2 Cosmic ray interactions

This book is not a book on high energy physics and particle interactions.
We have, however, to give the reader some information on the structure of
matter and the interactions between its building blocks, because these are
necessary for the understanding of the phenomena, of cosmic ray acceleration,
propagation in the Universe, and detection.

This chapter gives a simple introduction to our understanding of the struc-
ture of matter and of the different interactions that cosmic rays undergo in
their propagation from their sources to us. The description of the interactions
is brief and biased toward higher energy particles, with an energy of about 1
GeV and higher, which are the main subject of our interest. Three types of
interactions are discussed:

— electromagnetic interactions of charged particles, which in are mostly im-
portant for the propagation of electrons and photons;

— inelastic hadronic interactions, that are important for the production of
secondary particle fluxes;

— nuclear interactions, when heavier nuclei are split into lighter ones, that
are mostly important for changes of the chemical and isotopic composition
of accelerated cosmic ray nuclei.

We will not discuss the weak interactions in this section. Discussion and
formulae for the interactions of neutrinos will be given in Sect. 7.2.1.

2.1 Components and structure of matter

The progress in understanding the structure of matter is intimately and natu-
rally linked to the exploration of smaller and smaller dimension. Rutherford’s
experiments revealed the existence of the atomic nucleus which takes up a
very small fraction of the volume of the atom. Nuclei consist of their com-
ponents, protons (p) and neutrons (n). The electrons (e~) are negatively
charged particles that orbit the positively charged nucleus to complete the
atom.

With the exceptionally rapid development of the experimental particle
physics in the last fifty years the number of such ‘elementary’ particles became
very large. The last issue of the Review of Particle Properties [11], that keeps
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track of all results in the field, lists 143 particles the existence of which
is firmly established and whose properties are well known. Most of these
particles are not stable. They decay with a very short lifetime. The long-living
7t decays in 0.026 ps and most other lifetimes are shorter by many orders
of magnitude. There are also as many particle ‘candidates’, the properties of
which are not well known and which do not satisfy the conditions for fully
established ‘elementary’ particles.

A few of these particles, such as the electron and electron neutrino (ve)
arc truly elementary, i.c. they are indeed among the building blocks of mat-
ter. Both the clectron and the neutrino are leptons. Others, the hadrons, are
combinations of smaller blocks, quarks, which have never been observed indi-
vidually, in isolation. Their properties have been derived from the properties
of the hadrons they build up because of the conservation of the quantum
numbers that these particles carry. A third type of particles is called gauge
bosons. These carry the forces between the hadrons and the leptons.

Table 2.1 gives information about the properties of some of the quarks
and leptons. Each quark and lepton has its antiparticle. A proton consists of

Table 2.1. Basic building blocks of matter.

Name Baryon number Lepton number Charge
Quarks:

up (n) 1/3 0 2/3
down (d) 1/3 0 -1/3
Leptons:

electron (e™) 0 1 -1
electron neutrino (v, ) 0 1 0

two up quarks and one down quark. Its structure is uud. Consequently it has
a baryon number of 1 (1/3 + 1/3 + 1/3) and charge +1 (2/3 + 2/3 —1/3).
All charges are measured in units of the electron charge. A neutron consists
of one up quark and two down quarks (udd). It is neutral (2/3 — 1/3 — 1/3)
and has a baryon number 1. The antiparticle of the proton, the antiproton
consists of @id. It has a charge of -1 and baryon number —1. All baryons are
strongly interacting particles. Other hadrons, which also interact strongly, are
the mesons. Mesons consist of a quark-antiquark combination. The positive
pion 7% is a (ud) combination and has a charge of 1 (2/3 —(=1/3)) and
baryon number 0 (1/3 — 1/3).

Quarks have also an additional quantum number specific to them, color,
which allows the combinations of identical quarks, which otherwise would
have been forbidden by Fermi’s statistics. The classical example for that is
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the doubly charged baryon A% which consists of three up quarks (vuu) of
different colors.

2.1.1 Strong, electromagnetic and weak interactions

The particles shown in Table 2.1 represent only one of the three families of
quarks and leptons. Table 2.2 gives the names of all quarks and leptons and
the types of their interactions. All charged particles have electromagnetic

Table 2.2. Quarks, leptons, interactious they participate in, and the force carriers.

Name The three families Interactions|Gauge boson
Quarksju (up) ¢ (charm) t (top) strong & g
d (down) s (strange) b (beauty)|EM y
Leptons|e (electron) g {muon) 7 (tau) EM & 5y
Ve vy Vs weak wt A

interactions. Hadrons have also strong interactions and neutral leptons have
only weak interactions. These three types of intcractions reflect the strength
and extension of the corresponding forces. The strong force has a short range
of the order of the radius of a proton (1 fm = 107! c¢m) and strength o,
of 1. The force is carried by gluons (g). The electromagnetic force is carried
by y-rays and its coupling constant « has strength lower by two orders of
magnitude. The weak force is carried by the intermediate vector bosons W=+
and the neutral Z and has a coupling aw of the order of 10 %a,.

These features are also reflected in the corresponding particle decays.
Weak decays, like 7t — ptw, have lifctimes in excess of 10712 seconds.
Note the conservation of the quantum numbers in the decay. The sum of
the lepton numbers of the decay products is 0, as is that of the parent 7.
Electromagnetic decays (7% — ~v) have lifetimes shorter than 10716 s, while
decays guided by the strong force have lifetimes of the order of 10723 s.

