frame and (t', x', y', 2') in B’s frame



In the sense in which I have described it, relating the coordinates of a single event
according to different observers, the Lorentz transformation is passive. We can also
regard it in an active sense. Let us first see what this distinction means for rotations
in a plane.

Consider a rotation through an angle 8 from a frame F' with coordinates (z, y) to
a frame F' with coordinates (z',y") (Fig. 1.9a). The coordinates of a single point P
are related by

' =zcosf+ysinb

y' = —zsinf +ycosh .

This is a passive transformation. In an active transformation (Fig. 1.9b), the space as
a whole rotates relative to the fixed frame F, the rotation of F' dragging the points
with it. Hence a point P with coordinates (z',y') relative to F' moves to P’ with the
same coordinates (z',y") relative to F' [and (z,y) relative to F, with (z,y) and (z',y')
related by the rotation formula above]. The movement of points as a whole is shown
in Fig. 1.9¢c.
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Fig. 1.9a A passive rotation relates Fig. I.9b In an active rotation, the point
the coordinates (z,y) and (z', y') P moves with the axes and coordinates
of a single point P under rotation to a new point P’

of axes

Fig. I.9c The movement of points in the plane generated

by an active rotation
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Fig. 1.10a The effect of a boost on the Fig. 1.10b The pattern of motion gener-

points P, @, and R, moving them to P', ated by a boost
@', and R’

To understand the active sense of a Lorentz transformation, consider two Lorentz
frames, F' and F', which coincide initially. We then give frame F' a velocity v in the
z-direction: we say that we give F' a boost through v. Space-time points are dragged
along with it, so an event P with coordinates (z',t') in both F and F', goes to an
event with coordinates (z',t') in the boosted F' [and (z,t) in F] (Fig. 1.10a). Thus
if we look only at what happens relative to F, a point (z',t') goes under the boost
to (z,t), related to (¢',y') by the Lorentz transformation. (In this sense the boost
corresponds to an inverse Lorentz transformation.) The movement of points under
a boost is shown in Fig. 1.10b. It is clear from the definition that length and time
measurements are preserved under an active Lorentz transformation.

If we keep on repeating the boost for a particular relative velocity v, we get an
infinite series of frames, each related to the previous one by a Lorentz transformation.
We can see the effect on a unit time vector in A’s frame (Fig. 1.11): these arrows
represent unit clock measurements made by observers moving at different velocities

ot vgctor‘s at
time=+

vectors
at distance=+1

- X

Fig. I.11 The effect of a repeated series of
boosts on the unit time-like and space-like
vectors along the axes of the reference frame vectors st
of a fixed observer A time=-1
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relative to A, and the surface they define is at unit proper-time from O. Thus this
surface enables us to compare the units of time on different lines through the origin,
representing the uniform motion of particles at different speeds. Similarly, repeated
boosting of a spatial vector will give a series of vectors representing unit spatial
measurements in the surfaces of simultaneity of the family of observers in the boosted
frames, defining a unit spatial distance from O. This surface enables us to compare
the units of spatial distance along different space-like lines, all passing through the
origin.

3.2 Invariants and the metric form

We have seen how observers in relative motion disagree about simultaneity and
about the coordinates they assign to events. Let us now define some quantities about
which they agree.

As we have already seen, and as can be easily checked, the distance S from the
origin O to an event (t,z,y, z) defined by

S? = 2 42t 4 y? 4 22

is invariant under Lorentz transformations. The surfaces of constant S? can be plotted
(Fig. 1.12), and we see how different regions correspond to events whose distances from
the origin are time-like (§? < 0), null (S? = 0), or space-like ($? > 0).

By a shift of origin, we can show that the distance between any two points is also
invariant, as is the infinitesimal distance defined by

ds? = —c2dt? + dz? + dy? + d2? .

This expression is known as the metric form, and the proper-time 7 is defined in terms
of it by

ds? = —c*dr? .
ct
Sa<0
§=0
2 2,
S5=>0 , S0 )
////820—/
;‘ §<o Fig. 1.12 The surfaces {S? = const}



Of course, ds? can be expressed in terms of other coordinates; e.g. in spherical polars,

ds? = —ctdt? + dr? 4 r2(d6® + sin® 6 d¢?) .

Given ds?, we can find the light-cone of a point P by using the fact that light-rays are
characterized by null intervals, ds? = 0. This leads to

dt? = dz? + dy? + d2?

which shows that in flat space-time, the light-cones are parallel to each other
(Fig. 1.13).

The significance of the metric is that it enables us to calculate distances in space-
time along any given path or world-line, which is clearly very important. (For example,
the source of the time difference in the ‘twin paradox’ is the fact that the proper-time
elapsed along different space-time paths is different.)

L
LD

D

-

< Fig.1.13 In a flat space~time, the light-cones

at each point are parallel to each other

4. SOME FLAT-SPACE COSMOLOGICAL MODELS

I now want to illustrate these ideas about special relativity by describing three
cosmological models in flat space-time (i.e. neglecting gravitational effects). Similar
features will arise in some cosmologies in curved space-times, where we take gravity
properly into account. For pedagogical reasons, I will concentrate on two-dimensional
versions, but these can easily be extended to four dimensions. From now on, I will use
units in which ¢ = 1.

In the real universe, we observe matter clustered into galaxies that are measured
to have systematically increasing red-shifts as their distances from us increase. This
suggests that there is a well-defined average motion of matter in each region of the
universe, and a model of the universe must therefore specify both the space-time
itself and this average motion of matter. A space-time is a model universe when
a family of preferred world-lines is specified in it, representing the average motion
of matter at each point in space-time. These world-lines, called fundamental world-
lines, represent the history of galaxies moving with the average motion of matter at
each point. Observers moving with them are called fundamental observers. We can
calculate the results of their observations and compare them with real observations in
order to test how realistic the model is.
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The models we consider here are based on symmetries of space-time which
pick out certain world-lines to be ‘naturally preferred’. We consider the Minkowski
universe, the Rindler universe, which has some properties similar to those of a black
hole, and the Milne universe, which is a simple expanding universe.

4.1 Minkowski universe
Let us consider the two-dimensional version first. This is just flat space-time with
metric
ds? = —dt? + dz? |

The world-lines of the fundamental observers are lines { = const} and the density of
galaxies is uniform in the {¢t = const} surfaces (Fig. 1.14).

1
/x =const
world-lines
/of matter
X=0

\:const

~-surfaces
‘Lhomogeneity

t=0

B %

Fig. I.14 The Minkowski universe. The fun-
damental world-lines are {¢ = const}, and

AN
\\translational the surfaces of simultaneity and homogeneity
invariance are {t = const}.

This universe is based on the translational invariance of the space-time. The
world-lines are moved into themselves by the time translation

t'=t+t,, z'=z, forallt,.

Thus the world-lines stay a constant distance from each other. Also they are moved
into each other by the spatial translation

[
' =xz4+z9, t'=t, for some zg ,

which implies spatial homogeneity. Notice that the translations are symmetries
because they leave the metric invariant.

Whether we think of this universe in the continuum case where there is a world-
line through every space-time point, or in the discrete case where there is an infinite set
of uniformly distributed world-lines, we can construct the whole universe by starting
with a single world-line and generating the others by translation. We clearly have a
static uniform distribution of matter.

A four-dimensional version of this universe with metric

ds? = —dt? 4 dz? + dy? + dz?
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is the simplest kind of model universe—a static uniform distribution of matter in a
flat space-time, without beginning or end or spatial limit. It is rather uninteresting
because there are no red-shifts and it clearly does not correspond to the real universe.

4.2 Rindler universe

Although this model is again based on flat space-time, it exhibits some of the
features of a black hole. It is based on the boost invariance or Lorentz invariance of
flat space-time. For the two-dimensional version, we again start with flat space-time
with metric

ds? = —dt® + dz? .

We use the spatial translation

' =z+4+z9, t'=t, for some z, ,

to determine the initial positions of a family of world-lines in the surface
{t = 0}, resulting in an initially uniform distribution of matter. We then use the
boosts about O to determine the world-lines L elsewhere from their initial positions
(recall Fig. 1.10b). The interval is invariant under boosts, so the distances between
them remain constant in their surfaces of simultaneity, which are straight lines through
the origin (see Fig. 1.15). Thus at all times the fundamental observers measure the
density of matter to be constant.

