PROBLEMA 4.3

Asta vincolata ad una circonferenza **

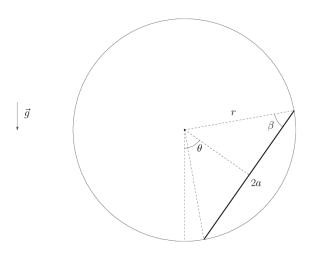


Figura 4.4.: L'asta ha gli estremi appoggiati sulla circonferenza.

Un'asta di lunghezza 2a e massa m ha i suoi due estremi appoggiati ad una circonferenza di raggio r > a, come in Figura 4.4. Indicando con θ l'angolo tra il segmento che congiunge il punto medio della sbarra al centro della circonferenza, discutere i possibili valori di θ corrispondenti all'equilibrio, tenendo conto della presenza della gravità e di attrito statico tra sbarra e circonferenza descritto da un coefficiente μ .

Soluzione

Scriviamo le condizioni di equilibrio per l'asta, basandoci sullo schema in Figura 4.5. Le forze \vec{N}_i sono le reazioni vincolari, perpendicolari alla supeficie della circonferenza,

$$\vec{N}_i = N_i \hat{n}$$

e \vec{F}_i le forze di atttrito, ad essa tangenti

$$\vec{F}_i = F_i \hat{\tau}$$

Abbiamo indicato con \hat{n} il versore normale alla circonferenza, rivolto verso l'interno, e con $\hat{\tau}$ quello tangente, rivolto in verso antiorario. Per la somma delle forze nella

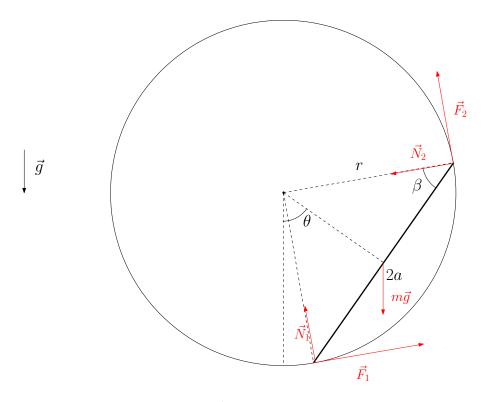


Figura 4.5.: Le forze applicate all'asta.

direzione parallela all'asta abbiamo

$$(N_1 - N_2)\cos\beta + (F_1 + F_2)\sin\beta - mg\sin\theta = 0$$
 (4.3.1)

e nella direzione perpendicolare

$$(N_1 + N_2)\sin\beta - (F_1 - F_2)\cos\beta - mg\cos\theta = 0$$
 (4.3.2)

Infine per il momento totale rispetto al centro della circonferenza

$$(F_1 + F_2) r - mgr \sin \beta \sin \theta = 0$$
(4.3.3)

L'angolo β , indicato nelle figure, è dato da

$$\cos \beta = \frac{a}{r}$$

Deve anzitutto essere

$$N_1 > 0 (4.3.4)$$

$$N_2 > 0 (4.3.5)$$

in caso contrario l'asta si stacca dalla circonferenza. sappiamo inoltre che

$$|F_1| \leq \mu N_1 \tag{4.3.6}$$

$$|F_2| \leq \mu N_2 \tag{4.3.7}$$

Da notare che queste due condizioni sono più restrittive delle (4.3.4) e (4.3.5).

Usando le tre equazioni (4.3.1), (4.3.2) e (4.3.3) possiamo esprimere F_1 in funzione di N_1 e F_2 in funzione di N_2 , per un dato valore di θ . Otteniamo

$$F_{1} = N_{1} \tan \beta - \frac{1}{2} mg \cos \theta \sec \beta$$

$$F_{2} = N_{2} \tan \beta - \frac{1}{2} mg \cos \theta \sec \beta$$

Abbiamo inoltre una relazione tra N_1 ed N_2 che scriviamo nella forma

$$\frac{2N_1\cos\beta}{mg} - \frac{2N_2\cos\beta}{mg} = 2\cos^2\beta\sin\theta$$

per futura convenienza. Sostituendo nella (4.3.6) e nella (4.3.7) abbiamo

$$\left| N_1 \tan \beta - \frac{1}{2} mg \cos \theta \sec \beta \right| \leq \mu N_1 \tag{4.3.8}$$

