Antares/Nemo

Open problems

- Origin and composition of cosmic rays
- Gamma ray bursts (GRB030329; Z=0.169; 805 Mpc; E_{γ} =10⁵² erg)
- Origin of high energy gamma rays
- Correlation of gamma rays with radio emission
- Correlation of high energy cosmic rays with radio-loud galaxies

• High energy neutrinos a clue ?

EGRET results

- γ rays 100 MeV-20 GeV from galactic + extragalactic sources:
- 270 sources identified: LMC, 5 pulsars, a radiogalaxy (Cen A) + 66 Blazars
- ..other 27 probable blazars + 170 unidentified sources

- Diffuse γ flux
- Diffuse γ radiation found by EGRET. Probably extragalactic
- Arnon Dar: inverse
 Compton scattering of
 high energy electrons by
 background radiation ?

Figure 1: Comparison between the spectrum of the GBR, measured by EGRET (Sreekumar et al. 1998), and the prediction for ICS of starlight and the CMB by CR electrons. The slope is our central prediction, the normalization is the one obtained for $h_c = 20$ kpc, $\rho_c = 35$ kpc.

Active Galactic Nuclei + Blazars

AGN => Very massive black holes causing two relativistic opposite jets to emanate

Blazars => AGN having one of the jets pointing towards the Earth

ialaxy NGC 4261

Space Telescope

HST Image of a Gas and Dust Disk

 The last de many calcu from AGN Plenty of p of main me

Synchrotro
 versus γ
 much dispu

Sources of high energy particles

Problems with high energy cosmic rays

- "Knee" at $\sim 3 \text{ PeV}$
- "Second "knee" at ~ 300 PeV

Astroparticle Physics

Astroparticle Physics 19 (2003) 379-392

www.elsevier.com/locate/astropart

• "Ankle" at 10^{18.5} eV

PeV cosmic rays: a window on the leptonic era?

Richard Wigmans *

Department of Physics, Texas Tech University, Lubbock, TX 79409-1051, USA Received 30 May 2002; received in revised form 5 July 2002; accepted 5 August 2002

• Cosmic ray absorption by 0.5 eV relic neutrinos ??

Abstract

It is shown that a variety of characteristic features of the high-energy hadronic cosmic-ray spectra, in particular the abrupt changes in the spectral index that occur around 3 and 300 PeV, as well as the corresponding changes in elemental composition that are evident from kinks in the $\langle X_{max} \rangle$ distribution, can be explained in great detail from interactions with relic Big Bang antineutrinos, provided that the latter have a rest mass of ~0.5 eV/ c^2 . © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Cosmic rays; Knee; Relic neutrinos; Neutrino mass

Wigmans (Astrop. Phys. 19, 379, 2003)

Fig. 1. The all-particle energy spectrum of cosmic rays, measured by the CASA-BLANCA experiment [3].

Fig. 2. The all-particle energy spectrum of cosmic rays, measured by the Fly's Eye experiment [8].

Greisen-Zatsepin-Kuzmin cutoff

 $P + \gamma \rightarrow n + \pi^{+}$ $(E + \epsilon)^{2} - (P - \epsilon)^{2} = E^{2} - P^{2} + 4 \epsilon E = (940 + 140)^{2} \text{ MeV}^{2} =$ $= (1.08 \ 10^{9})^{2} \text{ eV}^{2} \implies E_{\text{max}} = 7 \ 10^{19} \text{ eV}$ Lunghezza d'assorbimento ~ 50 Mpc (sopra i 50 EeV)

$$[\lambda_{\gamma p} = (\mathbf{n}_{\text{CMB}} \, \boldsymbol{\sigma}_{p+\gamma_{\text{CMB}}})^{-1}]$$

Events observed at energies larger than 2x10²⁰ eV

Fly's Eye: 1 event, 320 EeV Haverah Park: 6 events, 101-159 EeV AGASA: 8 events, 101-213 EeV

GZK cutoff ?

Angular correlation of ultra-high energy cosmic rays with compact radioloud quasars

Amitabh Virmani, Astropart. Phys. 17, 489, 2002

Correlation with positions of radio-loud quasars

Fig. 1. The distribution of residual $\delta \chi^2$ for individual events for the data set (dashed line) and the simulated data (solid line). Both distributions are normalized to the total number of 11 events cited in the text.