Fig. I.15 The Rindler universe. The funda-
mental world-lines L are obtained by boosts
applied to their initial positions at equal
distances along the z-axis

Consider a world-line through the point (p, 0). A general point on the world-line
is obtained from this by applying a boost through some velocity v to give

z=vv)p, t=r(v)vp .
Thus the equation of the world-line is
2o =p?
and v serves as a parameter along the world-line labelled by p.
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Note that O is a fixed point of the boosts, so they do not generate a world-line
Lo through O. Instead, we define Ly to be the line {z = 0}.

Let us now look at some of the other properties of this model universe.

4.2.1 Uniform acceleration
The world-lines L are not straight lines, so the observers must be accelerating.
To determine the acceleration, consider two events @ = (z,t) and Q' = (z',t') on

L {p = po}, related to each other by a boost through Av (Fig. 1.16). The interval of
proper-time A7 between @ and Q' is given by

A= (' —t) - (z' —2)* .

Fig. 1.16 Two neighbouring points @ and Q' on the world-
line {p = po} have velocities differing by Av

We substitute

z' = y(Av)[z + (Av)t]
t' = y(Av)[t + (Av)e]

[recall that boosting (z,t) to (z',t') in this sense involves what is effectively the inverse
transformation]| and we use

—t? + 2% = p}
to obtain
AT = 2[y(Av) — 1]5} .
Now for small Av, which we need to consider so that the proper-time on the

straight line between @ and Q' converges to the proper-time along the world-line
between them, we have

1
WAv) =1 =(1-Av?)"V2 1~ §Av2 :

which gives
AT = Avpg .
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Thus each observer will measure his acceleration to be

Av 1
A’I’ - Po ’
which is constant on each world-line, and is smaller the further the world-line is from

0.

4.2.2 Red-shifts measured by fundamental observers

Let us now calculate the red-shift for observers O; and O on world-lines {p = p;}
and {p = p2} (Fig. 1.17). Suppose that light emitted by O, at event r; is received by
O, at event ry. If event r; is boosted through Av to an event r} a proper-time Ar
later, the light-ray is boosted to another light-ray which is received by O, at event rj,

t}

=3
a3

<3

Fig. 1.17 Light-rays used to determine the red-
shift between observers O; and O,

a proper-time Aty later than r,. Now we have already seen in the previous section
that Ar is proportional to p for fixed Av. Hence the K-factor observed by O is given
by

k=8n_pm

ATl p1 ’
which is independent of Av and of t. We see that the red shift increases the further
apart the world-lines of the two observers are.

4.2.8 The event horizon

We now consider light signals between a fundamental observer A on the world-
line L and an observer Ag on the world-line through the origin Ly. By trying to draw
light-rays in Fig. [.18, we can see that an observer on Lg can receive signals from L
only when t > 0, and can send signals, which will be received on L, only when ¢ < 0.
Thus it is impossible for A to send a signal to Ay and receive an answer! In fact, all
events with z < t cannot send signals to Ay and events with £ < —t cannot receive
signals from A. The surfaces z = %t are called event horizons, and the observer A on
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hidden t
from L event horizont = X
’ L = +X
events, bow ;
Fig. 1.18 The event horizons z = =+t Fig. 1.19 A massive object leaves the world-
in a Rindler universe line L and crosses z = t at the event Q)

L cannot know what lies behind the future event horizon £ = t and cannot influence
what happens behind the past event horizon z = —t.

Suppose a massive body leaves a world-line L and crosses the future event horizon
at event @ (Fig. 1.19). It can never re-cross the horizon and return to L because it
would have to move faster than light. It is trapped by the event horizon, a surface
in space-time which it can cross in only one direction. If it sends out signals before
crossing the horizon, these will take longer and longer times to reach L. The red-
shift will diverge, and the image intensity, which depends on K~*, will tend to zero.
Thus all activity on the body will appear to slow down and the image will fade away.
However, as far as the body goes, nothing special happens to it locally at event @ as
it crosses the horizon. This behaviour is exactly analogous to what happens as a body
crosses the horizon of a black hole.

4.3 Milne universe

We again start with flat two-dimensional space with the usual metric. Let the
world-line Ly be {z = 0}, as in the Rindler universe. We repeatedly apply a boost to
this through +Av to generate an infinite family of world-lines all passing through O
(Fig. 1.20). This represents an expanding universe with an infinite number of galaxies.
Let us look at some of its properties.

warld lines
Y
LO
surfaces
of
homogeneity
Fig. 1.20 The Milne universe. The world-lines
0 X are generated by repeatedly applying a boost to
Ly



4.8.1 Equivalent world-lines

All world-lines are constructed in the same way, and each fundamental observer
will determine the same history for the universe as every other one. Thus this model
obeys the cosmological principle: all fundamental observers are equivalent to each
other. Note that the world-lines are all straight lines, representing inertial motion.

4.3.2 Homogeneous spatial sections
Consider the surfaces

2 — 22 =72

These are at constant space-time distance from O, and in fact 7 is just the proper-time
along the world-lines. Let us look at the intersections @ and Q' of two world-lines
with this surface (Fig. 1.21). The space-time distance between them satisfies

Ap2 = 2[y(Av) - 1]'1’2

(cf. the calculation of A7? in the Rindler universe), and in the limit of small Av we
obtain

Ap=71Av .

L.
surface of
hemogeneity

\

t—_—to

Fig. .21 A boost through Av applied to the event ¢ on L moves it to the event
Q' where L' intersects the surface of homogeneity

Thus on a surface of constant 7, with boosts through fixed Av separating the world-
lines, the distance between world-lines is constant. Thus there is a uniform density of
matter on each surface of constant 7.

4.8.8 Linear ezpansion and observed red-shifts

As we have seen, the distance between galaxies scales linearly with 7, so the
matter in this universe is expanding uniformly. The observers move inertially, so the
red-shifts are given by the formula we derived for constant relative velocity, and they
increase systematically as one goes to further and further galaxies. A fundamental
observer on L will measure all other galaxies to be receding linearly from him, but
this will also be the experience of all the other observers. (Our diagram suggests that
Ly is privileged, but that is just because we have drawn it in terms of the coordinates
of an observer on Lyg.)

16



4.59.4 Imitial singularity
If the expansion is followed back in time to O, there is a ‘Big Bang’ where all
the world-lines intersect and the density of matter is infinite (see Fig. 1.22).

Fig. 1.22 The past light-cone C™(P) of an event
P on a world-line L intersects all the other
fundamental world-lines

The past light-cone of any point P at time 7 on a world-line L intersects all the
other world-lines, so in principle each observer can at all times see and communicate
with every other galaxy (even though there are an infinite number of them). This
means that there are no event horizons. However, the red-shifts will diverge as one
looks to earlier and earlier times, and the intensity of the received light will fade away
to zero.

Although each observer can receive signals from every galaxy in the universe,
the distance measured by radar to the limiting observable event (e.g. R in Fig. 1.22)
is 79/2 in each direction. Thus at time 7g, the size of the observable is 7.

By extending these ideas to four dimensions we can construct a Milne universe
with many of the properties of the expanding universes described in Lecture IV.
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Lecture II: CURVED SPACE-TIMES

In this lecture, we shall look at some general features of curved space-times. In
flat space-times, we can choose coordinates so that all the light-cones are parallel to
each other, but in curved space-times the situation is very different. According to
general relativity the gravitational fields of massive objects not only curve the paths
of other massive objects but also cause light-rays to bend. This feature affects the
causal and observational properties of curved space-times in intriguing ways.

1. GENERAL CONCEPT; PRINCIPLE OF EQUIVALENCE;
GEODESICS

First of all, how do we distinguish a curved space-time from a flat one? Let
us start with a two-dimensional space. One easy test for curvature is to attempt to
flatten it out onto a plane (Fig. IL.1); if distortion, gaps, or overlap occur anywhere,
then it is curved. We see by this test that the surface of a cylinder is not curved, but
that of a sphere is.