2.1.2 Units of energy and interaction strength

The basic unit of energy in particle physics and cosmic ray physics is the
electronvolt (eV). This is the kinetic energy gained by an electron by passing
through a potential difference of 1 V. Different appropriate energy measures
are obtained by scaling the eV in threefold order of magnitude units, i.c. a
kiloelectronvolt (KeV) is 10° eV, megaelectronvolt (MeV) is 108 eV, (giga)
GeV = 10? eV, (tera) TeV = 10'? eV, (peta) PeV = 10'® eV, (eta) EeV =
10'% eV and (zeta) ZeV = 102! eV. The total particle energy and the kinetic
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energy Ex = E — mc? are measured in the same units. Particle momenta

p = (E? — m?c*)'/? are measured in eV /c.

The interaction strength is measured by the interaction cross-section o,
which is expressed in units of area. The basic unit is the barn = 1024 c¢cm?.
Common units are the millibarn, 1 mb = 102 b and the microbarn, 1 b
= 10~% b. Cross-sections are usually given per one nucleon (or nucleus) of
target. If a particle has interaction cross-section of ¢ = 1 mb, its mean free
path in a medium of nucleon density p = 10® cm=2% is A = (op)~! = 10%* cm.
If the density p is in terms of g/cm® then the mean free path is calculated
in terms of the column density g/cm?, i.e. A = [(Na/A)po]™! g/cm?, where
N4 is Avogadro’s number and A is the mass number of the target.

Other quantities that we will use soon are the particle Lorentz factor
v = Ejot/mc? that is the ratio of the total particle energy and its velocity
8 = v/c in terms of the speed of light. These quantities are related in the

following way:
1

V-

2.2 Electromagnetic processes in matter

Most of the information given in this section is directly applicable only for
electrons. Later, in Chap. 7 we discuss the electromagnetic interactions and
the energy loss of muons.

2.2.1 Coulomb scattering

The basis of all elecromagnetic interactions is the Coulomb scattering between
electric charges. The force between two point charges ¢; and ¢» at distance

R from each other is
q192

where n is the unit vector from one of the charges to the other.

Experimentally this process was studied by Rutherford in which he discov-
ered the structure of the atom [12]. Rutherford bombarded heavy nuclei with
« particles (He nuclei) and measured the angular deflection of the projectile
nuclei.

In the Coulomb field the particle trajectory changes. The deflection an-
gle ¥ depends on the impact parameter b between the two charges and the
velocity and mass of the particles that carry them. The impact parameter is
the closest distance between the two particles with charges ¢; and g;. The
deflection (scattering) angle is

9 272
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Equation (2.2) expresses the charges in terms of the charge of the electron
e. In the case of a projectile electron with charge z = 1 one can write the
differential cross-section for scattering as

do b db _ Z o 50

—rosin_

dR? ~ sinddd 4 ¢ 27 L

where r, = e2/(m.c?) is the classical radius of the electron and Z is the
charge of the medium.

The fact that the electrons change their direction suggests that there
is transfer of energy between the two particles. This is expressed through
the momentum transfer in terms of the momenturm of the projectile particle,
which here is an electron. The momentum transfer g is related to the electron
momentum before the scattering p and the scattering angle 4 as

g = 2psing : (2.4)
There are two consequences from the scattering: the projectile particle
changes its direction and its energy is changed in the scattering process.

The formulae above are strictly valid for point-like charges moving with
nonrelativistic velocity. Several corrections have to be introduced for rela-
tivistic particles and for more realistic scattering conditions.

The correction for relativistic particles, that was introduced by Mott, adds
the term (1 — 82 sin” 2) to the differential cross-section in (2.3).

Another correction is needed to account for the size of the target nucleus.
This is the nuclear formfactor, that accounts for the distribution of charge
inside the nucleus.

A third important one is for the screening of the nuclear field by the atomic
electrons. The basic correction for screening is in the form (1+ =)~%, where
the screening radius o is defined as the exponent of the potential decrease with
distance. The screening radius is often approximated asa = (A°/me?)Z~1/%.

2.2.2 Ionization loss

Charged particles traveling through matter lose energy on excitation and
ionization of its atoms. The energy loss per unit of column depth (in units of
MeV per g/cm?) is:

dE NaZ 2m(ze?)?

12Mv272I/V
dz A M |V P

=SB . (2.5)

where Z is the atomic number of the medium, A is its mass number and I is
its average ionization potential. N, is Avogadro’s number. ze is the charge
of the the particle, v is its velocity, and M - its mass. v and 3 characterize
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particle energy and momentum. This expression is obtained by Hayakawa [3]
by integrating the formulae of Bethe [13] and Bloch [14] to the maximum
energy loss W. The ionization loss is thus proportional to a constant L that
includes the charge and atomic number of the medium.

2TNAZ (2 \° 2
5= ﬂ( c ) me® = 0.0765 (f) MeV(g/em?) L. (2.6)

A me2

In rarefied media the ionization energy loss increases logarithmically with
the particle energy. In (2.5) this is expressed through the 72 term. In denser
media this increase is suppressed (the density effect), which is accounted for
by introducing the term —§ in (2.5). The energy loss on ionization can then
be written in a simplified form as
2
% = —L% (B+0.69+2Inv3 +1InW — 242 — 8) MeV(g/em?)~! |

‘ (2.7)
where B = In(mc®/I%), W ~ E/2 and § = 2In+8 plus a correction ¢
depending on the particle energy and on the properties of the medium. The
2In~3 term compensates for the logarithmic increase of the ionization loss.
The parameters guiding the ionization energy loss including the density effect
are given in Table 2.3 for particles with momenta > M as calculated by
Sternheimer [15]. C' values in Table 2.3 are only correct at high energy when
the ionization loss is almost constant. The low energy valucs can be found in
Hayakawa’s book [3] or in the original paper. We give values for a sample of
materials, which are important for cosmic ray propagation in the interstellar
medium (H, He), in the atmosphere (N, 0), and in particle detectors (C, Fe).

Table 2.3. Parameters guiding the energy loss on ionization in different media [3].

