Super-Kamiokande's Solar Neutrino results

M. Nakahata Kamioka observatory, ICRR, Univ. of Tokyo

Super-Kamiokande(SK) detector
Day/night and energy spectrum in SK-I
Oscillation analysis
Preliminary results from SK-II
Future prospects

Super-Kamiokande detector

11,146	Number of ID ^(*) PMTs	5,182	
40%	Photocathod coverage	19%	
~6 p.e./MeV	Cherenkov light yield	~2.8 p.e./MeV	
		Acrylic+FRP cases	

Number of ID PMTs will be back to 11,146 in SK-III.

(*) Inner Detector

Solar neutrino measurement in SK

- B neutrino measurement by $v + e^{-1}$
- Sensitive to v_e , v_μ , $v_\tau \sigma(v_{\mu(\tau)}+e^-) = -0.15 \times \sigma(v_e+e^-)$
- High statistics ~15ev./day with E_e > 5MeV
- Real time measurement. Studies on time variations.
- Studies on energy spectrum.

Precise energy calibration by LINAC and ¹⁶N.

Super-Kamiokande-I solar neutrino data May 31, 1996 – July 13, 2001 (1496 days)

SK-I day/night difference

Un-binned day/night analysis

Energy and zenith angle dependence of event rate variation.

Example for Δm^2 =6.3x10⁻⁵eV², tan² θ =0.55

Un-binned time variation method

Energy spectrum of SK-I

Energy spectrum of SK-I

Oscillation analysis

Analysis of lower energy region in SK-I Vertex position distribution of background (4.5 – 5.0 MeV)

- Apply tighter cuts to reduce external background.
- Use improved vertex reconstruction program.
- Remove high radon periods.
- Select period when trigger eff. for 4.5-5.0MeV is >95%. (466days, Sep.1999-July 2001)

4.5-5.0 MeV data is consistent with previous results.

SK-II data

Detector calibration in SK-II

- PMT relative gain calibration by using Ni(n,γ)Ni source and an uniform light source (Xe-scintillation ball).
- Timing calibration by N₂-DYE laser ball.

SK-II Trigger

LE trigger: Number of hit PMTs within 200nsec: $N_{200ns} > 14$ SLE trigger: $N_{200ns} > 10$ (added after July 15, 2003)

SK-II preliminary results

Dec.24,2002 – March 25, 2004

(cf. SK-I result: 2.35 \pm 0.02(stat.) \pm 0.08(sys.))

SK-II: Day-Night difference

325 days (Dec.24,2002 – March 25, 2004)

(Systematic error under study)

SK-II energy spectrum

Time variation

Future prospects towards SK-III Possibility of detecting spectrum distortion

Future prospects towards SK-III

Significance of spectrum distortion

Assumptions:

Correlated systematic error: x 0.5 4.0-5.5MeV background: x 0.3 (same BG as SK-I above 5.5MeV)

- Better Energy scale calibration (~ ± 0.4%) is needed.
- Better ⁸B spectrum shape from nuclear physics is needed.

Conclusion

- High statistics solar neutrino data has been taken at Super-Kamiokade.
- Day/night asymmetry is obtained by unbinned method :

A_{DN}= -1.8 ± 1.6 +1.3/-1.2 %.

- Energy spectrum: SK prefers smaller Δm² and larger tan²θ compared with global best fit parameters.
- Assuming ⁸B total flux of the SSM predictions, LMA solution is preferred.
- Solar neutrino signal in 4.5 5.0 MeV (total energy) bin was newly obtained.
- Preliminary results from SK-II are consistent with SK-I.
- Hope to see definite energy spectrum distortion in SK-III, if it should be there.