Fig.II.1 a) For a surface with
positive curvature, there are
gaps if it is flattened onto a
plane. b) For a surface with
negative curvature, there is

overlap if it is flattened onto
a plane

Geometric relations also differ in curved spaces. In flat spaces, the laws of
Euclidean geometry hold: e.g. parallel lines never meet, the angles of a triangle
add up to 7. But this is not so in curved spaces. The analogues of straight lines are
geodesics (the shortest lines between points, or, equivalently, curves that always move
straight ahead without deviation). If we consider the surface of a sphere (Figs. I1.2a,b),

Fig. I1.2 a) A spherical triangle formed by three great circles on the surface of the Earth (the
equator and two lines of longitude meeting at a right angle at the North Pole). Each of the
angles of the triangle is a right angle. b) Two great circles (lines of longitude), parallel to
each other at the equator, meet at the North Pole.
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geodesics parallel to each other at one stage can meet, and the angles of a triangle can
add up to more than !

Higher-dimensional curved spaces and curved space-times are more difficult to
visualize, but similar effects occur.

To see why we actually need curved space-times, let us consider the relationship
between acceleration and gravity. We look at four observers in different physical
situations. Observer A is in a lift at rest relative to the Earth. If he releases an object
it will fall to the ground (Fig. I1.3a). Observer B (Fig. II.3b) is in a rocket moving
with constant acceleration ¢ far from any massive body. The results of experiments
will be the same for him as for observer A. Observer C is in a lift which is falling freely
under gravity because the cable has broken (Fig. I1.3c). He will be falling at the same
rate as any object he releases, so his measurements will be the same as for an observer
D (Fig. I1.3d) in a stationary rocket far from any gravitational field. The experiences
of these observers can be summarized in the principle of equivalence: there is no way
of distinguishing between the effects, on an observer, of a uniform gravitational field
and of constant acceleration.

acceleration

==

gravity

J

P
e

3
o

=5

)
gravity|

(c) (d)

Fig. I1.3 a) Observer A is in a lift at rest relative to the Earth. b) Observer B
is in a rocket moving with constant acceleration g far from any massive body.
c) Observer C is in a lift falling freely under gravity. d) Observer D is in a
stationary rocket far from any gravitational field.

If we can mimic a gravitational field by going to an accelerating frame, why do

we need curved space-times? Let me give you two reasons.
i) Observer D will see light-rays travelling in straight lines across the cabin of his
rocket, so they will also be straight for the freely falling observer C in his lift
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A 1
) light ray.__| T
Fig. I1.4 Observer C will measure a light-ray N
travelling across the lift to move in a straight @ c ‘ gravity ﬁA
line. The same light-ray will appear curved to ‘
observer A.

i)

(Fig. I1.4). However, the stationary observer A will regard C’s light-ray as being
bent down because C is accelerating relative to A, and will conclude that space-
time is not flat. Thus to be able to describe the experiences of all observers, we
need curved space-times.

The second argument (Figs. I1.5a—c) is that real gravitational fields are non-
uniform, so whilst we can transform away the effect at one point, it will not go
at other points. For example, to transform away the gravitational field of the
Earth (Fig. II.5a), we would need infinitely many accelerated frames. However,
if we allow curved space-times, then we can represent any gravitational field in
a single frame.

It follows that in general relativity where we use accelerated frames, it is no

longer possible to make a clear-cut distinction between motion under gravity and
inertial motion (motion under no forces), because what is inertial motion in one frame

acceleration

(b)

gravity acceleration

Ny
PN

LY
(c)

Fig. IL.5 a) The direction of the gravitational field at various points around the Earth.
b) An acceleration which transforms away the gravitational field at P will double it at P'.
c) In a flat space-time, a separate accelerated frame is needed at each point to transform
away the gravitational field.
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Fig. 11.7 The orbit of a planet around the Sun pace-section

may not be inertial in another. However, we can give a clear meaning to free fall,
which is motion under gravity and inertia alone. We then postulate that the paths of
freely falling objects in space-time are time-like geodesics. This prescription gives a
satisfactory description of all observed motion.

Consider the planets for example; gravity curves their paths through space-time.
(Note the inherent non-linearity of the theory: massive bodies produce space-time
curvature which then affects their motion! This non-linearity is the reason why some
calculations in curved space-time are so difficult. However, for the moment we shall
consider the motion of test particles, neglecting their effect on the curvature of space-
time.) An analogue of planetary motion is that of a ball on a curved surface; its
motion is determined by the structure of the space (Fig. I1.6). Similarly, the planets
are held in their orbits by the curvature of space-time caused by the gravitational
field of the Sun (Fig. I1.7). They follow paths corresponding to the shortest distance
in space-time, which actually corresponds to the longest proper-time. The spatial
projection of such a path can be highly curved.

We cannot measure the strength of a gravitational field by the amount it bends
a single light-ray or particle path, because this depends on the reference frame used. '
(For example, in the case of a particle we could take a reference frame moving with it.)
However, we can look at the relative motion of two particles or light-rays in order to
investigate the space-time curvature and the related gravitational field. For example,
if we consider two particles falling freely towards a star, we can see that the geodesics
become closer to each other in time and eventually meet (Figs. II.8a,b). The shorter
the time before this happens, the stronger the gravitational field.

t ‘} (b)

- f* eodesics

{ initial mation

Fig. I1.8 a) Two particles falling freely
Sistance from rest towards a star G. b) The
G space—time paths of the particles.

d
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2. THE METRIC FORM

Let us now consider how to describe curved space-times mathematically. As
we saw for flat space-times, the metric form determines all distance measurements
and angles, so we can describe a curved space-time by giving ds? in some suitable
coordinate system.

We shall first look at the case of two dimensions. Consider, for example, the
metric form for the surface of a sphere of radius a:

ds? = a®(d® +sin? 6 d¢?) ,

where 6 and ¢ are standard polar coordinates (Fig. I1.9a). Increments in 6 and
¢ produce displacements of a df and a sinf d¢ along the lines of longitude (¢ =
constant) and latitude (6 = constant), as shown in Fig. I1.9b. For small increments,
the displacements form two sides of an approximately flat right-angled triangle, and
Pythagoras’ theorem gives ds?, the square of the hypotenuse, as in the metric form.

a b
(Jﬁ (@ (b)
™~
-4
asingdy
Fig. I1.9 a) The angles 6 and ¢ used B o
to describe position on the surface of a %‘Ldg
sphere. b) The displacements on the
surface of the sphere produced by small ¢ e+de

increments in 6 and ¢. a

«— S

We see that the geometry of the curved space agrees with the flat-space result in the
limit of very small displacements. Thus locally a curved space is just like a flat space.
The distinction is that for a flat space we can find coordinates where the metric takes
the form

ds? =dz? + dy2

everywhere, whereas this is not possible for a curved space. Similarly, for a flat space-
time there are coordinates for which the metric is everywhere of the form

ds? = —dt? 4+ dz?

but again this is not possible in the curved case. The extension to four dimensions
follows immediately by adding extra spatial increments to the metric form.

Now let us suppose that we are given the metric form ds? for a four-dimensional
space-time. This then determines all time measurements by ideal clocks (moving on
time-like curves for which ds? < 0) through

T = [(—ds?)'/? .

It also determines the motion of light (paths for which ds? = 0). Thus it defines the
light-cone at each point and therefore also the causal structure of the space-time. As
an example, suppose that we are given a metric

ds? = —dt? + t*/3(dz? + dy® + d2?) .
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How do we interpret this? Firstly, along a world-line {z,y, 2z const}, we have dz = dy
= dz = 0, giving ds* = —d¢#?, and so ¢ measures proper-time along these world-lines,
the fundamental world-lines of the universe described by this metric. Secondly, along
a curve {t,y,z const}, we obtain ds* = t%/3 dz?, so the proper distance along the
curve is measured by t*/%z rather than z, which implies (as we shall see later) that
this is an expanding universe. Thirdly, the light-cones are determined by ds? = 0, so
a displacement along a light-cone must satisfy

dt? = t*/3(de? + dy? + d2?) .

Projection onto a plane {y, z const} gives

dt = 423 dz .

Thus for small t, a displacement dz gives small dt, whereas for large ¢, dt is much
larger. This means that the light-cones flatten out as the ¢ = 0 surface is approached,

as shown in Fig. I1.10.
t)

Fig. I1.10 The light cones for the metric form
ds? = —dt? + t4/3(dz? + dy? + d2?)

We see that the geometry of space-time is determined or described by the metric
ds?. What then determines the form of the coefficients in ds?? They are actually
determined by the distribution of matter and energy in the universe through Einstein’s
equations, which are non-linear tensor equations relating the geometry of the space-
time to its matter content. We shall not look at these equations in these lectures but
just examine the properties of various solutions.