Energy/distance cutoff for different probes

Probe	Cutoff energy	Mean free path
- Protons	50 EeV	50 Mpc
- Nuclei	5 EeV/n	100 Mpc
- yrays	100 TeV	10 Mpc
- V	40 ZeV	40 Gpc

- [PeV=10¹⁵ eV; EeV=10¹⁸ eV; ZeV=10²¹ eV]

Sources of high energy neutrinos

a) bottom-up models

Gamma ray bursts in collapse of massive stars

Quasars-Microquasars

Interacting neutron stars

Supernovae

Shock waves in Supernova remnants

b) top-down models

Decay of massive particles (wimps)

Production of Neutrinos in Stellar Objects

Example of Supernova Remnant

Charged particles accelerated by Fermi process in shock wave

Neutral particles produced in interactions and decays

 $p/A + p/\gamma \rightarrow \pi^0 + \pi^{\pm} + \dots$

QUASARS & MICROQUASARS

QUASAR 10⁶ light years 3 light years

MICROQUASAR

QUASAR

UV AND OPTICAL RADIATION

ACCRETION

DISK ($\sim 10^9$ km)

Millions of Light Years

RADIO

LOBE

RELATIVISTIC

HOST

GALAXY

SPINNING SUPERMASSIVE BLACK HOLE

JET

MICROQUASAR

 $10^8 - 10^9 \,\mathrm{M}_{\odot}$ $10^2 - 10^5 \,\mathrm{M_{\odot}}$ distant galaxies local galaxy

View of the Sky (microquasars)

ANTARES (43° North)

AMANDA (South Pole)

(Gamma ray flux >100 MeV observed by EGRET)

Source type	number of sources	seen by Antares
EGRET AGN	94	86%
EGRET Pulsars	5	100%
Known Microquasars	19	74%

Indicative, assumes efficiency=100% for 2π downwards

Gamma Ray Bursts : present knowledge

~1-2 / day, duration 10ms - 100s, isotropic distribution in sky, at extra galactic distances.

Now evidence of GRB association with supernova

ANTARES will dump all data in \pm 100 secs of gamma ray burst warning signal

Principle of H₂O Cherenkov Neutrino Astronomy

Muon track direction from arrival time of light

Neutrino direction: $\Delta (\theta_v - \theta_\mu) \approx 0.7^{\circ} / E^{0.6}$ (TeV)

Muon energy from energy loss and range

Sky map of origins of neutrinos (Galactic co-ordinate system)

Neutrino Telescope Projects

AMANDA

South Pole: glacial ice

ANTARES Detector

Neutrino Interactions in water

3 flavours of neutrino, 2 types of interaction:4 topologies of light production in water

Detector optimised for $v_{\mu} \rightarrow \mu X$, other modes have lower detection efficiency

Undersea Neutrino Telescope

Water versus Ice

Deployment

Ice gives solid platform to install detector Sea experiments need boats/ platforms Ice detectors worked first (Baikal deploys from ice)

Angular Resolution

Light scattering much less in waterAMANDA $: \sim 3^{\circ}$ (real detector)ANTARES $: \sim 0.4^{\circ}$ (simulations)

Uniformity of Detector response

Water homogeneous Ice has dust layers, bubbles Knowledge of efficiency simpler in water

Noise Backgrounds

Water: ⁴⁰K /bioluminescence ~ 60kHz / PMT Ice: only dark tube noise ~ 500Hz / PMT Detector design must take into account

Sky Observable by Neutrino Telescopes

(Region of sky seen in galactic co-ordinate assuming 100% efficiency for 2π down)

Need Neutrino Telescopes in both hemispheres to see whole sky

AMANDA Results: Diffuse Flux Limits

MACRO Limits on diffuse flux

M. Ambrosio et al. | Astroparticle Physics 19 (2003) 1-13

10

Limit: Flux \cdot E² (GeV cm⁻² s⁻¹ sr⁻¹) = 4.1 10⁻⁶ (10 Tev - 1 PeV)

AMANDA results: Search for Point Sources

1097 events in final sample (75% muons, 25% atmo.v) 319 sky bins

319 sky bins319 sky bins319 sky bins10 sky bins

Compatible with random distribution

Flux (>10 GeV) < 10⁻⁷ cm⁻² s⁻¹ @90%

Neutrino Astronomy with MACRO

Macro: underground detector array in Gran Sasso tunnel

Search among known point sources: Make a list of 42 sources that look interesting Look in 1.5°, 3°, 5° around each of these sources
Macro Results on point sources

1048

AMBROSIO ET AL.