Element |I,eV L B C

Hydrogen| 21.8 0.152 21.07 —9.50
Helium 44.0 0.077 19.39 —-2.13
Carbon 77.8 0.077 18.256 —3.22
Nitrogen | 90.9 0.077 17.94 —10.68
Oxygen 104 0.077 17.67 —10.80
Iron 286 0.072 15.32 —4.62

Equation (2.7) gives the average cnergy loss on ionization. In fact, the
energy loss has significant fluctuations, especially when the thickness of the
target is small.
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2.2.3 Cherenkov light

A small fraction of the energy loss is emitted in the form of Cherenkov ra-
diation. The name is after its discoverer, P. Cherenkov. Cherenkov light is
emitted when a particle moves in a medium with velocity B¢ greater than the
phase velocity of the light ¢/n, where n is the refraction index of the medium.

This requirement sets a threshold energy for the emission of Cherenkov
light that depends on the valuc of the refraction index. The refraction index of
air at sca level is n = 1.0003 and the threshold energy is Eypr > mo/1 — 1/n?
(m is the particle mass) ~ 21 MeV for electrons. The refraction index in water
is 1.33 which gives much lower threshold energy, about 1 MeV for electrons.

The Cherenkov light is emitted on a cone around the particle trajectory.
The cone opening angle is

1
cosd = T +q. (2.8)
where ¢ is a quantum correction factor with small practical importance. The
maximum opening angle is achieved at high energy when 3 = 1 and cosé is
inversely proportional to the refraction index of the medium.
The intensity of the radiation per unit pathlength is proportional to the
square of the particle charge and is

dNJdL = 22— [1— ! ] , (2.9)

he 32n2

where a(he)™! = 370 eV~ cm~!. The second factor in (2.9) introduces an
energy dependence in the threshold energy range. The wavelength distribu-
tion of the emitted Cherenkov light is proportional to A™? and is distributed
in the visible and UV range.

2.2.4 Compton scattering

The process in which photons interact with the atomic clectrons and transfer
a fraction of their energy to the electrons is the Compton scattering. The
differential cross-section for Compton scattering of a photon of energy k is
given by

A 2 ,
, , 11 k 2(g+1 142k 1k

(2.10)
where k' is the photon energy after the scattering and q is the primary photon
energy in units of electron mass — q¢ = k/mc?.

The total Compton scattering cross-section can be integrated from (2.10)
to
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e 2(¢+1) 1 4 1
oo(k) = . X [(1 —F )ln(2q+1) + 5 + i ——2(2q+1)2} i
(2.11)
At low ¢ values, ¢ < 1, oc approaches the Thomson cross-section or (=
87r2/3 = 665 mb) and decrcases with increasing energy. For £ much greater
than the electron mass the total cross-section is well represented by the much

simpler formula,

3 1
oc ~ or— (In2g+ = 2.12
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Fig. 2.1. Cross-section for Compton scattering as a function of the photon energy.

The angle between the primary and the secondary photon # can be ex-
pressed as a function of the energies of the photon before and after the scat-
tering.
me?(k/k — 1)

k 2
which makes Compton scattering a convenient physical base for construction
of particle detectors. If the scattered photon and electron are both detected
this gives not only the energy of the primary photon but also its direction.

cosf = 1— (2.13)

2.2.5 Bremsstrahlung

Charged particles also interact with the electromagnetic field of the atomic
nuclei and generate photons. The process is called bremsstrahlung. The en-
ergy loss on bremsstrahlung is
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dE N [Bme

E’; = _Z ' O'br(E, k)kdk, (214)
where E is the encrgy of the charged particle and & is the energy of the
emitted photon. The bremsstrahlung cross-section op, for electrons is given
as a function of E and k as [16]

4z2 2
oo = —— L F(E,K), (2.15)

where 7. = e?/hc is the classical radius of the electron and a is the fine
splitting constant. This cross-section is calculated by Bethe and Heitler [16].
The function F(E, k) depends on the screening parameter &, which expresses
the screening of the nuclear field by the atomic electrons.

£ 1
= 100ME— ——Z /3, 2.16
¢ “EE-& 2.18)
The screening parameter & is inversely proportional to the energy of the
charged particle and is proportional to the ratio of the electron energy before
and after the process. As a function of the ratio of the photon to the electron

energy u = k/E
F(E,k) = [41-u)/3+u*]InZ7/3 + (1-u)/9 (2.17)

in the case of vanishing ¢ ~ 0, which generally describes interactions of high
energy electrons. For large £ values (in the no screening regime)

F(Bk) = [4(1—u)/3+ 3] [m (El_“) - 1/2] (2.18)

me2 u

Figure 2.2 shows the form of F(E, k) in these two regimes for electron energy
of 100 MeV. The correct representation would be the use of the full screening
formula for small k values with the no screening formula for k& approaching
the electron energy and intermediate formulae in between.

Because of the term 1/k the differential cross-section for bremsstrahlung
becomes infinite when k approaches 0 and creates the ‘infrared catastrophe’.
This, however, integrates out when the total energy loss is calculated. For
vanishing £ the energy loss is

dE  ANZ i
= == or?E [In1917 +1/18]. (2.19)

The correction term 1/18 in (2.19) comes from the interactions with the
fields of the atomic electrons. The interaction cross-section has the the same
form as (2.15) with the Z? term replaced by Z. The total bremsstrahlung
cross-section is thus proportional to Z(Z + 1). This nuclear formfactor varies
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Fig. 2.2. F(E, k) from (2.17) (solid line) and (2.18) (dotted line) for electron energy
100 MeV.

slightly from this general form and for practical rcasons is better represented
as Z(Z +1+e).

