
Chapter 7
The Basic Operations of a

Microprocessor

7.1 Instructions and Data

Figure 7.1: Simpilified Microprocessor Design Diagram

A simplified diagram of the microprocessor is given above. The binary information
from the memory is applied to both the registers and the control circuitry, and is interpreted
in different ways:

1. The binary pattern applied to the control logic is the instruction, and will cause the
control logic to generate the necessary sequence of micro-operations that will
accomplish the desired macro-operation indicated by the instruction.

2. The data information from the memory is transferred to and from the registers within
the CPU, under control of the micro-operations generated by the control logic.

NOTE:

Both instructions and data share a common path to and from the memory, although
they are routed to different places within the CPU. This common data path is the 'data
bus'. Since both the instructions and the data are accessed from the memory in exactly the
same way, there is thus no physical difference between them; the operation of the CPU is
what determines whether a given word in memory contains an instruction or a data byte.

For an 8 bit CPU, the data bus width (which is the same as the memory width) is 8
bits, which implies that:

1. Instructions are 8 bits wide, and there are thus 28 or 256 different combinations, or
256 possible instructions. Not all of these will be used; often only a smaller subset
will be valid instructions. The remainder are called 'illegal instructions', and if the
CPU attempts to treat them as instructions, the results will certainly be unpredictable
and will often be disastrous.

2. Data which are transferred to and from the registers is in units of 8 bits. Thus if a
register is 16 bits wide, its contents will require two bytes of memory to store.

Page 1 of 8Digital Systems - EEE484F - Department of Electircal Engineering

16/07/2004file://D:\Laboratorio\trovatosulweb\chapter7.html

7.2 The Control Logic

The control circuitry is in itself a small sequential circuit. Its function is to generate
the control signals for the micro-operations to transfer and manipulate the data in the
registers and ALU of the microprocessor. The inputs to the control circuitry are the bits of
the instruction to be executed; the bits of each particular instruction will thus cause the
control circuitry to cycle through a unique state sequence in order to generate the correct
micro-operations to perform the instruction.

Figure 7.2: The Control Logic Sequence

This sequence is shown in a very broad form here:

During the first part of the cycle, the instruction is read from memory and applied to
the inputs of the control logic. Note that the micro-operations to achieve this are generated
by the control logic itself; this first part of the cycle is always performed, and the control
logic always generates the same micro-operations. It does not need to have any instruction
applied to the inputs to do this. This first stage of the instruction processing is called the
fetch cycle.

The second part of the instruction processing is called the execute cycle. The
operations of the control logic are now dependent upon what instruction pattern is being
applied to its inputs (i.e. on what instruction was fetched during the fetch cycle).

When the control logic has generated the required control signals to execute the
instruction, it automatically performs another fetch cycle to retrieve the next instruction
from memory and the cycle continues.

7.3 The Internal Structure of a Simple Machine

A diagram of the internal structure of a simple microprocessor is here:

Page 2 of 8Digital Systems - EEE484F - Department of Electircal Engineering

16/07/2004file://D:\Laboratorio\trovatosulweb\chapter7.html

Figure 7.3: The Simple Machine

The registers are connected by a common bus and are consequently tri-state buffered.
Note that the registers are not necessarily the same width, and consequently we assume that
the bus is sufficiently wide to be able to transfer any register to any other register. Some of
the registers have special functions:

1. The Memory Address Register (MAR): This register contains the address which is
applied to the external memory array. It is the only way in which an address may be
applied to the memory, which is otherwise isolated from the internal bus of the CPU.
It is required because the address to the memory may come from a number of
sources, and must be kept stable (unchanging) while the memory is read from or
written to.

2. The Memory Data Register (MDR): This is the register into which words to and
from the external memory array are transferred. It is used as a temporary storage
location for these words only; the data in the MDR are never manipulated in any
way, but only transferred to another register or to memory. It is a bi-directional
register, since it may be loaded by both the CPU and the memory (unlike the MAR,
which is never loaded from the memory).

3. The Instruction Register (IR): This is the register in which the instruction which is
currently being executed is held. The IR drives the control logic directly; the opcode
is placed in the IR during the fetch cycle, and is thereafter used by the control logic
to generate the subsequent micro-operations to implement the instruction.