3. LIGHT-RAYS AND CAUSALITY

We have already identified the paths of freely falling objects with time-like
geodesics, obtained by finding the extremal value of 7 = f(—ds?)!/2| corresponding to
maximum proper-time. We now identify light-rays in a curved space-time with null
geodesics. Let us look at some of their properties.

3.1 Bending

We have already seen that the stationary observer A observes the light-rays
in the freely falling lift (C’s lift) to be bent (see Fig. I1.4). It is true, in general,
that relative to an observer at rest on a massive body, light-rays will be bent by the
gravitational field of that body. Experimental evidence for this was found from the
apparent positions of stars in a solar eclipse in 1919, and led to widespread acceptance
of the theory of general relativity.
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3.2 Gravitational red-shifts

For a rocket in free fall, observer D should measure no change in frequency for
light emitted from the floor and detected at the roof. However, for observer B in
an accelerating rocket (Fig. I1.11a), the roof accelerates away from the position of
the floor when the light was emitted. Thus in every time interval measured by B,
the light has to travel further before reaching the roof, so observer B will detect a
red-shift (cf. calculation of the red-shift in the Rindler universe). By the principle of
equivalence, the same will be true for an observer A stationary on the surface of the
Earth (Fig. I1.11b). This is gravitational red-shift and has been verified experimentally
by observations of distant stars and also by experiments at Harvard Tower.

1 light travel
time

(b)
t
A w
A|u fjl
§A1'>Ar
space-time
curved!!
At 1
e
X

()

Fig. IL.11 a) Light is observed to be red-shifted in an accelerated rocket. b) Light must also
be red-shifted in a stationary lift in the Earth’s gravitational field. c) The time interval A7’
between reception of signals is greater than the time-interval AT between their emission, not
because of relative motion of the emission point u and the reception point w, but because of
space—time curvature.
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3.3 Geodesic deviation of light-rays

The bending of light-rays means that the relationship between observed angles
and sizes is changed from the flat-space case (Figs. II.12a—c). In particular, if light-
rays are bent towards each other, as we expect for an attractive gravitational field,
they will be closer at the object than would appear from their angular separation and
the object will appear to be larger than its real size (Fig. I1.12¢).

distance distance t
r >/ CURVED: r :i‘i’;a'“e"
ELAT: - [repulsive] g
/ d=ar déar
anglaa ightrays e ey : b.real size
anglea light-rays

apparent size
CURVED:

. \ d#ar
[attractive]

real size

/

" distance r

(c)

Fig. I1.12 a) In a flat space, the size d of an object viewed with angular width « at a distance
r must be ar. b) In a space of negative curvature, the apparent size ar will be smaller than
the true size d. c¢) In a space of positive curvature, ar will be larger than d.

3.4 Gravitational lensing

In extreme cases, the presence of matter can cause sufficient bending to produce
refocusing of the light-rays. This lensing effect can occur locally or over the whole
past light-cone.

3.4.1 Local lensing

In a cosmological model, a massive object can refocus light-rays from more
distant objects to produce multiple images. This effect has been observed in double
images of quasars, where the spectra of the light from the two images show that it
originates at the same source (Fig. 11.13).

l lensing mass

Y

Getector

Fig. I1.13 A massive object refocuses light from a more distant source,
producing multiple images Iy and I, of the source




8.4.2 Large-scale refocusing

In this case, the light-cone as a whole can be bent back on itself. In flat space-
time, the area of a wavefront necessarily increases with the distance from the observer
(Fig. I1.14a). In a curved space-time this is not so, because neighbouring light-rays are
focused towards each other. Our past light-cone will reach a maximum distance from
our world-line C and then start refocusing towards it (Fig. I1.14b). We believe that
the density of matter in the real universe is sufficient to cause this kind of refocusing,.

light cones

light agaa
< and t c (ﬁ:;:iszune Fig. I1.14 a) Light spreading out
from a source at distance d has
. area less than 47d?. b) In a
C efocusing . . .
surface S space—time view, the light cone
reaches a surface S of maximum
areaoflightfront 5165 and then bends back on
decreases . . :
@ to past itself. (The local light-cones tip
T over, remaining tangent to the
world line C light-cone of P.)

(b)

We see that in a curved space-time the local behaviour of the light-cones can be
very different from that in a flat space-time, which means that the causal properties
can also be very different. One feature is the existence of certain types of horizons
which limit observation in various ways. The simplest example is our past light-
cone; we shall go on to discuss the event horizon around a black hole (cf. the Rindler
universe) and a particle horizon in cosmology. Another possible feature is the violation
of our ideas of causality. To see how this can happen, notice that the local light-cones
can tip over relative to each other, as we might expect, for example, in a rotating
system. The speed of light determined by them is still a limiting speed, so the light-
cones and associated particle paths and light-rays still determine what parts of the
space-time can influence the other parts. An example where this happens is Gédel’s
stationary rotating universe. On the axis the light cones are vertical, but away from
the axis the rotation causes them to tilt over (Fig. II.15). This tilting increases with

C(light cones
vertical)

bS /| llacal light cones
D ¢ tilt over with
|

distance from
world-line C

/
/
l:'losed‘ _
ime-like line Pig 11,15 The light-cones in Godel’s stationary
universe
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Fig. I1.16 In a universe with closed time-like lines,
world-lines can come back to themselves so it would
be possible for an old man to stand next to himself
as a child

distance from the axis, so that eventually they are horizontal and then there are closed
time-like lines. As shown in Fig. I1.16, this gives rise to the possibility of bizarre causal
violations, such as an adult returning to stand next to himself as a child! We have no
evidence that this happens in the real universe, but it is a theoretical possibility in
some curved-space-time model universes.



Lecture III: SPHERICAL STARS AND STELLAR COLLAPSE

Having discussed general properties of curved space-times, we shall spend the
remaining lectures looking at two of the most basic examples: the space~time produced
by an isolated body such as a star, and the space-time produced by the matter
in the universe as a whole. In this lecture, we study the gravitational field of a
spherically symmetric star and consider how stellar collapse can take place, leading to
the formation of a black hole.

1. THE SCHWARZSCHILD SOLUTION AND ITS PROPERTIES

A single massive object such as the Earth or the Sun produces curvature in the
space~time around it. If we assume that it is spherically symmetric and isolated from
other massive objects (as an approximation), then it can be shown from Einstein’s
equations that the space-time around it is described by the exterior Schwarzschild
solution, with metric interval

2 2 2 : 2 2
=@ dr® 4+ r*(d8*° +sin” 0 d¢°) ,

where m is its mass in geometric units. This is valid for » > R, (the value of r at the
surface of the object), and, as we shall see, we require R, > 2m. For simplicity, we
shall refer to the object as a star. Let us look at the properties of the space-time.

1.1 Symmetries

The space-time is static (unchanging in time) because the metric coefficients
are independent of time. We shall refer to observers at constant r, 8, and ¢ as
static observers, since for them all properties are constant in time. The space-time
is also spherically symmetric about the central body. To see this, note that r2(d6? +
sin2f d¢?) is just the metric for a two-sphere of radius r, which is clearly spherically
symmetric.

1.2 Distances and times

The (1 —2m/r) factors in the metric mean that distances in the r-direction and
times are not the same as they would be in flat space-time.

1.2.1 Radial distances

The significance of the coordinate r lies in its association with area; it is chosen
so that the area of the two-sphere {t,r const} is 4wr? (this follows from putting dt =
dr = 0 in the metric from). However, r does not directly measure distance between
the two-spheres, as it would in flat space-time. To find the distance D between two-
spheres at r = r; and r = ry (Fig. IIL1), we must integrate ds with dt = df =
d¢ = 0:



9 1/2 9 1/2 _ 1/2 1/2
=r2(1—f—”-) ~r1(1——'-"-) +om In |27 2M) +r,;,2
r (ry - 2m)1/2 4 v}/

It can be shown that this is larger than rp — ry, the flat-space value, which indicates
that the space-time has positive curvature.

D=radial distance
from r ton
(d@:ﬂ.dqn:o)

ls~sphere {t‘ﬂ%}

(area A,=anc?)

Fig. II1.1 A spatial section {t = const} of the sphere {r=g}
Schwarzschild solution (area A =ant?)

