

MAGIC

(the Major Atmospheric Gamma Imaging Cerenkov telescope)

Alessio Piccioli

Università di Siena and I.N.F.N. Sezione di Pisa for the MAGIC Collaboration

γ-ray astrophysics : redshift

Hubble law $\mathbf{V} \propto \mathbf{d}$

Doppler Effect $\mathbf{z} \propto \mathbf{V}$

DISTANCE $\mathbf{z} \propto \mathbf{d}$

Energy Spectrum (CRAB)

Energy Spectrum (MRK 421)

Cosmic Ray Detection Approaches

Space detectors

Large field of view Small collection area (~1 m²) Energy sensitivity up to ~100 GeV

<u>Ground detectors</u> Small field of view Large collection area (~3•10⁴ m²) Energy sensitivity from ~10 GeV

- ⇒ Large Cherenkov Telescope Optimised for:
 - low threshold: $E_{\gamma} < 30 \text{ GeV}$

fast repositioning: t_R < 30 s.
 Many new technological elements

Atmospheric showers

QuickTime™ and a MPEG-4 Video decompressor are needed to see this picture.

Air Showers

Air showers induced by cosmic rays

air shower hadronic gamma photons differently

Cherenkov light

MC Simulation of Shower

QuickTime™ and a Video decompressor are needed to see this picture.

CERENKOV EFFECT

Atmospheric showers and Cerenkov light

QuickTime[™] and a MPEG-4 Video decompressor are needed to see this picture.

,Hillas parameters'

Entrie

reduction

Source in center

IACT PARAMETERS

Angular resolution

Energy Threshold

Sensitivity

The Gamma Ray Universe

EGRET

-
$$100 \text{ MeV} < \text{E}\gamma < 10 \text{ GeV}$$

- A ~ 0.15 m²

> 270 sources (170 unidentified)

First Generation IACTs

- Εγ > 300 GeV
- A ~ 40000 m²
- ~ 10 sources

Something must happen in

10 GeV < $E\gamma$ < 300 GeV

Covering the Energy Gap

MAGIC Physics Targets

Optical Depth and Gamma Ray Horizon (GRH)

High energy γ -rays traversing cosmological distances are expected to be absorbed through interaction with **EBL**:

$$\gamma_E \ \gamma_\epsilon \longrightarrow e^+ e^-$$

Absorption is modeled by:

$$\frac{dN}{dE} = KE^{-\Gamma} \cdot e^{-\tau(E,z)}$$

The Gamma Ray Horizon is defined by:

$$\tau(E,z) = 1$$

Optical Depth

Stecker, De Jager: astro-ph/9501065 Kneiske, Mannheim, Hartmann: Astron. Astrophys, 386

$$\tau(E,z) = \int_0^z \frac{d\ell}{dz'} dz' \int_0^2 \frac{x}{2} dx \int_{\frac{2m^2c^4}{Ex(1+z')^2}}^\infty n(\epsilon,z') \,\sigma(2xE(1+z')^2) \,d\epsilon$$

Bethe-Heitler cross section

Measurement of Cosmological Parameters

The GRH is a distance estimator based on the absorption, depends on: • the γ -ray path

• the Hubble constant and the cosmological densities

 $\frac{d\ell}{dz} = c \cdot \frac{1/(1+z)}{H_0 \left[\Omega_M (1+z)^3 + \Omega_K (1+z)^2 + \Omega_\Lambda\right]^{1/2}}$

Ho known at the level of 4 km/s/Mpc (Hubble project)

H_0	=	$68.5\pm1.6~\mathrm{km}$	$/\mathrm{s}/\mathrm{Mpc}$
Ω_M	=	$0.35\substack{+0.21\\-0.20}$	
Ω_{Λ}	=	$0.65\substack{+0.24\\-0.25}$	MINOS

⇒ The $\Delta\chi^2$ =2.3 *2-parameter contour* improves by more than a factor 2 the present Supernovae combined result !