4. The Program Counter (PC): This is the register which contains the address in
memory of the next instruction to be executed. It is also known as the Instruction
Pointer (IP).

5. The Accumulator (A): the register on which most of the data manipulation
(arithmetic, logic operations) take place. It drives one input of the ALU directly.

Page 3 of 8Digital Systems - EEE484F - Department of Electircal Engineering

16/07/2004file://D:\Laboratorio\trovatosulweb\chapter7.html

6. The Control Register: (CR) this is loaded only by the control logic, and is used to
provide the necessary control signals to allow the memory and other I/O devices to
be read to or written from. It allows the control logic to synchronise the data flow
between the memory and the CPU.

7. The Data Pointer (DP): a register used to contain the address of any operand data
that is required by the instruction. It is normally set up in the course of the opcode or
operand fetch cycles, and is used during the execution cycle; its contents are loaded
into the MAR during the instruction execution.

8. The Stack Pointer (SP): this is a dedicated register used to point to the top of the
system stack.

9. Processor Status Word (PSW): is a word that stores the flags that indicate the
status and error codes associated with the processor.

10. The General Registers (B, C, D, E): these registers are the general purpose working
registers of the CPU. They are assumed to be the same width as the accumulator.

NOTE: In this simple machine, we assume that the PC has circuitry to automatically
increment the register contents, and the stack pointer has circuitry to both increment and
decrement its contents. The relevance of this will be seen later.

7.4 Microprocessor Instructions

Each instruction to the CPU will involve the processing or manipulation of data
within the CPU in some way - transferring, adding, comparing etc. As such, each
instruction must contain the following five pieces of information:

1. The operation to be performed (e.g. addition, data transfer, load, store etc.). This
part of the instruction is referred to as the 'opcode'. A typical microprocessor will
have a fairly limited set of primitive operations available - 16 or fewer.

2. The source of the data, or where the data is to be found. If the data is in memory,
then the address must be specified; if the data is elsewhere, its location must be given
in some other way.

3. The source of the second data item, for those instructions that require it. (e.g.
addition requires two data items; complementing requires only one).

4. The destination of the resultant data after the operation has been performed.

5. Where the next instruction, to be executed after this one is complete, is to be found.

Clearly this cannot be contained in a single (typically 8-bit) memory location, and
consequently it is necessary to reduce the instruction length in some way. Each of the five
pieces of information cannot be omitted, so the reduction is achieved by making
assumptions for some of them.

1. Requirement (5) may be omitted by assuming that the next instruction which is to be
executed follows immediately after the current instruction in memory - in the next
sequential memory location.

Page 4 of 8Digital Systems - EEE484F - Department of Electircal Engineering

16/07/2004file://D:\Laboratorio\trovatosulweb\chapter7.html

2. Requirements (2) to (4) can be eliminated by making use of internal registers in the
CPU to contain the data (or the address of the data) and making their use implicit in a
particular instruction. This increases the number of possible instructions, but by
judicious choice it is possible to keep the total number of instructions below 256 and
thus representable by a single 8-bit byte.

As an example, the 8085 instruction:

ADD C (instruction = 81H, or 10000001 binary)

Specifies that:

1. the operation is addition

2. the source of the first data byte is the accumulator (implied)

3. the source of the second data byte is register C (implied)

4. the destination is the accumulator (implied)

The complete instruction thus takes only 8 bits to specify and may thus be contained
in a single memory location.

Even after these reductions have been achieved, it is still necessary for some
instructions to have information specified in addition to the opcode. Such an instruction
will typically involve a memory access, and thus is required to give the address of the
memory location being accessed. In this case, it is necessary to use more than 8 bits to
specify the instruction; such an instruction is called a multibyte instruction.

The first byte of a multibyte instruction is the opcode. The additional bytes which
give the extra information form what is called the operand. The whole sequence of bytes is
the instruction.

