FISICA PER SCIENZE BIOLOGICHE MOLECOLARI C

Compitino del 23.03.2009

Esercizio 1

Le componenti cartesiane di due vettori (che rappresentano grandezze fisiche omogenee) sono rispettivamente $\vec{A} = 5.16\hat{i} + 22.82\hat{j}$ e $\vec{B} = 11.97\hat{i} + 103.8\hat{j}$ (con \hat{i} e \hat{j} versori diretti lungo gli assi x e y).

Domanda n. 1: Calcolare il modulo del vettore differenza $\vec{A} - \vec{B}$.

Domanda n. 2: Calcolare c_y (componente y di un terzo vettore $\vec{C} = 69.55\hat{i} + c_y\hat{j}$) tale che il prodotto scalare tra il vettore \vec{A} e il vettore \vec{C} sia nullo.

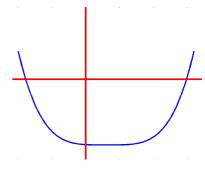
Esercizio 2

Un giocatore di basket comincia a palleggiare quando il pallone (considerato come un punto materiale di massa M=0.6~kg) si trova (fermo) ad una altezza $h_1=0.9151~m$. Per velocizzare l'azione e rendere il palleggio più efficace, il giocatore esercita sul pallone una forza F=9.155~N, diretta verticalmente verso il basso, sino a quando il pallone arriva ad una altezza $h_2=0.5592~m$ rispetto al suolo.

Domanda n. 3: Qual è il modulo della velocità del pallone quando si trova in h_2 ?

Esercizio 3

Un'automobile viaggia ad una velocità costante $v_0 = 15.8 \ m/s$. All'improvviso il conducente frena, applicando una accelerazione costante di modulo $a = 6.178 \ m/s^2$ per un tempo $t_1 = 2.189 \ s$, poi cambia idea, procedendo per un tempo $t_2 = 2.015 \ s$ a velocità costante, infine ricambia idea e applica nuovamente l'accelerazione costante a sino a fermarsi completamente.


Domanda n. 4: Calcolare il tempo totale trascorso tra l'istante iniziale (in cui il conducente ha iniziato a frenare la prima volta) e l'istante in cui l'automobile si ferma.

Domanda n. 5: Qual è lo spazio totale percorso dall'automobile tra l'istante iniziale e l'istante in cui l'automobile si ferma?

Esercizio 4

Un corpo si muove di moto unidimensionale sotto l'azione di una forza conservativa. L'espressione analitica dell'energia potenziale corrispondente a tale forza è $U(x)=15.75(x-8.128)^4+46.12\ J$.

Domanda n. 6: Trovare il valore della posizione x corrispondente ad un punto di equilibrio stabile.

Esercizio 5

Per decollare, un piccolo aereo come un Cessna deve raggiungere una velocità longitudinale minima $v_{min} = 50.6 \ m/s$ rispetto all'aria. Sull'aeroporto soffia un vento che sposta l'aria con velocità $v_{aria} = 7.945 \ m/s$ in una direzione che forma un angolo $\theta = 65.83^o$ rispetto alla pista. Supponendo che l'aereo decolli scegliendo il verso con cui percorrere la pista nel modo più favorevole,

Domanda n. 7: qual è la velocità minima rispetto al suolo che il pilota deve raggiungere per decollare?

Esercizio 6

Un sughero di massa m=0.2276~kg viene lasciato cadere da una finestra posta ad una altezza Z=7.385~m e raggiunge il suolo con velocità $v_s=7.727~m/s$ sotto l'azione della forza di gravità e delle forze viscose esercitate dall'aria.

Domanda n. 8: Calcolare il lavoro complessivo eseguito dalle forze viscose durante l'intera caduta (attenzione al segno!).

Esercizio 7

Il moto di una cabina di un ascensore (con massa totale $MT = 640 \ kg$) può essere schematizzato in due fasi: inizialmente i cavi esercitano una forza costante F per un tempo $t_{part} = 0.9885 \ s$ in modo che la cabina raggiunga la velocità v_r ; da quel momento il moto avviene a velocità costante. Per rendere accettabile a tutte le persone questo tipo di movimento, l'accelerazione iniziale a_{part} deve essere al massimo uguale ad un valore stabilito per legge. Se $a_{part} = 2 \ m/s^2$,

Domanda n. 9: qual è la forza esercitata dai cavi sulla cabina durante la prima fase?

Domanda n. 10: qual è il tempo totale necessario alla cabina per arrivare alla quota P = 15.1 m corrispondente ad uno dei piani del palazzo?