1.2.2 The time coordinate

‘We must see how t is related to the proper-time 7 measured by a static observer
(they would coincide in flat space-time). The proper-time interval A7 corresponding
to a coordinate time interval At = t,—~t, for a static observer with dr = df = d¢ = 0
is given by

ty 1/2 1/2
AT = /(-d32)1/2 =/ (1 — 2—"") dt = (1 - -2-'-’3) At |
t r r

which is less than At, since r > R, > 2m.

1.3 Asymptotic behaviour

For very large r, 2m/r becomes negligible, and we obtain

ds? o~ —dt? + dr? + r?(d8? 4+ sin? 6 d¢?)

the flat-space metric in spherical polars.  Thus the solution represents an
asymptotically flat space-time, as we would expect.

Even when r is not very large, it turns out that for many stars we can obtain
a good approximation that is valid everywhere outside the surface, by just retaining
the first-order terms in m/r. This is because r > R, implies that m/r < m/R,, and
m/R, is very small for many bodies (e.g. for the Earth, m/R, = 6.9 x 1071, and for
the Sun, m/R, = 2.1 x 107%). In this case the metric form is given by

ds? ~ — (1 - -2-1-:"-’-) dt? + (1 + -2-?) dr? 4 r?(d6? + sin? 8 d¢?) ,
which results in

D=ry—ri+mln(ry/ri)
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and

Ar=(1-f’-)At.

r

1.4 Red-shifts

There are observable gravitational red-shifts in Schwarzschild space-times. We
shall derive the red-shift formula for two static observers situated radially relative to
each other, at the same values of 6 and ¢ but at different values ry and ry of r, as
shown in Fig. II1.2. The path of a light-ray travelling between them will satisfy df =
d¢ = 0 and ds? = 0, and so dr and dt will satisfy

dr 2m

dt r

If the signal is emitted at ¢; and received at ¢, (Fig. II1.3), then integration of this
expression gives

tg—tl =r2-r1+2m ln(w—)
r1—2m

static observers\o
PR

02
0, 1k
At,
6,9 constant tL’r ty
0 45
At, t radial
"1 light
rays
(do=0dy=0)
Fig. II.2 Two static observers Oy Fig. II1.3 Radial light-signals are emitted by
and O3 on the same radial line O, at t; and t] (at coordinate interval Atq)

and received by O3 at {9 and t'2 (at coordinate
interval Aty)

Similarly, for the second signal emitted at ¢} and received at ¢},

gy — raz2m

Upon subtraction, we see that
Aty =ty —t; =ty —t2 = Aty .
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The K-factor is the ratio of the corresponding intervals of proper-time:

ATy (1 - 2m/r2)1/2
Ky = A = .
T 1—277’1./1”1

We see that, as in the flat-space case, the red-shift is independent of ¢ and of At
(which is essential since the space-time is static). However, it is no longer true that
K12 = K21' In fact

Ky =1/Ky,

and light travelling towards the star will be blue-shifted. These results have been
observed experimentally (e.g. in observations of white dwarf stars, and in experiments
at the Harvard Tower).

One can derive other properties of the Schwarzschild space-time from the metric
form: for example, perihelion shifts in particle orbits and the bending of light, the
predictions of which form the basis of the classic tests of general relativity. The
results of these tests strongly support the validity of the Schwarzschild solution as a
description of the local gravitational field in many parts of the universe.

2. SPHERICAL COLLAPSE; BLACK HOLES; THE EVENT HORIZON

We now consider what happens when an isolated spherical body such as a massive
star collapses to form a ‘black hole’. Two of the most important effects are the creation
of a singularity at the end of the collapse, and the formation of an event horizon which
restricts communication between the star and the outside world, hiding the singularity.
These causal features follow from the structure of the light-cones in the Schwarzschild
space—time.

2.1 Applicability of the Schwarzschild solution

According to Birkhoff’s theorem, the Schwarzschild solution represents the
gravitational field of any spherically symmetric star, not only if it is static but also
if it is collapsing, expanding, or pulsating. Thus the metric form is of very wide
applicability.

Since the coefficient of dr? diverges at r = 2m, the metric is clearly singular
there. However, it can be shown that it is the coordinates that are badly behaved, not
the space-time itself. It is not a curvature singularity but just a coordinate singularity.

2.2 Use of a null coordinate to describe collapse

Consider a star in which the density is so high that the gravitational forces
dominate and it shrinks in upon itself, collapsing to form a black hole (Fig. II1.4).
The surface radius R, decreases to zero and a physical singularity occurs because the
star has zero volume and infinite density. During the collapse, the interior geometry
will be described by some dynamic metric, which we shall not investigate here; we are
interested only in the exterior solution.

As it collapses, the star’s surface will fall through the critical value R, = 2m, so
we need a new coordinate system that will cover r = 2m in a non-singular manner.
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There are various possibilities; we shall use the Eddington-Finkelstein coordinates,
which are particularly appropriate for gravitational collapse. The resulting metric for
the exterior space-time (i.e. for r > R,) is

r

ds? = — (1 - 2_77_1_) dv? + 2dvdr + 1'2(d92 +sin? @ d¢2) ,

where v =t +r +2m In (r/2m — 1). Note that this is just the Schwarzschild solution
in new coordinates that are well-behaved at r = 2m, and so allows us to investigate
what happens when objects cross the surface r = 2m.

Let us consider radial light-rays. Using df = d¢ = 0 and ds? = 0 we obtain

dv[er-—(l—?—-)dv}:O.

Hence the light-rays are given by dv = 0, i.e. v = constant (so v is called a null
coordinate) and by dr = (1 — 2m/r) dv, which we shall interpret in a moment.
It is convenient to draw the space-time in the following way. The vertical axis
represents time (but surfaces {t = const} are not perpendicular to it); r and 6 are
polar coordinates in planes perpendicular to the t-axis, so surfaces of constant r are
cylinders around the t-axis; the coordinate ¢ has been suppressed. Lines of constant
v, which correspond to one generator of the light-cones, are drawn at 45° to the t-axis.

Figure II1.4 represents not only the exterior solution but also the interior one,
inside the surface r = R,. (The interior solution is not represented in any detail
because it depends on the equation of state of the star.) The surface radius R,
decreases steadily with time until it reaches zero, and the remains of the star form a
singularity which is inside the surface r = 2m. Outside r = R,, we have the exterior
solution in the new coordinates. Let us look in more detail at the structure of the
light-rays. The ingoing ones, corresponding to constant v, are at 45° to the t-axis.
The outgoing ones, which satisfy

outgoing light ray:
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clearly depend on radial distance. For large r, they behave as though space were flat,
but as r decreases, they tilt over towards the spatial origin; they are parallel to the
t-axis for r = 2m and approach v = const as r decreases to zero. Thus, far outside the
surface they are tilted outwards, whilst inside they are tilted inwards; the light-cones
actually ‘tip over’ under the influence of the gravitational field. Notice that the surface
r = 2m is in fact a null surface, and this is why it has physical significance. We shall
see how the causal properties of the space-time follow from the structure of the local
light-cones.

2.3 The event horizon

The surface r = 2m is a one-way trapping surface which allows matter and
radiation to fall inwards but not escape outwards. Why should this be? The point is
that at r = 2m, an outgoing light-ray is just held back by the star’s gravitational field.
Light emitted just outside the event horizon can escape to infinity, but light emitted
just inside cannot escape because the light-rays are dragged back by the gravitational
field and eventually fall into the singularity. Clearly, any massive object inside the
horizon cannot escape because it cannot exceed the speed of light; its possible future
histories are bounded by the light-rays. No matter how hard he accelerates, an observer
who has crossed the horizon cannot go back through it (and indeed cannot escape
falling into the singularity). Hence the name ‘black hole” in the classical theory, no
radiation or signal of any kind can reach the outside from the inside. There is no way
in which external observers can know what is happening inside the horizon.

This trapping effect happens at very small radii: e.g. the Sun would have to be
compressed from a radius of nearly 700,000 km to less than 3 km, and the Earth to
less than 0.9 cm.

2.4 Collapse seen from outside

Let us consider how the collapse appears to an external observer. A stationary
observer O; outside the event horizon sees the star shrinking towards r = 2m but
never actually reaching this radius, because light from there would take infinitely long
to reach him. An inward-moving observer O, will see the collapse, but he himself will
be drawn into the singularity and will not be able to send signals back to O; once he
has crossed the horizon (Fig. IIL5).