7.5 Microcycles

The execution of each instruction in the CPU is made up of a number of smaller
operations, called micro-operations or microcycles. Each microcycle takes one clock cycle
to perform, and represents one data transfer operation or one register manipulation
operation. It is represented by the following notation:

Data transfer operation: destination <- source

For example: MAR <- PC

 IR <- MDR

Register Manipulation
Operation: destination <- expression

For example: PC <- PC + 1

 SP <- SP - 1

Page 5 of 8Digital Systems - EEE484F - Department of Electircal Engineering

16/07/2004file://D:\Laboratorio\trovatosulweb\chapter7.html

If it is necessary to transfer data to or from memory, then this cannot be done by a
single microcycle. The external memory device is regarded as a series of registers, like the
internal registers of the CPU; however, before one of these registers (words) can be read or
written, it is necessary to indicate which register is to be affected. This is done by first
placing the word's address in the Memory Address Register. This then causes the
appropriate memory word to be enabled and 'connected' to the Memory Data Register. The
data may then be transferred between the MDR and the addressed word (the direction
depending on whether a read or write is taking place). This data transfer must occur at least
one clock cycle after the address of the word was written to the MAR, to give the memory
time to stabilise. These microcycles are represented as follows:

MAR <- source register
MDR <- memory(MAR)

Each microcycle which involves a transfer of data between two of the internal
registers of the CPU uses the internal bus; consequently only one such microcycle can
occur during a single clock cycle. If a microcycle involves register manipulation, however,
or uses the external memory or address buses, then it can occur at the same time as a
register transfer.

As an example, take the instruction "Add the contents of the accumulator to the
contents of memory location 2100, and leave the result of the addition in the accumulator".

Assuming that the opcode of this instruction is A2 (hex), one operand is required (the
address of the memory location - in this case 2100). Assume that the operand is stored in
the next two bytes after the opcode (the address is 16 bits long and the memory locations
are only 8 bits, hence two bytes of memory must be used). Also assume that the least
significant byte of the address (00) is stored at the lower address, i.e. the byte after the
opcode.

The memory locations and the connection to the CPU will appear as follows:

Figure 7.4: Memory Location and CPU Connection

The microcycles which would be involved on the simple machine illustrated in
section 7.3 would be:

Cycle Micro-operations Description

I MAR <- PC Opcode address

IIa PC <- PC + 1 PC points to the 1st operand

IIb MDR <- memory
(MAR) Place opcode into MDR

Page 6 of 8Digital Systems - EEE484F - Department of Electircal Engineering

16/07/2004file://D:\Laboratorio\trovatosulweb\chapter7.html

1. Note that four machine cycles were used to perform this instruction. The first three
are fetch cycles, since bytes that are part of the instruction (opcode, operands) are
fetched from memory so that the instruction can be subsequently executed. The PC is
used to point to the next byte to be fetched, and is incremented by 1 automatically
after every memory fetch.

2. The PC is incremented during the same microcycle as the data is transferred to the
MDR from the memory. This is because the PC has logic built into it to increment
the contents, and thus does not require the internal bus or ALU. Note that the
incrementing of the PC must occur in the cycle following its transfer to the MAR - it
cannot be incremented and transferred at the same time.

3. A total of 13 clock cycles are used. Each clock cycle indicates one micro-operation,
or internal register transfer.

4. The first fetch (the opcode fetch cycle) is the same for all instructions. Thereafter any
further fetch cycles are dictated by the opcode itself, which is now in the IR and
influences the operation of the control logic.

Summarizing: The whole cycle is an 'instruction cycle'. This is composed of two
sections:

1. Fetch the instruction, and any necessary operands, using one or more fetch cycles.
The PC is incremented automatically after every fetch cycle.

III IR <- MDR Transfer opcode to IR

IV MAR <- PC Operand address into MAR

Va PC <- PC + 1 PC points to 2nd operand

Vb MDR <- memory
(MAR) Get 1st operand byte

VI DP(L) <- MDR Put into LSByte of DP

VII MAR <- PC 2nd operand byte address to MAR

VIIIa PC <- PC + 1 Point to next opcode

VIIIb MDR <- memory
(MAR) Get 2nd operand byte

IX DP(H) <- MDR Put into MSbyte of DP

X MAR <- DP Address of operand data into MAR

XI MDR <- memory
(MAR) Get operand data byte

XII tempR <- MDR Put into tempR of ALU

XIII A <- A plus tempR Use ALU to add A and tempR

Page 7 of 8Digital Systems - EEE484F - Department of Electircal Engineering

16/07/2004file://D:\Laboratorio\trovatosulweb\chapter7.html

2. Execute the instruction.

Page 8 of 8Digital Systems - EEE484F - Department of Electircal Engineering

16/07/2004file://D:\Laboratorio\trovatosulweb\chapter7.html

