
Corso di laurea in Scienze Geologiche	-	Esame scritto di Fisica del 14/07/2008
COGNOME		NOME
MATRICOLA		

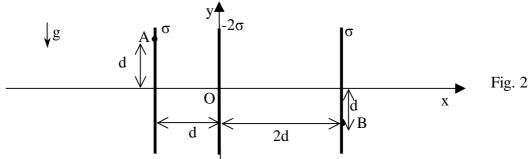
ESERCIZIO 1

Un disco di raggio R e massa M è vincolato a ruotare senza attrito attorno ad un asse orizzontale, mentre due sbarrette di lunghezza L e massa m sono fissate al disco in modo da formare tra loro un angolo 20. Il punto A del disco è collegato tramite un filo inestensibile ad una molla di costante elastica k e lunghezza di riposo l₀, come schematizzato in Fig.1(a).

1.1) Sapendo che il sistema è in equilibrio con le due barrette orientate come in Fig.1(a), determinare l'allungamento Δl della molla.

Ad un certo istante il filo si spezza nel punto A ed il sistema è libero di ruotare rigidamente attorno all'asse del disco.

- 1.2) Calcolare il modulo α dell'accelerazione angolare iniziale del sistema.
- 1.3) Determinare la velocità angolare ω del sistema nell'istante in cui una delle due barrette è in posizione verticale, come schematizzato in Fig. 1(b).


In tale istante l'estremità della barretta verticale urta in modo perfettamente anelastico una pallina di massa m_p inizialmente ferma (la pallina, schematizzabile come un punto materiale, resta attaccata alla barretta).

1.4) Calcolare la velocità angolare ω' del sistema un istante dopo l'urto.

Dati numerici: M = 12 Kg, R = 20 cm, m = 4.0 Kg, L = 1.0 m, $\theta = 30^{\circ}$, k = 500 N/m, $m_p = 2.0 \text{ Kg}$

ESERCIZIO 2

Dato il sistema di assi cartesiani ortogonali schematizzato in Fig. 2, si considerino tre distribuzioni piane ed uniformi di carica poste rispettivamente in x = -d, x = 0 e x = 2d, aventi densità di carica σ , -2σ e σ .

- 2.1) Calcolare le componenti cartesiane del campo elettrico $\vec{E} \equiv (E_x, E_y, E_z)$ in un punto generico $\vec{x} \equiv (x,y,z)$ dello spazio, considerando le quattro regioni: x < -d -d < x < 0 0 < x < 2d x > 2d
- 2.2) Determinare la differenza di potenziale $V_A V_B$, dove $A \equiv$ (-d, d, 0) e $B \equiv$ (2d,-d,0). Un carica puntiforme, avente carica q e massa m, si trova ad un certo istante t = 0 nel punto A^+ con velocità nulla.
- 2.3) Descrivere il moto della carica per t > 0 fino a quando raggiunge il piano in x = 0.
- 2.4) Con quale velocità v raggiunge il piano in x = 0?

Dati numerici: $\sigma = 3.0 \text{ nC/m}^3$, d = 5.0 cm, m = 1.0 g, $q = 8.0 \mu\text{C}$

Nota: acconsento che l'esito della prova venga pubblicato sul sito web del docente, http://www.df.unipi.it/~ciampini/, impiegando come nominativo le ultime quattro cifre del numero di matricola, oppure il codice: | | | | (4 caratteri alfanumerici).

Pisa, 14/07/2008