Soluzioni

Esercizio 1

Risposta alla domanda n. 1: Applicando le regole di composizione dei vettori, per le componenti cartesiane si ha:

$$\vec{A} - \vec{B} = (a_x - b_x)\hat{i} + (a_y - b_y)\hat{j}$$

da cui si ottiene il modulo del vettore differenza:

$$\sqrt{(a_x - b_x)^2 + (a_y - b_y)^2}$$

Risposta alla domanda n. 2: Esprimendo il prodotto scalare mediante le componenti cartesiane, e imponendo che il risultato sia nullo si ha:

$$\vec{A} \cdot \vec{C} = a_x c_x + a_y c_y = 0$$

$$c_y = -\frac{a_x c_x}{a_y}$$

Esercizio 2

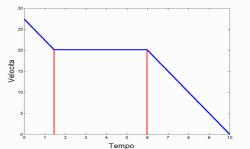
Risposta alla domanda n. 3: Nel percorso compreso tra h_1 e h_2 sul pallone agiscono la forza peso e quella esercitata dal giocatore. La direzione delle forze è tale che la forza totale è uguale alla somma dei moduli, per cui il modulo dell'accelerazione risulta:

$$a_{pallone} = \frac{F}{M} + g$$

Applicando il teorema delle forze vive, dal lavoro compiuto si ricava la velocità del pallone in h_2 :

$$L = (F + Mg)(h_1 - h_2)$$

$$L = \frac{1}{2}Mv_2^2 - \frac{1}{2}Mv_1^2$$


$$\frac{1}{2}Mv_2^2 = (F + Mg)(h_1 - h_2)$$

$$v_2 = \sqrt{2(\frac{F}{M} + g)(h_1 - h_2)}$$

Esercizio 3

Come si vede dal grafico orario per la velocità dell'automobile, il moto può essere suddiviso in tre regioni: la prima e l'ultima corrispondono ad un moto uniformemente accelerato, quella intermedia ad un moto uniforme.

Risposta alla domanda n. 4: La somma dei tempi corrispondenti alla prima e terza regione equivale al tempo necessario per portare da v_0 a 0 la velocità con una

accelerazione costante di modulo a: per ottenere il tempo totale basta aggiungere ad esso t_2 :

$$T = t_{13} + t_2 = \frac{v_0}{a} + t_2$$

Risposta alla domanda n. 5: Sempre utilizzando il grafico orario, lo spazio totale percorso equivale all'area sotto la curva della velocità. Lo spazio percorso nella prima e terza regione vale $v_0^2/2a$, mentre per la seconda regione occorre calcolare la velocità raggiunta:

$$S = \frac{v_0^2}{2a} + (v_0 - at_1)t_2$$

Esercizio 4

Risposta alla domanda n. 6: La posizione di equilibrio stabile corrisponde ad un minimo dell'energia potenziale; la curva indicata $U(x) = A(x - x_0)^4 + B$ ha un minimo per $x = x_0$.

Esercizio 5

Per calcolare la velocità che l'aereo ha rispetto all'aria si può utilizzare la relazione tra velocità misurate in due sistemi inerziali:

$$\vec{v_a} = \vec{v_b} + \vec{V_{ba}}$$

dove $\vec{V_{ba}}$ è la velocità con cui il sistema b si muove rispetto ad a.

Risposta alla domanda n. 7: In questo caso la domanda riguarda la componente longitudinale¹, per cui v_a è la velocità dell'aereo rispetto al suolo, v_b è la velocità dell'aereo rispetto all'aria, v_{ba} è la componente longitudinale della velocità dell'aria rispetto al suolo; affinchè l'aereo decolli, deve essere $v_b \geq v_{min}$.

$$v_{ba} = v_{aria}\cos(\theta)$$
 oppure $v_{aria}\cos(\pi + \theta)$
 $v_a = v_{min} + |v_{aria}\cos(\theta)|$ condizione meno favorevole
 $v_a = v_{min} - |v_{aria}\cos(\theta)|$ condizione più favorevole

¹L'effetto della spinta laterale del vento sull'aeroplano viene usualmente annullato dall'attrito tra ruote e pista.

Esercizio 6

Risposta alla domanda n. 8: Il lavoro complessivo eseguito dalle forze viscose durante l'intera caduta è uguale alla differenza di energia totale del corpo:

$$L_{visc} = E_f - E_i = \frac{1}{2}mv_s^2 - mgZ$$

Esercizio 7

Risposta alla domanda n. 9: Durante la prima fase la forza esercitata dai cavi sulla cabina deve essere tale da produrre una accelerazione a_{part} diretta verso l'alto. Tenendo conto che sulla cabina agisce anche la forza peso (diretta verso il basso), si ottiene:

$$Ma_{part} = -Mg + F$$

 $F = M(g + a_{part})$

Risposta alla domanda n. 10: Il moto dell'ascensore si suddivide in due fasi, la prima caratterizzata da a_{part} , la seconda da v_r costante. Detti s_1 e s_2 gli spazi percorsi in esse, si ha:

$$s_{1} = \frac{1}{2}a_{part}t_{part}^{2}$$

$$s_{2} = v_{r}t_{2} = a_{part}t_{part}t_{2}$$

$$P = s_{1} + s_{2} = \frac{1}{2}a_{part}t_{part}^{2} + a_{part}t_{part}t_{2}$$

$$t_{2} = \frac{P}{a_{part}t_{part}} - \frac{1}{2}t_{part}$$

$$T_{totale} = t_{part} + t_{2} = \frac{P}{a_{part}t_{part}} + \frac{1}{2}t_{part}$$