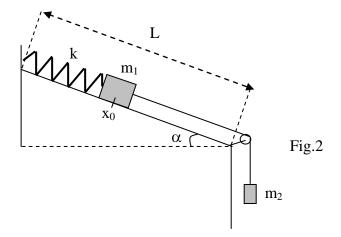

ESERCIZIO 1

Si consideri il sistema di assi cartesiani ortogonali in Fig.1. Il proiettile A viene sparato dall'origine con velocità $v_{A0}=100$ m/s ad un angolo θ_A = 30° dall'orizzontale. Allo stesso istante il proiettile B viene sparato da un punto B distante x_0 dall'origine (x_0 = 60 m), con velocità v_{B0} = 80 m/s ad un angolo θ_B .

Vogliamo che i due proiettili collidano in qualche punto P(x,y).

- 1) Determinare il valore di θ_B tale che avvenga la collisione.
- 2) A che istante e in quale punto avviene la collisione?
- 3) Trovare le componenti delle velocità dei due proiettili nell'istante dell'impatto.


Sia $\theta_B = 45^{\circ}$.

4) Quale dei due proiettili tocca terra più lontano rispetto al punto di sparo? Quale dei due proiettili raggiunge una quota più elevata?

ESERCIZIO 2

Un blocchetto di massa m_1 = 1.5 Kg, posto su un piano inclinato di un angolo α = 30° con l'orizzontale e lunghezza L = 10 m, è collegato ad una molla di costante elastica k= 5 N/m e lunghezza di riposo trascurabile e ad un'estremità di un filo inestensibile di massa trascurabile. All'altra estremità del filo è collegata, tramite una carrucola priva di attrito, una massa m_2 = 1.0 Kg come rappresentato in Fig.2.

CASO 1 - Il piano inclinato è liscio.

- 1) Determinare la posizione x_0 in cui si trova il blocchetto m_1 quando il sistema è in equilibrio.
- 2) Il blocchetto m₁ viene lasciato partire da fermo dalla base del piano inclinato. Qual è la velocità del blocchetto m₁ quando passa per la posizione x₀ ?

CASO 2 - Il piano inclinato presenta attrito.

- 3) Sapendo che quando il blocchetto m_1 si trova nel punto alla metà della lunghezza del piano inclinato il sistema è in equilibrio, determinare modulo, direzione e verso della forza di attrito statico F_s in questa posizione.
- 4) Il blocchetto m_1 viene lasciato partire da fermo dalla base del piano inclinato (l'attrito statico non è sufficiente a mantenere fermo il blocchetto in questa posizione). Sapendo che la sua salita si ferma dopo aver percorso un tratto $\Delta l = 9.6$ m lungo il piano inclinato, calcolare il coefficiente di attrito dinamico μ_k .