At a certain energy ey the cnergy loss for bremsstrahlung equals the ion-
ization energy loss. o is called critical energy and decreases with the charge
of the medium Z.

The general form of the cnergy loss in (2.19) allows the introduction
of the radiation length X, which gives the average amount of matter for
bremsstrahlung energy loss.

-1

N A .
ANZ(Z4T) oy 1912-1/3 2.20
e

Xy =

¢ A
Approximate values for X, can be easily calculated with the formula recom-
mended by Hayakawa [3]

A 2

Xo ~108x ——— o em-
0 “6z(z 11 E™

(2.21)
More exact values of Xy and &g in different targets are given in Table 2.4,
which is partially extracted from the Review of Particle Properties [11].

For mixtures of different elements the radiation length is calculated as a
weighted sum of the radiation lengths for the different components

1 w;
= — 2.22
X, > Xi’ (227}

i
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Table 2.4. Radiation lengths and critical energies for the most common elements.
The radiation length values are from [11] and the critical energies from [3].

Element | Z A X, g/em” g9, MeV

Hydrogen| 1 1.01 61.28 350.
Helium 2 4.00 94.52 250.

Carbon | 612.01 42.70 79.
Nitrogen | 7 14.01  37.99 85,
Oxygen | 816.00 34.24 75.
Silicon |14 28.09  28.08 37.5
Iron 26 55.85 13.84 20.7

where w; is the fraction of weight of the component element in the compound
mixture. If we assume, for example, that the atmosphere consists only of 25%
O nuclei and 75% N nuclei, and has an average atomic weight of 14.3, (2.22)
will give us 1/Xo = 14 x 0.25/34.24 4+ 16 x 0.75/37.99 = 0.02712 and we
obtain Xg(air) = 36.9 g/cm?. There is still some ambiguity about the exact
value of the radiation length in air. The particle data book [11] gives Xy =
36.66 g/cm? for sea level and temperature of 20°C. In cosmic ray physics an
accepted number is 37.1 g/cm?.

2.2.6 Creation of electron—positron pairs

It is convenient to discuss the creation of pairs after the bremsstrahlung
because physically it is the inverse process. The pair production cross-section
Opair can be calculated by substituting the electron and the positron of the
pair for the electron before and after bremsstrahlung. The cross-section then
becomes
9 .0
Opair (5, E) = o (E k)L = LLZ% G(k,E),

where k is the energy of the primary photon. The function G(k, E) is of the
order 1 and can be expressed as a function of the ratio v = E/k. E is the
energy of one of the members of the pair. The shape of G(k, E) also depends
on the screening parameter €. For the case of full screening

Gk,v) = [1+4v(v—1)/3)In (19127/%) —0(1 = v)/9 . (2.23)
For no screening

Glk,v) = [1 +4v(v —1)/3] x [m (%)v(l—v) —1/2] L (229

Figure 2.3 shows the function G(k,v) for primary proton energy k = 100
MeV in the two extreme cases of full screening and no screening, which at
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this energy are very different. It is thus extremely important to use the correct
expressions as the incorrect application of the simple equation (2.23) can lead
to errors of one order of magnitude.

F(k,v)

0 0.2 0.4 0.6 0.8 1

v=E/k

Fig. 2.3. G(E, k) from (2.23) (solid line) and (2.24) (dotted line, shaded areas) for
primary photon energy 100 MeV.,

The total pair production cross-section can be directly integrated

k—mc?
G ain (k) = / ok, B)dE (2.25)
2 oIn(191Z-1/3) 1
=4 2 2\__
Zars 9 =

in the case of vanishing £&. The correction term 1 /54 comes from pair produc-
tion in the field of the atomic electrons.

2.3 Electromagnetic collisions on magnetic and photon
fields

2.3.1 Synchrotron radiation

Synrotron radiation is a very important energy loss process for charged par-
ticles in the presence of magnetic fields. In astrophysics it is often called
magnetic bremsstrahlung. An electron moving in magnetic field B with an
angle 8 to the field direction loses energy to synchrotron radiation at a rate
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Fig. 2.4. Power spectrum of synchrotron radiation emitted by 10% GeV electrons
in 1, 5, and 15 uG fields.

_d—Et; = 207¢y*Upf[%sin® 6, (2.26)
where 8 and 7 are the velocity and Lorentz factor of the electron, Up is
the energy density of the magnetic field (= B2?/87) and or is the Thomson
cross-section. Note that the synchrotron energy loss is proportional to the
square of the particle Lorentz factor and is thus inversely proportional to the
square of the particle mass for the same total energy E.,;. A proton loses
only (m./m,)? ~ 3 x 1077 times as much energy as an electron of the same
Etot'

For an ensemble of electrons that are scattered randomly in all directions
one could calculate the energy loss averaged over all pitch angles, which is

dE\ 4
<_E> = 2o1ey’Us (2.27)

for relativistic electrons with 8 ~1. Expressed in particle physics units the
average energy loss becomes

dE sf B N[ E\ ..
—— = 3.79x10 (gauss> (GeV) GeV/s. (2.28)

The characteristic frequency of the radiated photons is the critical fre-
quency

3 ,eB sf B E \’
b= f=161x1 Hz . 2.2
Y i mec st x 10 gauss GeV “ 2:25)
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Expressed as a fraction of the electron energy the critical frequency is
proportional to the product of the energy and the magnetic field value
ve/Ee < E, x B. The higher the energy and the magnetic field, the harder is
the spectrum of the radiated photons.

The emissivity of a relativistic electron of encrgy E. averaged over all
pitch angles cannot be expressed in a final analytic form and is given by the
integral

_ V3e*B

mec2

J(E,v)dv /d9 511129/2(1//VC)(11// Kss(n)dn,  (2.30)
0 v

Jve

where Kj /5 is the Bessel function of order 5 /3. The number spectrum of the
synchrotron radiation peaks at 0.29v,. Figure 2.4 shows the power spectrum
of synchrotron radiation of a 10° GeV electron in 1, 5 and 15 1G fields. Note
the shift of the critical frequency . with the increase of the strength of the
magnetic field.

