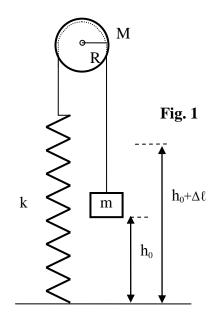
ESERCIZIO 1

Un blocchetto di massa m=4.0~Kg è collegato ad una molla di massa trascurabile, lunghezza di riposo $\ell_0=70~cm$ e costante elastica k=80~N/m tramite un filo inestensibile di massa trascurabile che passa nella scanalatura di un disco omogeneo di massa M=6.0~Kg e raggio R=10~cm. Si assuma che tra filo e disco non ci sia slittamento e che il disco ruoti liberamente senza attrito attorno al suo asse.


Il sistema è in **equilibrio** e il blocco m è fermo ad una quota h_0 = 150 cm dal suolo, come in Fig. 1.

Determinare:

- 1) La tensione T del filo
- 2) L'allungamento Δℓ della molla

Il blocco viene sollevato alla quota $h_0 + \Delta \ell$ dal suolo e quindi lasciato libero di muoversi da questa posizione con velocità iniziale nulla. Determinare nell'istante in cui il blocco si trova alla quota h_0 :

- 3) L'energia cinetica del blocco K_{blocco}
- 4) L'energia cinetica del disco K_{disco}

ESERCIZIO 2

Una sfera **conduttrice** di raggio a=2.0 cm si trova al centro di un guscio **dielettrico** di raggio interno b=10 cm e raggio esterno c=12 cm, avente costante dielettrica relativa $\epsilon_r=2$ come schematizzato in Fig.2. Sulla sfera è presente la carica $Q_1=33$ nC. Sul guscio dielettrico è presente una distribuzione uniforme di carica di densità volumetrica ρ_2 incognita.

Sapendo che il campo elettrico all'esterno del guscio sferico è **nullo**, calcolare:

- 1) la densità volumetrica di carica ρ_2 del guscio dielettrico
- 2) il campo elettrostatico $\vec{E}(r)$ nelle seguenti regioni:

$$0 \le r < a$$
 $\vec{E}_{I}(r)$
 $a < r < b$ $\vec{E}_{II}(r)$
 $b < r \le c$ $\vec{E}_{III}(r)$

3) la differenza di potenziale V_A – V_B tra i punti A e B

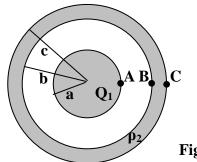


Fig. 2

Una piccola carica q = 5.0 pC di massa m = 1.5 g si stacca dalla sfera dielettrica nel punto A con velocità nulla. Trascurando la variazione di carica totale posseduta dalla sfera piena e l'effetto della forza gravitazionale sulla massa m, determinare:

4) il modulo della velocità v_B con la quale la carica q raggiunge il punto B

Nota: acconsento che l'esito della prova venga pubblicato sul sito web del docente, http://www.df.unipi.it/~ciampini/, impiegando come nominativo le ultime quattro cifre del numero di matricola, oppure il codice: | | | | (4 caratteri alfanumerici).

Pisa, 1/02/2010 Firma