Vol. 546

FIG. 11.—On the x-axis there are the number of events falling in cones of half-width 1°.5, 3°, and 5° (from top to bottom) around the direction of the 42 sources considered. The y-axis depends on the total number of sources considered. Filled circles: data. Solid line: simulation.

Neutrino Fluxes From

- Galactic Microquasars (G. Distefano, D. Guetta, E. Waxman, A. Levinson)
- GRB (A. Dar, A. De Rujula. D. Guetta...)
- Galactic Cosmic rays (F. Halzen..)
- WIMPS

Oceanographic interest (exploration of new environment...)

The Acceleration of cosmic-ray protons in the supernova remnant RX J1713.7-3946

R. Enomoto et al., Nature, v416, p823,25 April 2002

Relative Right Ascension (degrees)

High Energy Neutrinos from the Cosmic Accelerator RX J1713.7-3946

J. Alvarez-Muñiz and F. Halzen (astro-ph/0205408)

Clear signal for Northern Hemisphere Neutrino Telescope

Detection of WIMPS

Direct

Indirect

Captured: $v \sim at rest$, or in Halo

ANTARES WIMP Sensitivity Indirect Neutrino vs. Direct

mSugra with 5 GeV threshold vs neutrino Indirect Dection

mSugra models vs Direct Detection

Event rates from Galactic models

OK for young SNRs : ~10 events/year

OK for microquasars : \sim 3-6 events/year

Bad detection rates for plerions & magnetars.

Alain Juande

Diffuse fluxes

AMANDA (v_{μ}) 130 d (astroph/030328): 8.4 10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹ AMANDA UHE >10¹⁶eV: 4.8 10⁻⁶ GeV cm⁻² s⁻¹ sr⁻¹ **MACRO:** 4.1 10⁻⁶ GeV cm⁻² s⁻¹ sr⁻¹ **Astrop Phys 19** 2003 **Baikal:** 1.4 10⁻⁵ cm⁻² s⁻¹ sr⁻¹ Astrop Phys 19 2000 km3 (ICECUBE): expected sensitivity

ANTARES Project History

1996 - 2000			
January	2000		
	2001		
December	2002		
March	2003		
March	2003		
May	2004		
December	2005		

R&D, Site Evaluation Operation of 'Demonstrator' line Start of construction at Toulon site Deploy prototype line Connection with Nautile submarine Start operation of prototype lines Start final assembly 12 line production ANTARES 12 line detector finished

2005 Design for 1km³ Detector

- * NIKHEF, Amsterdam
- * University of Sheffield
- * University of Leeds
- * IFIC, Valencia
- * CPPM, Marseille
- * DSM/DAPNIA/CEA, Saclay
- * C.O.M. Marseille
- * IFREMER, Toulon/Brest
- * LAM, Marseille
- * IReS, Strasbourg
- * Univ. de H.-A., Mulhouse
- * ISITV, Toulon
- *LOV Villefranche
- * University of Bari
- * University of Bologna
- * University of Catania
- * LNS Catania
- University of Rome
- * University of Genova
- * University of Erlangen
- * ITEP, Moscou

ANTARES Test Sites

Site Explorations

- Optical background study:
 Biofouling-sedimentation study:
 Optical properties study:
- 15 deployments4 deployments28 deployments

Water Transparency

ANTARES

time delay (in ns)

Biofouling

Optical Backgrounds

Short bursts (bioluminescence) over a continuous background (^{40}K) .

 \sim 5% of time a PMT is unusable

Construction of ANTARES Detector

Optical Module

Glass sphere: Nautillus

Active PMT base

8 49

Photomultiplier: 10 inch Hamamatsu

Mu metal magnetic shield

Detector Line

Optical Module

All components ordered arriving 100 / month 90% available end 2001 production starts oct 2001

Sea Electronics

most cards working in prototype complete system test Nov 2001

Effective Detection Area

Expérience	Propriétés	Précision	Surface effective	
	optiques	angulaire	$E_{\mu} = 1 \text{ TeV}$	$E_{\mu} = 100 \text{ TeV}$
Antarès 10 lignes	$\lambda_{\rm abs}\approx 55~{\rm m}$	¹ ~02°	- 10000 m ²	
$\lambda_{\text{diff}} \approx 52 \text{ m}$	$\sim 1000 \text{ m}^{-1}$	~ 55000 III		
AMANDA II 19 lignes	$\lambda_{\rm abs} \lesssim 100 \ {\rm m}$	1 ~ 30°	20000 m ²	
	$\lambda_{\text{diff}} < 25 \text{ m}$	~ 30000 m	~ 30000 m	
Baikal 8 lignes	$\lambda_{ m abs}\gtrsim 15~{ m m}$	$\sim 1.5^{\circ}$	eoo2	19602
	$\lambda_{ m diff} \lesssim 50~{ m m}$		~ 000 III-	$\sim 1000 \text{ m}^2$