Synchrotron radiation plays a very important role in astrophysics as de-
scribed in the book [68] of Ginzburg. It is a major contributor to the non-
thermal emission spectra of all astrophysical sources in a very wide frequency
range stretching from radio waves to X-rays. The physical picture of the syn-
chrotron emission is described in the book of Longair [7] and the full deriva-
tion of all relevant formulae is given by Blumenthal & Gould [69].

In spite of the complicated expression for the spectrum of photons radi-
ated by a single electron the spectrum emitted by clectrons with a power law
distribution is well defined. If the differential power law index of the electron
spectrum is « the integral spectral index of their synchrotron emission is (

—1)/2.

2.3.2 Inverse Compton effect

The formulae for Compton effect, equations (2.10) and (2.11), are also appli-
cable to the inverse Compton effect, the interaction when an electron interacts
with a photon from an ambient photon field, loses energy and boosts the pho-
ton. The formulae can be used when the energy of the primary electron E
(which is assumed to be m.c? in (2.10)) and the ambient photon € are used
to represent the photon energy in the electron rest frame, i.e.

E= 2 g B cosf)

mec?

: (2.31)
where cos@ is the angle between the photon and the electron in the photon
frame and 3 is the electron velocity in units of c.

The inverse Compton scattering is a very important process for the pro-
duction of very high energy y-rays when accelerated electrons collide with
photons of the microwave background radiation of other ambicnt fields. In
the Thomson regime (eE < (m.c?)?) the cross-section is approximatelly
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or and the average energy of the boosted photon E, = e(E/m.c?)?. For
eE > (m.c?)? the average E. approaches the electron energy E. The cross-
section is then much smaller.

Using these estimates we can also write the energy loss formulae for the
electrons. In the Thomson regime

dE B %
=JTU( CQ) , (2.32)

dzx 7y

where U is the energy density of the photon ficld. In the high energy (Klein—
Nishina) regime

dF 3 Mec? 2 2¢E
2 = Lo () (2 (233)

mgc

An important production mechanism for very high energy «y-rays com-
bines the synchrotron radiation with the inverse Compton effect. High en-
ergy electrons first lose energy on synchrotron radiation and then boost the
synchrotron photons to TeV by inverse Compton effect.

2.4 Inelastic hadronic interactions below 1000 GeV

This book will deal a lot with the interactions of hadrons in different cnergy
ranges. At high energy these interactions are well understood and fairly well
described by the Quantum Chromo Dynamics theory, which is based on the
principles outlined in Sect. 2.1. At relatively low energies, though, the theory
does not work and we have to rely on the phenomenological description of
the particle interactions. This is what we will discuss in this section. Later,
in part 1I, we shall discuss the way interactions are understood in terms of
QCD. Let us start with several general definitions.

A particle of mass M that moves with a velocity e cm/s is fully charac-
terized by a four—vector p. The components of p are the particle energy E and
the particle momentum p (p., py, pz) — p> = E? — |p|* = m?®. The relative
particle velocity 8 = p/E and its Lorentz factor v = (1 — 8%)¥/2 = E/m.

It is very convenient to discuss hadronic interactions in the center of
mass (CM) system, in which the momenta of the two interaction particles
are collinear, have the same magnitude and point in opposite directions. The
total CM energy of the interaction, /s is

1/2
Vs = (p1+p2)? = [(Br + E»)? — (p1 — p2)°] I (2.34)
When one of the interacting particles is at rest

Vs = (m?+mk 4+ 2maELoP)1/2 (2.35)
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where EL?® is the energy of the incident particle 1 in the rest frame of the
particle 2. This is the laboratory (Lab) frame.

An inelastic interaction is by definition such an interaction where at least
one new (secondary) particle is created. From (2.34) it follows directly that
/s has to be large enough to accommodate the mass of the secondary particle.
If two protons collide and produce a neutral pion, p+p — p+p+ 7, the
CM energy has to be larger than /s > 2m,+m, = 2.01 GeV. The minimum
energy of the incident proton in the Lab frame is then £y = s/2m, —m, =
1.22 GeV. This is the absolute minimum energy required for the production
of a neutral pion in the interactions of two protons.

The cross-section for inelastic interactions depends on the incident parti-
cle energy. Figure 2.5 shows the direct data on the pp inelastic cross-section
measured in accelerator experiments from the compilation of Ref. [17]. Al-
though the errors in the threshold region are significant, the data show a
quick rise to ~ 30 mb in the threshold region between 1 and 2 GeV, and then
a smooth logarithmic increase at higher energy. The measurement of the in-
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Fig. 2.5. Results from direct accelerator measurements of the pp inclastic cross-
section. The data points are from the compilation of Ref. [17] and the line is the fit
from Ref. [18].

elastic cross-section are very difficult, because they require detectors with a
full 47 coverage of the interaction region. Much more certain estimates are

obtained by separate measurements of the total o} and the elastic o2! cross-

sections. a;;’,‘,ez is the difference between the total and the elastic cross-sections
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and its energy dependence is established very well by fits of all available mea-
surements.

A resonance. Two-body decays. Lorentz transformation

The threshold energy range in Fig. 2.5 is dominated by the production of
resonances. A resonance is a hadronic state with defined quantum numbers
and quark content and mass depending on the amount of energy available
for its production. The most common (with highest production cross-section)
resonance is A(1232) with an average mass of 1.232 GeV and width I' = 115
MeV.

