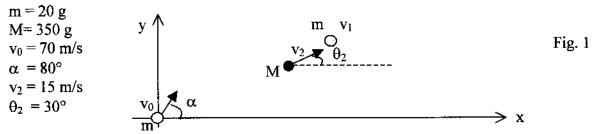
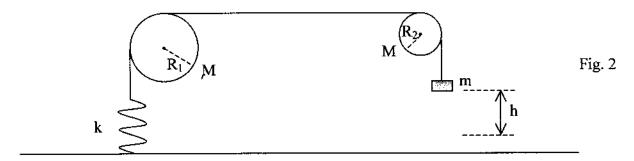
Corso di laurea in Scienze Geologiche	-	II° Verifica scritta di Fisica del 24/04/2008
COGNOME		. NOME
MATRICOLA		


ESERCIZIO 1

Un proiettile di massa m, sparato dal livello del suolo con velocità v_0 che forma un angolo α con l'orizzontale, colpisce un bersaglio, avente massa M, che si trova al momento dell'impatto nel punto di massima quota del proiettile con velocità v_2 che forma un angolo θ_2 con l'orizzontale.

1.1) Calcolare la velocità \vec{v}_i del proiettile un istante prima dell'impatto.


Dopo l'urto il proiettile resta conficcato nel bersaglio. Determinare:

- 1.2) la velocità \vec{V} del sistema dopo l'urto;
- 1.3) la massima altezza rispetto al suolo raggiunta dopo l'urto;
- 1.4) l'energia meccanica dissipata nell'urto.

ESERCIZIO 2

Un blocco di massa m è collegato all'estremo di un filo inestensibile di massa nulla, appoggiato su due carrucole schematizzabili come due dischi aventi massa M e raggi R₁ e R₂. L'altro estremo del filo è collegato al suolo tramite una molla di costante elastica k, avente massa trascurabile e lunghezza di riposo nulla. Tra filo e carrucole non vi è slittamento e le due carrucole possono ruotare senza attrito attorno ad un asse fisso orizzontale passante per il centro di massa (vedi Fig.2).

$$m = 2.0 \text{ Kg}, M = 12 \text{ Kg}, R_1 = 20 \text{ cm}, R_2 = 10 \text{ cm}, k = 50 \text{ N/m}, h = 50 \text{ cm}$$

2.1) Calcolare la lunghezza L₀ della molla quando il blocco m è fermo nella sua posizione di equilibrio.

Il blocco m viene abbassato di h dalla posizione di equilibrio e viene lasciato libero di muoversi con velocità iniziale nulla.

- 2.2) Calcolare l'accelerazione del blocco m al momento del rilascio.
- 2.3) Con quale velocità passa per la posizione di equilibrio?

Si assuma che tutto il sistema sia immerso in acqua ($\rho_0 = 1000 \text{ Kg/m}^3$) e siano ρ_m e ρ_M le densità della massa m e delle carrucole M ($\rho_m = \rho_M = 2\rho_0$).

2.4) Calcolare la lunghezza L₁ della molla quando il blocco m è fermo nella sua posizione di equilibrio.

Nota: acconsento che l'esito della prova venga pubblicato sul sito web del docente, http://www.df.unipi.it/~ciampini/, impiegando come nominativo le ultime quattro cifre del numero di matricola, oppure il codice: | | | | | (4 caratteri alfanumerici).