$$\left| N_1 \tan \beta - \frac{1}{2} mg \cos \theta \sec \beta \right| \leq \mu N_1$$

$$\left| N_2 \tan \beta - \frac{1}{2} mg \cos \theta \sec \beta \right| \leq \mu N_2$$

$$(4.3.8)$$

che sono equivalenti a

$$(\tan \beta - \mu) \frac{2N_i \cos \beta}{mg} \le \cos \theta \le (\tan \beta + \mu) \frac{2N_i \cos \beta}{mg}$$
 (4.3.10)

$$N_i \ge 0 \tag{4.3.11}$$

per $N_i = 1, 2$. Se le disequazioni precedenti hanno soluzioni (tenendo conto del legame tra N_1 ed N_2) allora avremo equilibrio. Conviene discutere graficamente nel piano X_1 - X_2 , con

$$X_i = \frac{2N_i \cos \beta}{mg}$$

La relazione tra N_1 ed N_2 diviene

$$X_1 - X_2 = 2\cos^2\beta\sin\theta (4.3.12)$$

e le due disequazioni

$$(\tan \beta - \mu) X_i \le \cos \theta \le (\tan \beta + \mu) X_i \tag{4.3.13}$$

$$X_i \ge 0 \tag{4.3.14}$$

Dobbiamo distinguere due casi. Se $\mu < \tan \beta$ possiamo scrivere le condizioni precedenti nella forma

$$\frac{\cos \theta}{\tan \beta + \mu} \le X_i \le \frac{\cos \theta}{\tan \beta - \mu}$$
$$X_i \ge 0$$

che possono avere soluzioni solo se $\cos\theta \geq 0$. Rappresentando in Figura 4.6 la regione permessa, vediamo che questa viene intersecata dalla retta corrispondente alla Equazione (4.3.12) per $-\theta^* < \theta < \theta^*$ dove θ^* vale

$$\theta^* = \arctan \left[\frac{\mu}{2\cos^2\beta \left(\tan^2\beta - \mu^2 \right)} \right]$$

Notare che in assenza di attrito l'unico valore possibile è $\theta^*=0$, e che nel limite $\mu \to \tan \beta$ si ha $\theta^* \to \pi/2$ (sbarra verticale).

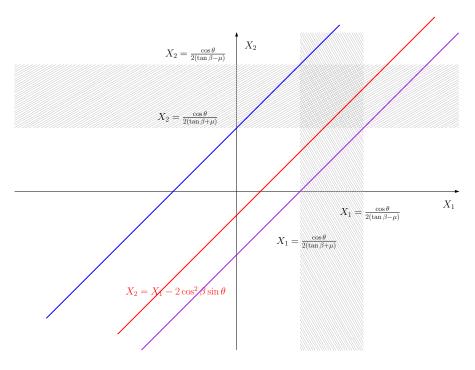


Figura 4.6.: Il caso $\mu < \tan \beta$. I valori estremi di $\sin \theta$ (opposti tra loro) corrispondono alla retta blu e viola.

Se invece $\mu > \tan \beta$ le disequazioni si riducono a

$$\cos\theta \geq 0$$

$$X_i \geq \frac{\cos\theta}{\tan\beta + \mu}$$

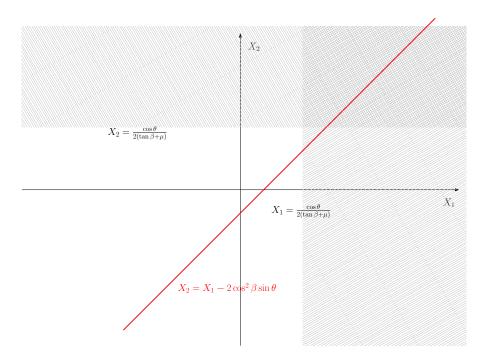


Figura 4.7.: Il caso $\mu > \tan \beta$. Esistono sempre posizioni di equilibrio per $-\pi/2 < \theta < \pi/2$.

e ci troviamo nella situazione rappresentata in Figura 4.7, è sempre possibile cioè trovare una posizione di equilibrio per $-\pi/2 < \theta < \pi/2$.