The width of the A resonance is defined by the elastic cross section of
its production in pr (or py collisions. It is described by the Breit—Wigner
formula

/4
A X 7 .
(E—ma)? + /4
In pp interactions the Breit-Wigner formula reflects the amount of energy
available for A production in the CM system. The width I" is defined so that
the production cross -section decreases by a factor of 2 at E = ma + I'/2
from its maximum value at E = ma, as shown in Fig. 2.6.

o (2.36)

616,

Fig. 2.6. The elastic cross-section for resonance production as a function of the
ratio between the incident energy E and the resonance mass M as described by the
Breit—Wigner formula.

In a two-body decay the two final state particles share the available energy
(the mass of the decaying particle) according to the value of their own mass
because their momenta are equal in absolute value. In the decay M —
my +msz |p1| = |p2| = p, where
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p= [(M? — (my +m2)*)(M? = (m; — m2)2)]1/2
2M .

In the frame of the decaying particle the encrgies Fy » are respectively Fy » =
(M?+mi , —m3 ,)/2M. In the case of A — p+ 7° decay the momenta of
both the proton and the 7% are p2 = 0.227 GeV/c and the energies in the A
frame are E® = 0.965 GeV and E2 = 0.267 GeV.

The two decay products will have the same energies and momenta in the
center of mass system only if the A were stationary in CM. Qtherwise the
energies and the longitudinal components of the momenta, (in the direction
of the A velocity have to be Lorentz transformed using the Lorentz factor of
the A in the CM system 4 = EgM /ma. The transformation is:

(2.37)

EZ?M =9a (EpA + BpA cost) ESM =y, (B2 — Bp® cosb) (2.38)

where 6 is the angle between the proton direction in the A frame and the A
direction in the CM frame. The minus sign in the transformation of the pion
cnergy appears because the proton and the pion move in opposite directions
in the A frame. The longitudinal momenta p) are transformed as

P’ = =va(p? cosd + BE2); (2.39)
pgf‘\f = = ya(—p® cosh + BE2)

and the transverse momenta p; (normal to p|) are not changed.
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Fig. 2.7. Energy distribution of pions from A decay in the CM (a) and the Lab
(b) systems. The A’s are generated in pp collisions of Lab energy of 2 GeV.

Another Lorentz transformation is necessary to obtain the energy of the
two decay products in the Lab system. The Lorentz factor of the CM system
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in the Lab is your = (EF® +1msy)/+/5. Figure 2.7 shows the energy distribu-
tions of pions generated in A — p+7° decays in pp interactions at EIL‘”’ =2
GeV. The arrow in the left-hand panel shows the pion energy in the A frame.
The pion energy distribution in the CM frame is generated by the A velocity
in the CM frame. The distribution in the Lab system is still much wider and
shows two different components that are generated by A resonances moving
forwards and backwards in the CM frame.

A(1232) is the lightest resonance that dominates the inelastic cross-
section at its energy threshold. It is followed by a number of heavier reso-
nances the production of which require higher CM energy. Each one of these
resonances has lower cross-section than A(1232). The sum of all resonances
in the second resonance region (heavier than A(1232)), however, is at least
equally important close to the threshold for inelastic interactions. The masses,
widths and decay channels for all identified resonances are listed in the Par-
ticle Data Book [11].

2.4.1 Secondary particles spectra, average multiplicity and
inelasticity

In the resonance region the multiplicity of the secondary particles in the fi-
nal state (when all short-lived particles have already decayed) is fixed since
every resonance has a well defined set of decays branches. At higher energy,
/5 ~2.5 GeV the resonance production is no longer dominant and the inter-
actions are dominated by multiparticle production. The inelastic interaction
at this and higher energy are described by a combination of parameters which
paramectrize the energy spectra and the multiplicity of the secondary parti-
cles.

The typical accelerator experiments in this energy range do not measure
all secondaries, rather the particles of given type that are emitted with given
momentum at certain angle to the direction of the incident particle beam. The
general assumption is that the probability for the production of a particle with
longitudinal momentum p; and transverse momentum p can be factorized
in terms of the two components of the momentum as

d? )
d—mdﬁ = o™ f(py) x g(pL)- (2.40)

Experimental data that study the secondary particle production in differ-
ent (overlapping or complementary) regions of the parameter space could be
analyzed together in terms of ¢ and the functions f and g.

A very important hypothesis of the analysis of accelerator data in this
energy range is that with increasing energy, when /s becomes significantly
higher than the masses on the particles involved in the inelastic interactions,
the cross-section o™™¢! will become constant and the functions f and g will
not depend on /s. There are different versions of this scaling hypothesis.
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Feynman scaling, introduced by R. Feynman [19] postulates scaling in terms
of xp = p“™/(\/5/2) where \/5/2 is the maximum momentum that a par-
ticle can have in the center of mass system. In terms of zr the momentum
distribution of the secondary mesons in pp collisions have 1(1 - zp)™ spec-
trum, with the power n for pions n, ~ 4. The p, distribution approaches an
energy independent shape with (p7) = 0.34 GeV/c.

Another version is that of radial scaling [20], which uses the scaling vari-
able zp = E“M/(2/5). Hillas [18] uses the radial scaling hypothesis to
parametrize the particle production data in pp collisions at Lab energy from
10 to 2000 GeV in the laboratory system. This parametrization is very useful
for the description of cosmic ray collisions. The general form, after a trans-
formation in the Lab system and integration over p| is

a:d—n = f(z) x H(E) , (2.41)
dz
where E is measured in the Lab system and z = E/Ey, where Ej is the
incident proton energy in the Lab.
For #*, 7=, and #°

() = 1.22(1 — 2)*® + 0.98 exp (—18z) (2.42)
and .
04 \~
T = — 4
H (1+E_0.14) : (2.43)

where the energy is in GeV. Similar expressions describe the production of
kaons and nucleon-antinucleon (N N) pairs. The protons in this model have
flat x distribution. The average transverse momenta for kaons and for the
leading (fastcst, most energetic) nucleon in this fit are respectively 0.40 and
0.50 GeV/c.