Triangulation $\rightarrow -5$ cm final precision

Electronics

ARS: The front-end digitizer

The Analog Ring Sampler (ARS) chip performs the complex front-end functions: ~10\$/chip, 250mW

Ars1

Ars Structure

COMPASS_MB

Backplane

Deployment of Electro-Optical Cable

Line Deployment 0.1km² Detector

Storeys deployed two by two

Storeys stored on deck of Castor

Sea Floor Layout

Line sea floor configuration

Line connections **Victor**

Demonstrator string: atmospheric μ measurement

Muon angular distribution

Durée de la prise de données 4273 minutes

Data rates

Off-shore

- Background rate/OM from ⁴⁰K : ~ 70 kHz SPE = 6B/hit
- SPE rate for 900 OMs before *software trigger* ~ 1 GB/s
 - (rate doubles assuming 2% of WFD events (=260 B/hit))

Typical raw data: 1 Gb/s to 100 PC farm on shore \Rightarrow

Trigger Software (= 100 CPU farm)

A 'trigger' (3D for > 1 string, 1D in one string) included hits in about $\pm 2~\mu s$ After data reduction 20 TB/yrSPE :

Data on Tape ~ 20 TB/y

Prototype Line ready: Nov 2002

Time calibration in lab

Time difference of laser pulses between one PM and others

Deployment Prototype Line, Dec 2002

Deployment of Junction Box, **Dec 2002**

Submarine cable connection

Current Layout of ANTARES site

Rates in PMT

Clock time reference system

two way cable transit time over two weeks

Current Mesurements

Current velocity (mm/s)

Movement of line

Construction Schedule

March 2003 Start operation PSL and MIL lines 2003 Recover MIL for debug May **Recover PSL** for evaluation Sept 2003 2003 Final electronics tests in lab Dec 2004 May Start assembly of 12 lines 2005 12 line detector operational Dec

MoU

Source of Finance	Contribution (kEuro)	
CEA/ DSM/ DAPNIA, France	2300	
CNRS/ IN2P3, France	2300	
CPER	250	
Region PACA (not yet agreed)	2300	50
La Seyne sur Mer	100	20
Departement du VAR	1500	
EU FEDER	3200	
NIKHEF, The Netherlands	3600	
ERLANGEN, Germany	2400	
INFN, Italy	2150	
IFIC, Spain	410	
TOTAL FINANCE	20510	

LCM Test Bench

Lo scopo del Test Bench è provare la funzionalità dell'intero sistema costituito dal Local Control Module e non di ogni sua singola parte.
Il test dovrà essere quanto più possibile automatizzato, affidabile e semplice dal punto di vista dell'operatore.

Foto LCM

PC Configurations

Two PCs are used:

- 1 PC Windows 2000, Labview National Instruments PCI-DIO32HS (ON_CLK System communication) National Instruments PCI-GPIB (commercial instruments communication) National Instruments PCI-6035E (Test Bench Box communication) Ethernet 100BASE-TX
- 1 PC Linux Ethernet 1000BASE-T

Commercial Instruments

- Arbitrary Waveform Generator: Sony Tektronix AWG 520
- High Voltage Power Supply:
- Pulse Generator: Stanford DG 535
- Oscilloscope: Tektronix DSA 602
- Multimeter: Agilent 34401A

All the instruments have GPIB port.

