PROBLEMA 5.29

Carrucola e moto relativo **

Facendo riferimento alla Figura 5.23, trovare quale forza F è necessario applicare alla massa m_1 per impedire qualsiasi accelerazione relativa tra m_1 , m_2 e m_3 .

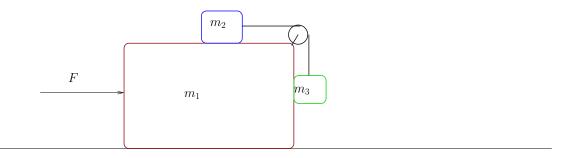


Figura 5.23.: Il sistema considerato nell'esercizio.

Soluzione

Scriviamo le equazioni del moto delle tre masse:

$$m_1\ddot{x}_1 = F - R - T$$

 $m_2\ddot{x}_2 = T$
 $m_3\ddot{x}_3 = R$
 $m_3\ddot{y}_3 = T - m_3g$.

Inoltre deve essere

$$\ddot{x}_2 - \ddot{x}_1 = -\ddot{y}_3$$
$$\ddot{x}_1 = \ddot{x}_3$$

e sostituendo otteniamo

$$m_1\ddot{x}_1 = F - R - T$$

$$m_2\ddot{x}_2 = T$$

$$m_3\ddot{x}_1 = R$$

$$m_3(\ddot{x}_1 - \ddot{x}_2) = T - m_3g$$

da cui

$$(m_1 + m_3)\ddot{x}_1 + m_2\ddot{x}_2 = F$$

 $m_3\ddot{x}_1 - (m_3 + m_2)\ddot{x}_2 = -m_3g$.

Le due accelerazioni \ddot{x}_1, \ddot{x}_2 saranno uguali quando

$$F = (m_1 + m_2 + m_3) \frac{m_3}{m_2} g.$$