Equations (2.41) and (2.42) describe very well the experimental data. The
agreement is also good for the forward hemisphere after a transformation in
the CM system. Since the parametrization is aimed for use in cosmic ray cal-
culations in the Lab, where the particles from the backward CM hemisphere
are not essential, the discrepancies in that part of the phase space are not
very important. Figure 2.8 shows the z distributions for pions and kaons as
fitted by Hillas. Reference [18] also gives the fit to oinét which is shown in
Fig. 2.5 with a solid line. The parametrization as a function of the incident
proton energy in the Lab is

. . E E
g = 589 (1 +0.237In +0.011n* ? ) mb ,

E
200 GeV 200GeV ~ 200GeV
(2.44)

where 9 is the Heaviside function. As can be seen in Fig. 2.5, equation (2.44)
provides a very good fit to the measured cross-section above V5 =2 GeV.
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Fig. 2.8. Energy spectra of the secondary pions (solid line) and kaons (dots) calcu-
lated for incident proton energy of 100 GeV from the parametrizations of Ref. [18]
in terms of the laboratory radial scaling parameter zr (see (2.42) and (2.43)).

Integrating from 0 to 1 the expression f(x) x H(E)dz/x gives the aver-
age multiplicity of pions produced in pp interactions. Equations (2.42) and
(2.43) do not work exactly (because they are intended for use in cosmic
ray experiments and do not represent exactly the backward hemisphere) but
similar parametrizations in the CM system give very good representations
of the observed particle multiplicity. The experimental data on the multi-
plicity of secondary particles is summarized in several papers [21] and [22]
that give parametrizations of the multiplicity of charged secondary particles
as a function of the interaction energy. Albini et al. [21] express the charged
multiplicity as

(n°®) = 1.174 0.301log s + 0.13log” s, (2.45)
while Thome et al. [22] write
(n") = 0.88 4+ 0.44log s + 0.118 log” s. (2.46)

The two expressions agree very well in the region of the fits, as could be
seen in Fig. 2.9. The figure also shows the average multiplicity of charged
pions and kaons as given by Antinucci et al. [23], who parametrized the
energy dependence of the multiplicity of different types of secondaries. Since
the measurements of different secondaries have not been made in the same
energy ranges, the sum of all secondaries from Ref. [23] only roughly agrees
with the expressions 2.45 and 2.46.

A very important general parameter of the inelastic collisions is the coef-
ficient of inelasticity Kine;. By definition this is the fraction of the primary
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Fig. 2.9. Average charged multiplicity as parametrized by Ref. [21] (solid line) and
by Ref. [22] (dotted line). The symbols show the average multiplicity of charged
pions and kaons from the summary of Antinucci et al [23]. The thick lighter curve
shows the average charge multiplicity in proton interactions on air nuclei.

energy E that a particle has conserved after an inelastic interaction, i.e.
Kinet = 1. = 3, EL/E, where the sum is over all secondary particles i gen-
erated in the interaction. In the Hillas model the leading secondary nucleons
(which are fragments of the primary nucleons) have a flat distribution and
Kinet = 0.5. This is an accepted number for pp interactions at moderate
energies. There is a decrease of Ky, at /s values above ~ 50 GeV. The
distribution of leading nucleons is, however, not flat. About 18% of the in-
elastic cross-section is diffractive where the leading nucleon takes most of the
cnergy and very few secondaries are produced. One half of the diffractive
interactions are diffractions of the target nucleon. In the Lab system such
interactions could be considered as non-diffractive. For cosmic ray purposes
the diffractive cross-section is 9% of the total inelastic cross-section. Sum-
ming over the distribution of the leading nucleons one again obtains Kj,e ~
0.5. Sometimes the elasticity coefficient K,; = 1 — Kj,,.; is used instead of
Ki'nel-

2.4.2 Kinematic variables and invariant cross-section

Experimental date teken at a certain angle with respect to the incident par-
ticle beam are represented as functions of a pair of variables that express the
longitudinal and transverse characteristics of the detected particles. Such sets
could be (pll““b, 9L which is used in counter experiments, the already in-
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troduced Feynman scaling variable xp = 2/+/s and pl (or pﬁ‘“b, P2 ) ora

combination of those, the particle rapidity y. The rapidity is defined as:

1 E-f—pH
y = —Iln ———

| E+p
= = = In——
2 E—p” my

(2.47)

where my = \/m? + p% . Rapidity is very easy to transform from one system
to another because the transformation only adds a constant to the rapidity
value, i.e. yL*® = yCM 1 ¢ where ¢ = In\/s/m, for pp collisions. The energy
and longitudinal momentum of a particle in any frame are expressed as a
function of the rapidity as

E = mj coshy; py = mysinhy. (2.48)
The mazimum rapidity of a particle in the CM system is ySM = In/s/m.
When the momenta of the secondary particle are unknown and only the
angle ¥ can be observed the kinematic variable is the pseudo rapidity n =
—Intand/2. The pseudorapidity n ~ y for momenta much greater than the
particle mass and angles ¥ > 1/, where v is the particle Lorentz factor. It
is closely related to the old cosmic rays variable log,, tan -t
The production of particles with certain longitudinal and transverse char-
acteristics is usually expressed in terms of the Lorentz invariant cross-section
QE%";. In terms of the other kinematic variables the invariant cross-section
1s written as
do 2E do

2B—— = — ] 2.49
d3p T p”dpi ( )

2zg do ) ;
- Tm withzo = \/22 + 2m | /V/s

T do

2 dy dp®
2E do
p? dpd’