Network Devices and Cables

• Gigabit Ehternet Switch:

Allied Telesyn AT-9410GB + GBIC Module AT-G8SX

Minimal requirements:

1 fiber gigabit port (1000Base-SX)

1 copper gigabit port (1000Base-T)

2 copper 100Mbps ports (100Base-TX)

• Ethernet Media Converter:

D-Link DMC-300SC

Requirement: 100Base-TX to 100Base-FX media converter

• Fiber Patchcords:

MTRJ-SC 50/125 and 62.5/125 SC-SC 50/125 and 62.5/125

Clock Software Labview

Instrument VIs

Programma previsto per Pisa

- 2003: Acquisto componenti ed assemblaggio testbench
- Gennaio-Marzo 2004: prime prove sul test bench
- *inizio assemblaggio LCM*
- Aprile 2004..: Assemblaggio LCM e tests

Impegno della Sezione

- *Persone interessate* (al 28 Maggio):
- Bigi, Cavasinni, Flaminio, Galeotti, Morganti, Roda
- Per gli aspetti astrofisici:
- Scilla Degl'Innocenti
- Richieste di tecnici:
- 1 tecnico elettronico per 1 anno

Richiesta finanziaria 2003

- Inventariabile: 60,000 Euro
- Consumo: 23,000 Euro
- Viaggi e Missioni: 3 m.u. (Italia) + 3 m.u. (Estero)
- (Circa 220,000 Euro sono gia' disponibili all'interno della collaborazione
- ANTARES Italia)

MoU

SUB SYSTEM	France	Italy	Nether - lands	Germ- any	Russia	Spain	UK	Resources (kEuro)
lechanics	50 %	17 %	8 %	25.%				
Itellames	50 /0	1//0	0 /0	23 /0	#			5640
Electronics	57 %	37 %	6 %				@	2340
Readout	22 %		78 %					2720
Optical Modules	68 %		17 %	15 %	#			3110
nstrumentation	50 %	12 %		25 %		13 %	æ	1935
nfrastructure	94 %		6 %					2305
ntegration	53 %		20 %			27 %		575
Sea Operations	97 %	3 %						1885
OTAL	58.3 %	10.5 %	6 17.5 %	6 11.7 ⁹	V ₀	2 %		20510

(a) Research and Development contributions

In-kind contributions

Note: The fractional distribution of tasks is indicative only.

R&D for 1km³

applications

The technological challenges

Connections

Underwater electro-optical connections

Deployment

Deployment and connection of the structures with underwater vehicles

Mechanical structures

Innovative materials for deep sea applications

48°N 47°N

Conclusions

- Construction of the first deep sea Neutrino Telescope well underway technology under control, funding available
- Extensive science program: particle physics, astrophysics ,.....oceanography
- Further R&D necessary to build a second generation detector must reduce the cost

Evolution of Mediterranean Projects

NESTOR

	1991 -	R & D, Site Evaluation
Summer	2002	Deep-sea deployment (4100m) & run 2-floors
Winter	2003	Recovery & re-deployment with 4-floors
Autumn	2003	Full Tower deployment in the deep sea
	2004	Add the three DUMAND strings around tower
	2005 - ?	Deployment of more NESTOR towers e.g. 7

ANTARES

	1996 - 2000	R&D , Site Evaluation
January	2000	Data from Demonstrator line
	2001	Start Construction of ~ 0.1km ² at Toulon site
December	2002	Deploy pre-production prototype line
December	2005	12 line detector complete
	2005 - ?	Construction of 1km³ Detector

NEMO (Neutrino Mediterranean Observatory)

- **1999 2001** Site selection and R&D
- 2002 2004 Advanced R&D and prototyping at Catania Test Site
- **2005 ? Detector realization**

NEMO and ANTARES collaborating since 2000

work together to build 0.1km² at Toulon site with agreement to choose best site for future detector

How we see neutrinos ? In the Sea !

The Present Projects

The NEMO Collaboration

INFN: Bari

CNR:

Bari, Bologna, Cagliari, Catania, Genova, LNF, LNS, Messina, Roma

Istituto di Oceanografia Fisica (La Spezia) Istituto di Biologia del Mare (Venezia) Istituto Talassografico (Messina) Istituto GEOMARE-SUD (Napoli)

Istituto Nazionale di Geofisica e Vulcanologia

Istituto Nazionale di Oceanorafia e Geofisica Sperimentale (Trieste)

Saclant NATO Undersea Research Centre
Capo Passero characteristics

distance from the coast $\sim 80~\text{km}$

- distance from shelf break >40 km
- close to ports, international airport, Labs
- depth > 3300 m
- bathimetric profile is flat over 10 km²

- average current Intensity \sim 3 cm/sec (max < 15 cm/s) ^{Lo}
- light attenuation length ~ 35 m (42 m in March)
- light absorption length ~ 70 (100 m in March)
- biological activity is low
- measured sedimentation rate and fouling rate are low