O. Blanch, M. Martinez - ICRC 2003

Fazio-Stecker Relation

Measuring the Fazio-Stecker relation is of great diagnostic value for:

- star formation in optically-obscured IR galaxies
- stellar sources of UV radiation at high z
- star formation rate at high z (~1.5)

Kneiske et al. astro-ph/0309141

A. Piccioli, Università di Siena and I.N.F.N. Sezione di Pisa

Gamma Ray Bursts

Uniformity

Pulse Duration

- Origin of GRBs
 - Galactic
 - Cosmological
- Theoretical Emission Models:
 - Standard fireball model
 - Internal Shocks model
 - External Shock model
- Multiwavelength study
- GeV studies possible if:
 - fast repositioning ~10 s
 - low E threshold ~30 GeV
- From BATSE catalog ~50/year
 - Expected signal rate 6÷600 Hz (in [10s,T] assuming T~20s)
 - 2÷3 "long" GRBs detectable/year

What do we need to study GRBs ? Alert System

High Energy Observations

"Faint" Objects Rapid Variable Phenomena Large Field Of View

Broad Band Observations

- Connection between Ground & Space Telescopes
- Rapid Response
- Good Localization
- Rapid Repositioning
- →Global Coordinate Network

- → Large Effective Area
- Short Dead Time ~ 100 µs
- ➔ High Acquisition Rate

What do we need to study GRBs? Telescope Fast Movement

Mean Repositioning Time ~ 20 s

Point ANY place in the sky in ~30 s

QuickTime™ and a YUV420 codec decompressor are needed to see this picture.

The MAGIC Collaboration

~100 Physicists 17 Institutes 11 Countries MPI Munich, Germany U. Würzburg, Germany U. Von Humboldt, Berlín, Germany

> IFAE Barcelona, Spain UAB Barcelona, Spain UCM Madrid, Spain

U. Padova/INFN Padova, Italy U. Siena/INFN Pisa, Italy U.Udine/INFN Trieste, Italy

ETH, Zurich, Switzerland

The Site: Roque de Los Muchachos

The Site: Roque de Los Muchachos

MAGIC Telescope

Control House

11

HEGRA-CTs

Energy Threshold $E \propto \sqrt{rac{\phi \Omega au}{\Lambda}}$

Mirror Area

17 m diameter 240 m² diamond milled Al 85%-90% reflectivity Built by MERO (F)

Energy Threshold

Pixel Solid Angle

Energy Threshold

Quantum Efficiency

Lacquer

PTP+B-72 +Dichloromethane

- 1. Increase γ path length
- 2. Light collector to cross twice the photocathode

A. Piccioli, Università di Siena and I.N.F.N. Sezione di Pisa

Energy Threshold

Integration time

Flash ADC @ 330 MHz, 8 bit

High/Low gain (x5)

Dynamic range: 2000 (high/low gain) DAQ: Continuous ~20 Mbytes/sec → ~1% deadtime @ 1 kHz Internal FIFO for 150 000 events (>20 kHz) → Gamma Ray Bursts

The Trigger Architecture

The Trigger Selection

The cluster size can be <u>computed at trigger level</u> - "pseudosize".

A. Piccioli, Università di Siena ald MAAA6\$(2004)5564

Active Mirror Control

A) Optimize focus on lamp (920 m)
B) Memorize panel & laser positions → PSF

I FD as a telescope camera lid reference point laser modul actuator in CCD-camera cardan joint fix point actuator with reedom in one axi control electronics computer with distributor 62 electronic boxes RS485 interface and frame grabber card

Point Spread Function

Camera Calibration

Strong LED pulser with avalanche transistors and 3 different colors Light pulse amplitudes up to 2000 PhE/pixel ~ 3-4 ns

Pulser flux measurement by PMT PIN diode Excess noise method

Calibration by muon rings

Muon rings

Add time information to tag muons in events Help in gamma/hadron separation

A. Piccioli, Università di Siena and I.N.F.N. Sezione di Pisa

Preliminary results: Crab

Crab nebula (pulsar wind)

Steady Gamma emission (standard candle): useful for calibration Very first look: **~50 minutes** observation time **→** detection !

~ 8.0 events/minute after simple cuts

A. Piccioli, Università di Siena and I.N.F.N. Sezione di Pisa

Preliminary results: Mrk 421

Mrk 421 (BL Lac, z=0.031) was flaring in February

Observation time ~100 minutes

27 sigma significance after simple cuts

A. Piccioli, Università di Siena and I.N.F.N. Sezione di Pisa

Future Prospects and Developments

Design Study for a 34m telescope astro-ph/0403180 Build a second telescope ⇒ Same mechanical structure ⇒ Test bench for technical developments

• <u>High energy astrophysics (Longair)</u>

Cosmic Ray and Particle Physics (Gaisser)

<u>Very high energy gamma ray astronomy (Weekes)</u>

<u>http://www.pi.infn.it/magic</u>

<u>alessio.piccioli@pi.infn.it</u>