EVENT o
HORIZON 7]
(r=2m) JA-)outgoing
Af light rays
0 7 |Katt)
praper (1205
time i .‘gg“" stationary
for —|11:58— .
. . 1157 observer
: infalling
Fig. IIL.5 An in-falling observer O emits radial light-  observer —~Linfalling
signals each minute; a stationary observer O receives observer
them at longer and longer intervals, and the final ¢
minute before O2 crosses the horizon appears to O, Ler {o.¢ const)
to last for ever
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How will the inward-moving observer O look to the stationary observer O,7?
When they are at the same radial distance there will be a Doppler shift due to their
relative velocities, as in special relativity. Then as O; moves away from Oy, there will
also be a gravitational red-shift,

. 1-2m/r; 1/2
1\21 =|\| - y
1-2m/r,

which gets larger and larger as Oy approaches ry = 2m, where it becomes infinite.
Thus the event horizon is a surface of infinite red-shift (as in the Rindler universe).

It is clear, then, that the surface of the star will also be infinitely red-shifted
as it crosses the horizon and the observed intensity will decrease to zero, so the star
will just fade away. Note that the speed at which the surface of the star crosses the
horizon is not necessarily large (and is certainly less than ¢) so the infinite red-shift is
purely a gravitational effect.

2.5 The central singularity

What happens at the central singularity? The gravitational field is unbounded
so any object there will be torn apart by infinite tidal forces. In fact our model of
space—time breaks down there; general relativity predicts an end to space-time at
that point. In order to say anything more about what happens there, we need a
theory that takes quantum effects into account. In fact we know that moving from the
purely classical theory to quantum gravity produces a rather different picture of black
holes. Hawking has shown that, owing to quantum effects, one would expect a black
hole to emit black-body radiation with a temperature depending on its mass (see,
for example, ‘The quantum mechanics of black holes’, by S.W. Hawking, Scientific
American, January 1977). Thus black holes are no longer completely opaque!

2.6 Existence of black holes

Do black holes really exist? We believe on theoretical grounds that many should
occur at the end of the life of massive stars which cannot be prevented from collapsing
by any known physical force. Because of their nature, it is difficult to detect black
holes, but there is reasonably good evidence that we have seen the effects of their
gravitational fields in several compact star-like objects observed to emit X-rays. This
radiation is emitted by matter which accelerates as it falls into a massive object, and
by analysing the radiation we can deduce that the object is sufficiently compact to
be a black hole. There is reasonable evidence of this type for the existence of several
stellar-mass black holes in our galaxy. Clearly the evidence is not entirely conclusive,
but the existence of such black holes seems to be the best available explanation of the
data.

Many astronomers also believe that much larger black holes exist at the centres
of quasars and provide some explanation of their behaviour. It is also prossible that
there are black holes at the centres of galaxies and it is hoped that the Hubble space
telescope will provide some evidence for this.
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Lecture IV: SOME SIMPLE COSMOLOGICAL MODELS

We shall now look at some models of the large-scale structure of the universe,
which explain our observations of the red-shifts of distant galaxies in terms of
expansion from a ‘Big Bang’. We again use the idea of a cosmological model as a
space-time with a set of preferred world-lines. We shall show that, although the
space-time is very different from a black hole, there are still some interesting causal
limits resulting from the light-cone structure and leading to the existence of particle
horizons.

1. SPACE-TIME GEOMETRY OF FLRW MODELS

The basic assumptions that we make for a cosmological model are that, on the
large scale, the universe is spatially homogeneous (i.e. the same at every point) and
isotropic (i.e. the same in all directions). This is clearly not true locally, but gives a
good lowest-order approximation into which one can introduce perturbations in order
to study the more detailed structure. The two assumptions imply that the universe
is isotropic about every point (i.e. every observer will see the large-scale properties of
the universe to be the same in all directions around him). Such universe models are
referred to as Friedmann-Lemaitre-Robertson- Walker universes. Let us look at their
geometry.

1.1 The metric

Coordinates can be chosen so that the metric takes the form

ds® = —dt? + R(t){dr® + f*(r)(d6® +sin’ 6 d¢*)} ,

with f(r) = sinr, r, or sinhr, depending on the nature of the universe. The
fundamental world-lines (Fig. IV.1), representing the average flow of matter in the
universe, are the curves {r, 6, ¢ const}. Because of the spatial homogeneity, there must
be a uniform distribution of matter, and so quantities such as density and pressure are
functions only of time. The fact that there is no spatial gradient means that there is
nothing to make the fundamental galaxies and observers move non-inertially, so they
are in free fall.

galaxy world lines.
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tL,— /(dr-u,de-o,dwﬁ)/ \\

P
0 [
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proper surfaces of
Fig. IV.1 The fundamental world-lines in a time constant time
FLRW universe [o.¢ suppressed)
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We see from the metric that the coordinate ¢ measures proper-time along the
world-lines. It also follows from the metric that the universe is spatially homogeneous
and isotropic. For an observer at r = 0, the space around him is isotropic, since for
fixed r and ¢ the metric reduces to that of a two-sphere that is spherically symmetric.
Since all observers are equivalent, this is true for all of them.

1.2 The space-sections

The surfaces {t = const} are surfaces of simultaneity for the fundamental
observers since they are orthogonal to the matter world-lines. Let us look in detail at
the geometry of these space-sections.

For the surface t = tj, the metric form reduces to

ds? = R¥(to){dr? + f2(r)(d6? + sin® 6 dg?)} .

The coordinates are centred on the arbitrary point r = 0 (Fig. IV.2). Moving out
radially from this to r = r,, we obtain a two-sphere with metric

ds? = R%(t0) f*(r,)(d8? + sin® 6 d¢?) .

t=t, sphere S, coordinate [

( distance Rityg = D
Fig. IV.2 A sphere with r = r,. In this case,
} 7 is neither the radial distance nor an ‘area
area anfig)RAt)=A coordinate’.

The area of this two-sphere is therefore
A = 4R (o) f2(ry)
and the distance D from the origin to it is

D = R(to)r, .

Let us look at the implications of these formulae for the different forms of f.

1.2.1 Flat space
If f(r) =r, then

A = 4nR*(ty)r: = 4nD? |

the usual relation in flat space. Thus the spatial sections here are flat (i.e. surfaces
of zero curvature) and they also continue indefinitely. We have a spatially infinite
universe with an infinite number of galaxies.

1.2.2 Hyperbolic space
If f(r) = sinhr, then

A =47R?sinb’r, > 47rR2r3 = 4n D? ,
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with equality only when r, = 0. This is a hyperbolic three-space of constant negative
curvature (cf. Fig. I.1b). Again the space-sections continue indefinitely and there is
an infinite number of galaxies.

1.2.8 Elliptic space
If f(r) =sinr, then

A =47R%sin’r, < 47rR2r§ =4rD? |
again with equality only when r, = 0. This is an elliptic three-space of constant

positive curvature (cf. Fig. II.1a).

It is convenient to label these three cases by a parameter k, so that the curvature
is given by

_k
T R%(ty)

where k£ = 1,0,—1 for the elliptic, flat, and hyperbolic space-sections, respectively
(Fig. IV.3).

K

area A
A
hyperbolic
k==1
167
12mn k=0
flat
B7
k=41
llipti
an elliptic
1 2 nra A'Dz

Fig. IV.3 The relation between the area A of a two-sphere and the square of its radius D, in
the {t = const} surfaces for the three classes of FLRW universe.

In the elliptic case, a new feature arises. As D increases, A increases, reaches a
maximum at r, = 7/2, and then decreases to zero at ry = 7, the ‘antipodal’ point to
r, = 0. This cyclic behaviour is repeated as r, continues to increase.

As a model of this situation, let us look at the analogy one dimension down.
Consider a two-sphere of radius a (Fig. IV.4). Start at any point O and move a
distance d = af in both directions along a great circle to reach opposite points p; and
P2 on a circle with circumference

C = 2masinf = 2rasin(d/a) .
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k=+1

antipodal pairs
of points on 2spheres

orthogonal
curve to
2-spheres

elliptic a-space

A 2-sphere model

Fig. IV.4 Geodesics in opposite direc- Fig. IV.5 The global geometry of
tions at O on a two-sphere meet again an elliptic three-space. A geodesic
at the antipodal point P. En route, starting at O will pass through the
they cut each circle centred at O in antipodal point P and return to O.

opposite points p; and p;.