- KM2 36°10' N 16°19'E, depth 3350m (1: Jan '99)
- KM3 36°30' N 15°50'E, depth 3345m (1: Feb `99, 1: Aug'99, 2: Dec `99)
- KM4 36°19'N, 16°04'E, depth 3341m (2: Dec '99, 2: March '00, contining)

Current metres

Current Metre Aanderaa RCM8

Current metre and sediment trap chain moored in Capo Passero

Deep Sea Current Measurements (August Detailed Report available g) OGS

Lat:36°30'N Long:15°50'E Depth: 3350m

current meter moored @ -3325m

Average current intensity: 3.6 cm/sec RMS: 2.5 cm/sec Average angle: 8° NW

Current metre and sediment trap chain moored in Capo Passero KM4

The Jonian Sea has a low biological activity

trap moored @ -3210m

Collected data are integrated over a 15 days period.

Sediment Trap re-deployed in August 2001,

Biofouling short term measurement

Transparency =(PD/reference)_t / (PD/reference)_{day#1}

Bioluminescent bacteria

Bioluminescent bacteria on SWC

Optical Background data

Compatible with expected rate from ⁴⁰K only

DEep WAter Scatteringmetre

In situ measurement of the volume scattering function

Coordinated Feasibility Study for a km3

detector ·

Cable construction and deployment NEXANS, Pirelli

ROV/AUV operations ENI Consortium

> Detector: design and construction ENI Consortium

Detector: deployment and recovery ENI Consortium

ENI Consortium: SAIPEM, SASP ENG., TECNOMARE INDUSTRIALE/SONSUB Underwater connections Ocean Design

Data/power

transmission system

ALCATEL, Pirelli

Artist's view

The telescope proposed by NEMO

Simulations show that a detector of:

4096	Optical Modules
64	Towers

600m height

200m distance between towers

75m L_a (Capo Passero)

May achieve:

>2km² trigger area

<0.3° angular resolution (median angle)

fast montecarlo code is designed to study the telescope performance as a function of:

> detector geometry PMT dimensions, TTS water optical properties

The NEMO tower

The tower designed by NEMO is a flexible structure tobe constructed in composite material: fiberglass and dynema

Optical Modules

Structure of NEMO towers

tower height	750m
distance between the top and the bottom arm	600m
number of arms	16
distance between seabed and lowest arm	150m
arm length	20 m
distance between arms	40 m
OM per arm (downward and upward directed)	4
OM per tower	64

The data transmission system

ALCATEL Italia in collaboration with INFN proposes a commercial, high speed telecommunication system. The system provides:

- high reliability and MTBF
- use of standard telecommunication protocols
- high speed (40 Gbps per line)
- auto re-configuration in case of failure

The base of the tower host the module 1660-SM equipped with: • 16 STM-1 modules (one per arm) • 1 STM-16 (+1 for redundancy).

This module groups the 16 optical signals from 16 arms into 1 wavelength,

digital signals from 4 OM (one arm) are grouped into one **S1.1** electro optical converter

Ŵ

Data transmission rate

1 arm (4 OM) S1.1 + STM1 155 Mbps 8 Junction Boxes, 8 modules 1686 WM: 4 for data transmission, 4 for redundancy 16 λ each (DWDM)

48 fibers: 16 for the 1686WM (2 fibers each) 32 fibers for redundancy

ibers for redundancy E.O. cable

Shore station

1 tower (64 OM) STM16 + 1660 SM 2.5 Gbps in one λ (DWDM)

(total redundancy)

16 16 40 (to

16 towers (4096 OM) 1686 WM 40 Gbps in 16 λ (DWDM)

(total redundancy)

Test Site Lab at port of Catania

From lab to Test site 28 km optical fibres

Deep sea (2000 m) test for:

- electronics
- connectors
- optical modules, acoustic modules
- deployment and recovery procedures

Geostar (INGV):

Oceanographic and environmental survey.

Permanent on-line seismic monitoring connected to POSEIDON network.

The underwater cable at the NEMO test

Underwater multidisciplinary laboratory

Stromboli

CREEP (UCL) Long term rock fracture

POSEIDON - GEOSTAR

Submarine seismic survey station

Acoustic Search for cetaceans

	User	date	Intended Use
	Galileo	1608	Navigation
	Hubble	1929	Nebulae
	Jansky	1932	Noise
'e	Penzias, Wilson	1965	Radio-galaxies, noise
	Giacconi	1965	Sun, moon
	Hewish, Bell	1967	Ionosphere
1. (A)		10/00	Thermonuclear

The End