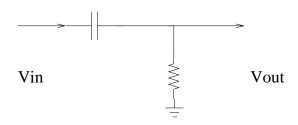

Componenti del gruppo
1
2
3

Filtri passa basso e passa alto.

Si proceda nel modo seguente:

- 1) si monti il filtro passa basso, con valori arbitrari di R e C (Per comodita', si scelga una frequenza di taglio di qualche kHz, e si faccia attenzione a rimanere tra l'impedenza del generatore e quella dell'oscilloscopio).
- 2) si misuri la frequenza $f_{1/2}$ in corrispondenza della quale l'uscita del filtro vale metà dell'ingresso, e si ricavi da questa la frequenza di taglio tramite la relazione: $f_0 = f_{1/2}/\sqrt{3}$.
- 3) si misuri la tensione in uscita in corrispondenza di una serie di multipli e sottomultipli di f_0 , e quindi il rapporto tra ampiezza in ingresso ed in uscita in corrispondenza di queste tensioni, confrontandoli con i valori teorici.
- 4) si ripeta la misura scambiando tra di loro resistenza e condensatore, in modo da realizzare un filtro passa alto, ricordando che stavolta si ha: $f_0 = \sqrt{3}f_{1/2}$.


Filtro passa basso:

$$V_{in}$$
= $V, R = k\Omega, C = \mu F$
 $f_{1/2} = Hz, f_0 = f_{1/2}/\sqrt{3} = Hz, \frac{1}{2\pi RC} = \pm Hz$

	f	v_{out}	V_{out}/V_{in}	ΔT	ϕ	T(f)
$f_0/8$		±	±	士	士	0.99
$f_0/4$		土	土	土	土	0.97
$f_0/2$		土	士	土	土	0.89
f_0		士	土	士	土	0.71
$2f_0$		土	土	土	土	0.45
$4f_0$		士	士	士	士	0.24
$8f_0$		土	土	土	土	0.12

Filtro passa alto:

$$V_{in}$$
= $V, R = k\Omega, C = \mu F$
 $f_{1/2} = Hz, f_0 = f_{1/2} \cdot \sqrt{3} = Hz, \frac{1}{2\pi RC} = \pm Hz$

	f	v_{out}	V_{out}/V_{in}	ΔT	ϕ	T(f)
$f_0/8$		±	±	土	±	0.12
$f_0/4$		土	土	土	土	0.24
$f_0/2$		土	土	土	土	0.45
f_0		±	土	士	士	0.71
$2f_0$		土	土	土	土	0.89
$4f_0$		土	土	土	土	0.97
$8f_0$		+	士	土	土	0.99