FISICA PER SCIENZE BIOLOGICHE MOLECOLARI C

Compitino del 30.05.2008

Esercizio 1

Un corpo di massa $m=1.438\ kg$ viene tenuto premuto sopra una molla (priva di massa) di costante elastica $k=303.7\ N/m$ posta in verticale e che quindi risulta compressa. Quando si lascia, la massa m viene spinta dalla molla verso l'alto e, dopo aver percorso in verticale una distanza $h=0.6647\ m,$ si ferma prima di ricadere.

Domanda n. 1: Si calcoli la compressione iniziale della molla.

Esercizio 2

Un pendolo semplice, di massa $m = 0.7114 \ kg$ e lunghezza $d = 1.902 \ m$, viene lasciato libero quando forma un angolo $\theta = 23.42^{\circ}$ con la verticale. Trascurando eventuali attriti, si trovino:

Domanda n. 2: la velocita massima raggiunta dalla massa m.

Domanda n. 3: la tensione del filo quando la massa m passa per la posizione più bassa.

Esercizio 3

Una sfera di raggio R=2.318~m, costituita da materiale omogeneo di densità $\delta_1=3662~kg/m^3$, contiene alcune cavità interne. Quando viene immersa completamente in un liquido di densità $\delta_2=813.8~kg/m^3$, la sfera resta in equilibrio.

Domanda n. 4: Calcolare il volume totale delle cavità interne.

Esercizio 4

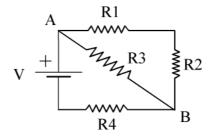
In un tubo di sezione $A=0.5802\ m^2$ scorre acqua con velocità $v_a=2.589\ m/s$. Il tubo si restringe fino ad una sezione $B=0.2321\ m^2$ posta ad una altezza rispetto al punto A di $z=1.605\ m$. Si calcoli:

Domanda n. 5: la velocità del liquido in B.

Domanda n. 6: la differenza di pressione $(P_A - P_B)$ fra le sezioni A e B del tubo.

Esercizio 5

Un elettrone è immerso in un liquido di costante dielettrica relativa $\epsilon=82.85$ e si trova sopra una distribuzione lineare di cariche; quando la distanza da esse è di z=0.1031~m l'elettrone si trova in equilibrio.


Domanda n. 7: Quanto vale la densità lineare di carica della distribuzione (includere il segno corretto)?

Esercizio 6

Un circuito è composto da una sorgente di fem V=10.67~V e da quattro resistenze $R_1=386.7~\Omega$, $R_2=176.4~\Omega$, $R_3=1126~\Omega$ e $R_4=1502~\Omega$ disposte come in figura.

Domanda n. 8: Calcolare la corrente I che attraversa la resistenza R_4 .

Domanda n. 9: Calcolare la differenza di potenziale V_{AB} fra i punti A e B indicati in figura.

Esercizio 7

All'istante t = 0, una carica positiva q si trova nell'origine di un sistema di coordinate cartesiane, e ha velocità $v_0 = (0, 3.356, 0) \ m/s$. In questo punto (e nelle sue vicinanze) è presente un campo magnetico costante $B = (0.04722, 0, 0) \ T$.

Domanda n. 10: Se si vuole che la carica continui a viaggiare di moto rettilineo uniforme, quale deve essere il campo elettrostatico che si deve applicare nella posizione in cui si trova la carica (indicare modulo, direzione e verso)?

Soluzioni

Esercizio 1

Risposta alla domanda n. 1: Quando la molla è compressa e ferma, se x rappresenta la compressione iniziale della molla, l'energia meccanica totale è data da

$$E_{tot} = \frac{1}{2}kx^2$$

Per la conservazione dell'energia, il corpo può arrivare all'altezza h tale che:

 $E_{tot} = mgh$

da cui:

$$x = \sqrt{\frac{2mgh}{k}}$$

Esercizio 2

Risposta alla domanda n. 2: Applicando la conservazione dell'energia, tenuto conto che quando il pendolo è fermo si ha solo energia potenziale, mentre la velocità massima si ha quando il pendolo passa per la verticale:

$$E = \frac{1}{2}mv^2 = mgL(1 - \cos\theta)$$
$$v_{max} = \sqrt{2gL(1 - \cos\theta)}$$

Risposta alla domanda n. 3: Nel punto indicato, le forze agenti sulla masse sono la tensione T del filo e la forza peso, e la risultante deve essere tale da produrre l'accelerazione necessaria affinché il moto sia circolare con velocità (in quell'istante) v_{max} :

$$m\frac{v_{max}^2}{r} = T - mg$$
$$T = mg(3 - 2\cos\theta)$$

Esercizio 3

Risposta alla domanda n. 4: Chiamando D il volume totale delle cavità e V il volume della sfera, il bilancio delle forze agenti sulla sfera vale:

$$\delta_1(V-D)g - \delta_2 V = 0$$

Escplicitando V si ottiene:

$$D = \frac{4}{3}\pi R^3 \left(1 - \frac{\delta_2}{\delta_1}\right)$$

Esercizio 4

Risposta alla domanda n. 5: Per la conservazione della portata:

$$v_B = v_A \frac{A}{B}$$

Risposta alla domanda n. 6: Applicando il teorema di Bernoulli si ha:

$$P_A - P_B = \rho \left(\frac{1}{2} v_A^2 \left(\frac{A^2}{B^2} - 1 \right) + gz \right)$$

Esercizio 5

Risposta alla domanda n. 7: Il campo generato da una distribuzione lineare di cariche in un dielettrico vale:

$$E(z) = \frac{\lambda}{2\pi\epsilon\epsilon_0 z}$$

Uguagliando la forza elettrostatica con la forza peso, si ottiene:

$$\lambda = -\frac{m}{e} \; 2\pi\epsilon\epsilon_0 \; gz$$

dove m ed e sono la massa e la carica dell'elettrone.

Esercizio 6

Risposta alla domanda n. 8: Le resistenze del circuito sono disposte in modo che la resistenza totale è data dalla serie di R_4 e della resistenza equivalente al parallelo di R_3 con $R_1 + R_2$. La corrente cercata vale quindi:

$$R_{tot} = R_4 + \frac{R_3(R_1 + R_2)}{R_1 + R_2 + R_3}$$

$$I = \frac{V}{R_{tot}}$$

Risposta alla domanda n. 9: Per la differenza di potenziale V_{AB} si ha:

$$V_{AB} = V - R_4 I = V \left(1 - \frac{R_4}{R_{tot}} \right)$$

Esercizio 7

Risposta alla domanda n. 10: Per la forza di Lorentz, il campo magnetico B_x produce sulla carica positiva che si muove lungo \hat{y} una forza diretta lungo $-\hat{z}$. Il campo elettrico deve essere diretto quindi lungo $+\hat{z}$ e deve avere intensità:

$$E_z = v_0 B$$