As d increases, C' increases to a maximum where § = 7 /2, then decreases again to
zero at P, the antipodal point to O. Any geodesic at O goes through P and arrives
back at O from the opposite direction.

In the full three-dimensional case (Fig. IV.5), we have to imagine a succession of
two-spheres rather than circles. Geodesics Dy and D; in opposite directions from O
cut a series of two-spheres in antipodal points p; and p;. Because the area of the two-
spheres eventually goes to zero, the geodesics eventually meet again at P, antipodal
to O.

Note that in this elliptic case, the space-sections are necessarily finite, as is the
number of galaxies.

1.3 The scale factor

From the form of the metric, we see that distances in the surfaces {t = const}
scale with R(t), which is therefore called the scale factor. The distances between
fundamental observers (at constant spatial coordinate values) will also scale with R(t),
as shown in Fig. IV.6. This means that since in general R is a varying function of time,
the universe must be evolving in time. Not only does the density of matter vary, but
also the curvature of space-time. The way R(t) varies is determined, by Einstein’s

galaxy world lines

Fig. IV.6 The distances between galaxies
= Rt) «Rit) scale with R(t)
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equations, from the matter and radiation in the universe. Experimental evidence
suggests that we live in an expanding universe; this is an expansion of the universe as
a whole, not an expansion into anything. In the £ = 0 and k = —1 cases, the spatial
sections are infinite anyway, and the expansion means that distances between every
pair of galaxies is increasing. In the k = +1 case, the spatial sections are finite but
without edge, so there is not a boundary moving out into anything. The expansion
is isotropic and without a centre; we can equally well take any galaxy to be at the
origin of the spatial coordinates. There are various types of expansion depending on
the values of k, and we shall now look briefly at the possibilities.

2. THE EVOLUTION OF THE UNIVERSE

Einstein’s field equations give equations for the time evolution of R(t); we now
consider their solutions and ways of measuring R(t).

2.1 The Einstein static universe

This is an exceptional solution when the ‘cosmological constant’ A is non-zero,
and there is an extra term in the equations representing a universal repulsive force
that balances the gravitational forces and so allows a static solution. The solution
corresponds to a FLRW metric with R(t) = Ry and k = 1 (i.e. closed spatial sections
and therefore only a finite number of galaxies). In other respects, it is similar to the
Minkowski universe: it is unchanging in time and has no systematic red-shifts. It is
unstable under density perturbations, which destroy the fine tuning between A and
gravity. For these reasons, it is not considered a good model of the real universe.

We shall now take A = 0, which excludes the possibility of static solutions.

2.2 Evolving universes

We consider the evolution first at early times and then at later times when it is
qualitatively different.

2.2.1 The early unsverse

For all types of FLRW universes, the behaviour is the same at very early times.
At that stage, the universe is filled with radiation, and R(t) behaves like t!/2, so
the universe begins by expanding from a state of infinite compression, the ‘hot Big
Bang’. It is widely accepted that the real universe began in this way, and although
theories about what happened at very early times are speculative (since, for example,
a purely classical theory cannot describe a singularity like the Big Bang), the physics
involved in the expansion of the universe at times later than about one second is fairly
well understood. The universe was filled with a very hot mixture of particles and
radiation in equilibrium with each other, and this mixture cooled as it expanded.
As the temperature dropped, element formation took place at about 10® K, and
then matter and radiation decoupled at about 3000 K. [What this means is that
the universe was opaque to electromagnetic radiation at earlier times when electrons,
moving freely between nuclei, scattered light strongly, but was transparent afterwards
when the electrons were bound together with nuclei to form atoms (Fig. IV.7)]. The
remnant radiation from this time is observed by us today as black-body radiation at
a temperature of about 3 K. The discovery of this in 1965 was very important, as it
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Fig. IV.7 Black-body radiation arriving along
P t=t, the past light-cone. Before the decoupling time
opaque  (z21000) t = tq4, the universe was opaque.

gives evidence that the universe was once much hotter, with R(t) much less, and it
indicates strongly by its isotropy that the universe was originally very uniform.

2.2.2 The late universe

The later behaviour of the universe differs according to whether the spatial
curvature is negative, zero, or positive. As shown in Fig. IV .8, if k£ = —1, the universe
is a low-density one which expands for ever. If k = 0, it is a high-density universe that
just manages to expand for ever. If k = 41, it is a high-density universe that expands
to a maximum value of R(t) and then recollapses to a second singularity.

%

At)

k=1

k=0

| >

Fig. IV.8 The scale factor R(t) plotted against ¢ for the different values of k

Clearly it is very interesting to find out the value of k, since this not only
determines whether the spatial sections are infinite but also whether the universe
will expand for ever. In principle, the value of k can be inferred from the behaviour of
R(t), determined by observations of distant galaxies. Current evidence suggests that
k = —1, but there is the possibility of a large amount of undetected dark matter which
could lead instead to a high-density universe.

2.2.9 Red-shifts
As we shall see, observations of red-shifts in a FLRW universe give a way of
measuring its expansion. Consider radial light-rays, which must satisfy df = d¢ = 0
and ds? = 0, leading to
dr 1
dt  R(t)
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observer

Fig. IV.9 Radial light-rays emitted at an interval Ate at r = 0 and received at an
interval Aty at r = u

Suppose that light is emitted by an observer O; at r = 0 at time ¢, and received by
O at r = u at time ¢, (Fig. IV.9). Integration of the expression for dr/dt gives

v ar
. R(t)

Similarly, for a second light-signal emitted at r = 0 at ¢, + At, and received at r = u
at t, + Ato,
to+Ato dt
u= / &£
t+at, B(H)
Equating the integrals and rearranging the limits, we obtain

tet+At, dt tot+AL, dt
/te R(t) /to R(t)

For small At. and At, during which intervals R(t) will be approximately constant and
may be taken outside the integrals, we obtain

U =

At At,

R(te) R(t,)
The red-shift z and K-factor are then given by

At,  R(t,)

1+z=I\EAte.—R(te) .

Thus, observed red-shifts directly measure the expansion which has taken place. Note
that the effect is symmetric but of course not independent of time (cf. Milne universe).

Red-shifts have been observed up to 2 = 3.2 for distant galaxies, 2 = 3.8 for
quasars, and z = 1000 for the cosmic microwave background. Since R(t) tends to
zero as t tends to zero, the red-shifts from the earliest times would diverge, but it is
not possible to receive electromagnetic radiation from such early times because of the
opaqueness of the universe before the decoupling time.
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3. CAUSAL STRUCTURE AND HORIZONS

We now look at some of the implications of the light-cone structure of FLRW
universes.

3.1 Refocusing and the initial singularity

We have already mentioned the possibility of refocusing of the past light-cone
(see, for example, Fig. I1.14b). From the form of the metric, we can show that the
area of the past light-cone of the event ¢t = ¢,,r = 0, for light emitted at t =t,, r = u
and distance corresponding to red-shift z, is

_ _ 4w R*(t,) f(u)
A =47 R*(t)f*(u) = T

Whatever the form of f, this tends to zero as z tends to infinity. Before this happens,
A must reach a maximum on the surface of reconvergence, lying between ¢, and the
initial singularity.

We see (Fig. IV.10) that our past is trapped inside a light-cone that goes back
to the initial singularity. This claim is based on the FLRW model, which is highly
idealized, and the question arises as to whether inhomogeneities in the real universe
could lead to an avoidance of that singularity. We still do expect a surface of refocusing
to occur in more realistic models, and then the singularity theorems of Hawking and
Penrose show that in the classical theory, once refocusing has taken place, an initial
singularity is inevitable no matter how irregular the early universe might be. Clearly
we would need to look at quantum gravity to investigate this question further.

t
Ci;g; galaxy
world
lines
reconverges

N

initial
singularity

Fig. IV.10 The reconvergence of the past light-cone of an event at t = 1,

3.2 Particle horizons

As we saw in our investigation of red-shifts an observer at r = 0 at time f, can
see to radial distance u at time ¢, (Fig. IV.11), where

Lo dt
.. R’

U =
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Fig. IV.11 An observer at t = t( can see matter
up to a radial coordinate value u by light emitted
at t = t,

The maximum value of u, ¥max, is obtained by letting t. tend to zero, and it can be
shown that all the possible forms for R(t), satisfying Einstein’s equations, give a finite
value for umax. Thus only a fraction of the galaxies in the universe can be observed.
(Strictly speaking, this fraction is zero if k¥ = 0 or —1, since the number of galaxies
is infinite.) Thus a fundamental feature of the universe is a limitation on the regions
with which any observer can have had causal communication; there are many galaxies
which we could never hope to observe, no matter how long we wait.