2.5 Nuclear fragmentation

Nuclei are complicated systems of protons and neutrons that are held together
by a multitude of forces. The simplest model of a nucleus, the liquid drop
model, treats it as a fluid consisting of these nucleons. It is easy to derive the
nuclear binding energy Ej of a nucleus of mass A consisting of N neutrons
and Z protons in this model. It is given by the difference between the masses
of the constituent nucleons and the nucleus itself.
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E;- =AM, = Zmp—i—Nmn—MA (2.50)
c
The order of magnitude for the average binding energy is 20 MeV per
nucleon. Rachen [24] has represented the semi-empirical Weizsiicker mass
formula in terms of the nuclear mass A in the liquid drop model for stable
nuclei as

Ey(4) = A [15.8 — 1834715 — 018423 1 1.3 x 107344/ — 6.4 x 10—6A2]

(2.51)
From energy conservation one can also calculate what is the energy required
to separate a fragment F' containing Ny neutrons and Zp protons from the
nucleus A. This is the separation energy equal to the difference in the binding
energy of the original nucleus and the two nuclei in the final state.

E, = Ey(N,Z) — Ey(Nr,Zr) — Ey(N — Np, Z — Zp) (2.52)

This energy would be the threshold for the reaction A — F if the protons
did not carry electric charge. The charge of the nucleus decreases F by an
amount ES', which represent the Coulomb barrier.

BO s 204 =R) (2.53)
(A— F)1/3

The term in the denominator is the estimate of the radius of the remnant

nucleus, after separating F'.

The total energy needed to separate the fragment from the nucleus will
be El** = E, — E{. This gives some ground rules for estimating the proba-
bility for separating single nucleons from a nucleus. That probability depends
strongly on E¢ because E, is the same if we use the parametrization 2.51,
which is based on the average charge of stable nuclei of mass A. It is gen-
erally easier to separate a proton from a nucleus than it is to separate a
neutron. This is indeed true for relatively light nuclei with equal number of
protons and neutrons, but not for heavy nuclei with many more neutrons
than protons because the nucleus as a whole is positively charged.

The process is much more complicated than our simple treatment here.
The account for the quantumn effects show that the threshold energy is actu-
ally lower because of tunneling. A detailed treatment should also include the
Fermi motion of the nucleons inside the nucleus.

Generally one could distinguish two types of nucleons in a nuclear colli-
sion. The ‘participants’ have direct collisions with nucleons from the other
colliding nucleus. The ‘spectators’ are the rest of the nucleons, which do not
participate directly in the collision. They are, however, also excited by the
collision gaining energy from collisions with some of the participant nucle-
ons and from the surface deformation of the ‘pre-fragment’ nucleus which
contains all spectators. The ‘pre-fragment’ nucleus relaxes by evaporation in
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smaller fragments. For heavy nuclei (A > 60) an empirical distribution exists
for the masses of the fragments in the final state. The distribution is [25]

P(z) x 0.1/2*° + exp(3.72) , (2.54)

where z is the ratio of the fragment mass to the mass of the original nucleus.
P(zx) has a minimum at about z = 1/3. The branch of the distribution left
of that minimum is called multifragmentation, because the parent nucleus
fragments in many light fragments including numerous constituent nucleons.
The part of the distribution above & = 1/3 describes the spallation, i.e.
fragmentation processes which result in a large fragment and the emission of
several constituent nucleons. Figure 2.10 shows the distribution of fragments
for iron nuclei interacting on carbon target.
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Fig. 2.10. Mass distribution of the fragments in Fe collisions on C target. The
data are from Ref. [26] and the calculation is from Ref. [27].

The partial cross-section for the fragmentation of nucleus A into nucleus
of mass A’ could be written as 64,4 = aooP(A’'/A) and is called the mass
changing cross-section. The normalization is chosen so that the sum over
all fragmentation probabilities P; equals 1. The total mass changing cross-
section for a nucleus of mass A at a given energy is gg. The charge changing
cross-sections are similarly defined. The total cross-sections are proportional
to A2/3. The total cross-sections as well as the particle cross-section have
very strong energy dependence at kinetic energies comparable to the nucleon
mass. At higher energy, ~5 GeV per nucleon the cross-sections saturate and
become nearly constant. Silberberg and collaborators [28] give the following
parametrizations for the total mass changing cross-section as a function of
the nuclear mass
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o = 45A%7[1 4 0.016sin (5.3 — 2.63In A)] mb. (2.55)

The encrgy dependence of the cross-sections are defined with respect to the
constant cross-section at energies above several GeV /nucleon. The parametriza-
tions as a function of the kinetic energy per nucleon is

o(Ex) = onp [1 - 0.62exp(—E;/200MeV) x sin (10.9(Ey,/MeV)~028)] |
(2.56)
where ogp is the constant high energy value. The cross-sections peak in the
region of the giant resonance, about 20 MeV /nucleon, reaching 60% above
the high energy value, then rcach a minimum at energy about 200 MeV and
then slowly grow to reach the constant high energy value at about E, = 2
GeV.

Nuclear fragmentation is a very complicated process which cannot be fully
described in analytic terms. We have to rely on measurements of the partial
and the total cross-scctions. The data set of such measurements is large but
still inadequate for the description of all possible fragmentation channels of
all existing nuclei. It is therefore important to interpolate between different
measured cross-sections using basic nuclear physics knowledge and the trends
observed in the data samples. A very valuable compilation and interpolation
procedure was developed by Silberberg & Tsao [29], which is widely used
in studies of the cosmic ray propagation. More recently there have been ex-
tensive new cross-section measurements [30, 31] that will help significantly in
the understanding of the formation of the chemical composition of the cosmic
rays.