This feature is difficult to understand from an ordinary space-time diagram
because everything gets squashed together as R(t) tends to zero. We can choose new
coordinates where this does not happen; in particular, we choose coordinates in which
the light-cones are at 45° (Fig. IV.12). For example, for k = 0, the spatial coordinate
is r, and the time coordinate w, called the conformal time, is defined by

tdar
w =

- o R(m)

The resulting ‘conformal diagram’ is Fig. IV.12. Galaxy world-lines are vertical, and
the initial singularity is a whole line, not just a point. The penalty is that spatial
distances are badly distorted near the initial singularity [and must be multiplied by
R(t) to scale like measured distances].

Let us now look at the interior past light-cone of a typical galaxy G (Fig. IV.13).
At t = 1, the galaxies E, F, and F' will be visible to G, but not J, M, and N. In
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\initial singularity" for t,
Fig. IV.12 Figure IV.10 drawn in new Fig. IV.13 The particle horizon of an
coordinates with the light-cones at 45° to observer on galaxy G is formed at t =t
the time-axis by the galaxies F' and F"
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fact, F and F' are the limiting case: they are ‘particles’ that separate what G can see
from what is invisible, and they constitute G’s particle horizon at £ = t3. At a later
time t;, G’s particle horizon has moved out and M lies on it; it is just visible. The
physical size of the particle horizon at ¢ = t; is

D = R(to)umax -

Does this mean that galaxies flash out of nothing? In fact the limit of the particle
horizon is at R = 0, a surface of infinite red-shift, and this means that new galaxies
emerge gradually into view, rather than appear suddenly.

The existence of particle horizons leads to an important puzzle related to
the isotropy of the observed microwave background radiation, which indicates that
conditions were very similar in regions that can have had no causal communication
with each other. For example, @) and @’ in Fig. IV.14 are on the past light-cone of P,
but their causal pasts do not intersect.

w,
Lr “here and now”

LCP)

decoupfing

a ’/ Fig. IV.14 Events  and Q' at the decoupling
v time are on the past light-cone of P, but there
can be no causal connection between them since

“singularity” their causal pasts do not intersect

There are several possible solutions to this problem. The two which we shall
discuss in some detail in the next section are (a) dropping some of the usual field
equations or equations of state (as in inflationary models), and (b) assuming a different
topology (i.e. global connectivity) of the universe, resulting in a ‘small’ universe which
we have already seen around many times.

There are also philosophical implications of particle horizons, since our predictive
powers must surely be limited by their existence.

4. OTHER UNIVERSE MODELS

In this final section, we consider some other models of the universe, which are
related to the FLRW models already described.

4.1 The de Sitter universe

This model has the FLRW metric with flat spatial sections and exponential
expansion, i.e. k = 0, R(t) = ef', H = constant. It was originally discovered in
1917 as a vacuum solution of Einstein’s equations with A # 0. Because it contains no
matter, it was abandoned as a model of the real universe in 1930, when the expanding
universe models of Friedmann and Lemaitre became widely known.

4.2 The steady-state universe

The de Sitter universe was rediscovered in 1948 by Bondi, Gold and Hoyle as
the steady-state universe. It is the only expanding universe model for which every
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point in space-time (not just every point in space) is equivalent. It has no hot
Big Bang at the beginning but just exists unchanging for ever. In general, in an
expanding universe model the density of matter decreases with time, so to avoid this
one has to modify Einstein’s field equations to include an effective A-term, which gives
continuous creation of matter throughout the universe. However, evidence from radio-
source number counts was against this, and the discovery of the microwave background
radiation, interpreted as a relic from a hot early state, led to a widespread rejection
of the theory.

4.3 The inflationary universe

While Big Bang models have proved satisfactory in describing most of the history
of the universe, there have been problems in understanding the initial conditions in
the standard models, in particular the causal problems associated with the existence
of particle horizons. This led Guth and others to propose a new model of the early
universe, the inflationary universe, which in some senses is the steady-state universe
in a new disguise! The basic idea is that quantum field effects in the very early
universe, associated with symmetry breaking, led to an effective A-term in the field
equations and so to a period of exponential expansion. During this time, the radius
R(t) increased rapidly, with the pressure and density remaining effectively constant,
and so the size of a region lying within the particle horizon at the time of decoupling is
enormously greater than in the standard model. This enables causal communication
between regions visible to us in different directions in the sky.

To see how this works, let us look at the conformal diagram (Fig. IV.15). Because
of the period of inflation, the initial singularity is now much further back in the past
than it is in the standard model. Therefore the causal pasts of @ and Q' overlap to
a considerable extent, and there can be a common physical cause for the similarity
between conditions at Q and Q'. However, there are still some parts of their pasts that
are not shared, so they are still susceptible to independent influences that could in
principle interfere with the observed isotropy. There are also other problems associated
with the theory (e.g. issues related to galaxy formation).

events which
can influence
Qand Q

Fig. IV.15 A conformal diagram of the inflationary universe situation

4.4 Small universes

Let me finish by describing a universe model with a new element that provides a
neat explanation of a number of problems. This is a small universe where the curvature
properties and expansion history are the same as for a FLRW model but its topology
or global connectivity is different.
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The simplest model is the k = 0 flat space with a torus topology. Consider
a rectangular block in a space-section {t = const}. We identify the opposite faces
in pairs, as shown in Fig. IV.16. This means, for example, that when an observer
travelling in the 2-direction reaches the top face he continues his journey up from the
corresponding position in the bottom face.

The volume of the space sections is finite and there are a finite number of galaxies
in the universe. However, the universe will look infinite! To see how this works, let
us look at a representation with one spatial dimension only. We unwrap the space-
time diagram to get space-sections that are apparently infinite (Fig. IV.17), but all
objects at intervals of some distance d are actually the same object. We see how our
past light-cone can intersect the world-line of the same galaxy many times, producing
many images of the same object. Thus this finite universe will look to an observer like
an infinite FLRW universe, with images of galaxies fading away into the distance.

er7 same galaxies
Pl Bl N
p
1P)
7

A_A_A A _A_A_A

identify

Fig. IV.17 The representation of one spatial dimension and the time dimension in a small
universe. All the vertical lines in the diagram on the right represent the same galaxy and
can be identified with each other to give the diagram on the left.

We can see the same features in a diagram of two spatial dimensions (Fig. IV.18).
Opposite sides of the rectangle are identified, so unwrapping the space we obtain a
repetition of the basic cell and its contents in all directions. Looking out to a distance
r, characterized by red-shift z, we see the same material many times over. On a large
enough scale, this model will look spatially homogeneous even if the basic cell is not.

It is actually very difficult to prove that the real universe is not like this because
it would not be easy to show that all images of an object have a common origin,
since they would be seen at different red-shifts, at different stages in their history, in
different directions.
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This type of model has a number of very attractive features. There are no
particle horizons since we can see all the matter. There are no boundaries and hence
there is no problem of finding appropriate boundary conditions. Finally, the apparent
homogeneity and isotropy of the universe are explained in the simplest possible way.

In this brief survey we have looked at some very idealized models, which
nevertheless describe some of the overall features of the universe. There are some
problems with all of the models; the small-universe idea is particularly interesting
but, as we have seen, it is hard to prove or disprove its correctness. In all the models
we have studied, the use of space-time diagrams has helped us towards a clearer
understanding of many possible features of the physical universe that are otherwise
rather difficult to comprehend.
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Suggestions for further reading

Anyone who wants to follow up the subject in more detail should read some of
the books that follow a similar line of approach. For obvious reasons, the one to which
these lectures are closest is Flat and curved space-times, by G.F.R. Ellis and myself
(Oxford University Press, 1988). Other similar books are Discovering relativity for
yourself, by S. Lilley (Cambridge University Press, 1981) and General relativity from
A to B, by R. Geroch (University of Chicago Press, 1978). The application of general
relativity to cosmology is described in Cosmology, by E.R. Harrison (Cambridge
University Press, 1981), which is at about the same level as the books already
mentioned. More advanced books are The first three minutes, by S. Weinberg (Basic
Books, 1977), and Cosmology, by M. Rowan-Robinson (Oxford University Press,
1977).
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