E21: Digital System Design Lectues, Fall 2000

Dr. Bruce A. Maxwell, Asst. Professor
Department of Engineering
Swarthmore Collge

Course Description

This course ceers digital system designopics include Boolean logic, digital representations,
andtechniquedor designof combinationalsequentialandasynchronousircuits. We alsostudy

I/O interfaces, communication protocols, and micro-controller architecture. Labs focus on CAD
techniquesYHDL [Very high speedntegratedcircuit HardwareDescriptionLanguage]andpro-
grammable logic deces.

Prerequisites CS21, E11, or permission of instructor

© 2000 Bruce A. Maxwell

This material is cogrighted. Indviduals are free to use this material for thewnceducational,
non-commercial purposes. Distiiion or copying of this material for commercial or fprofit
purposes without the prior written consent of theycigit owner is a violation of cogight and
subject to fines and penalties.

FOO E21 Lecture #1

Intr oduction
Why digital logic?
* Reproducibility of results
» If you have the same inputs, a well-designed circuiegiyou the same outputs

» Ease of design
* You dont have to use calculus to model a digital circuit at the functional le
» Small digital circuits can be visualized mentally withouficifity

* Flexibility and functionality
» Try building a hard-to-break easy-to-use encryption algorithm using analog components

* Programmability
» Digital circuits, if properly designed, can be programmed to derdift things

 Economy
» Digital circuits are cheap and small

* Advancing technology
» Digital technology continues to impre: faster cheapersmalley easier to use

Administri via
The most important thing...

http://www. palantirswarthmore.edu/~maxwell/classes/e21

* homavorks

readings

syllakus

labs

other course links

 VHDL sites, hardware sites, tutorial sites, etc..

Focus of the course
» Basics of digital logic (pretty simple)
Programmable digital deces: flible design
Trouble-shooting digital circuits
Sensors and hoto integrate them into digital systems
Microcontrollers and FPGAs as the "brains" of small (embedded) digital systems
By theendyou shouldhave the knowledgenecessaryo begin designingcomputerperiph-
erals and stand-alone digitaMiees.

Final project
* The last 4-5 weeks you will be doing yowrrofinal project, start thinking about itwo
* Past years:
* keyed security system, and iowked
* evolvable hardware project
» parallel port communication & control okternal deices

* lap counter

This year:

» Security system for your room

* Interface with a computer

* Your ovn LED programmable scoreboard

» Additional smart sensors for a robot

» ASIC for solving a particular problem (Bkfinding lots of primes, quickly)
* Anything else you can dream up...

Expectactions

Keep up: we will mee quickly through much of the introductory digital logic topics

Let me knev if we're mwing too quickly or too shaly

Lab work is very important, because yowwt learn about digital design unless you do it
Digital design is 10% fun (at best) and 90% turn the crank

We will be using good tools to malkurning the crankaster & easier

Syllabus

Textbook: only one required, | suggest getting a separate VHRL te

Problem sets: Handed out Monday of each week, due theviiajdMonday in class.
Labs: you can wrk in pairs.

Labs: will occur approximatelyery 2 weeks

Final project: labs will lead into the project, for which you wil@ahe last 4-5 weeks
Lab Notebookgqstronglyrecommended}eachof youwill needto keepalab notebook(to
be handed in with each lab). In this notebook you needédp knough information for
someoneelseto recreateyour work. You shouldalsosignanddateeachentryasyou com-
plete it. Some of your ark could potentially lead to a patent.

Late poligy

The basis of digital systems

1's and O's

Using electricity we can represent logicalues as oltages

Hi range v Lo range with a section in the middle (unspecifialli®)

Different hardware families hae different ranges

As long as we can guarantee the specs, a digital system will reproduce a sgm#tgi
same set of inputs.

Logic gates
Electrical implementations of truth tables

AND, OR, NOT (and symbols)

NAND

NOR

XOR, Buffer, Multiple input AND, OR, M\ND, and NOR functions

Table 1: Truth Tables

Input A | InputB | AND OR NAND NOR XOR
0 0 0 0 1 1 0
0 1 0 1 1 0 1
1 0 0 1 1 0 1
1 1 1 1 0 0 0

ExamplequestionSoif | wantedto addtwo 1-bit numberswhatwould beappropriatdogic gates
to generate their sum and carry? [sum = XOR, carry = AND]

SSI components
Small-Scale Intgration components were the firsiilding blocks.

e Usually use 20 gtes or less

» Usually cost around 25 cents

e 7400 series (letters tell you thenfily, numbers the configuration & function)
e 7400 is a quad 2-inputAND gate

* 7404 is a heinverter

e 7432 is a quad 2-input ORate (and so on)

SSI components are usualy used to iafwith othermore comple components. It's notfef
cient to use them as the basdlding blocks &cept in some prototypes.

Note: mainframesandsupercomputengsedto bebuilt outof SSIcomponentsCraydesignedhe
Cray-1 from PCBs with nothingub NAND gates on them because yheere fst.

FOO E21 Lecture #2

The basis of digital systems

Number Systems

Living with 1's and O's is fine if you can use them to represent something.

* Binary is a number system (base 2)

» Each position in a binary system is avyeo of 2 (starting with %on the right)

» Corversion from decimal to binaryekp dviding by 2, put the remainders right to left
* Example: 26 -> binary = 11010

» Corversion from binary to decimal: sum up treue of each place containing a one
 Example 101010=2+8 +32 =42

Using binary numbers can be a real pain, ang &ne dificult to read.

* Octal and Hradecimal are tav number systems that neak easier to read "bits"

* Octal is base 8, and 3 bits (binary numbers)erake octal number

* Hexadecimal is base 16, and 4 bits makie hgadecimal number

* Hexadecimal is preferred, we think in terms of bytes (8 bits) not 3, 6, or 8lbéds/

Hexadecimal alues are (0-9, A-F)

Corvert 61453 (decimal) to ke> FOOD
61453 /2 = 30726 (1)

30726 /2 = 15363 (01)

15363 /2 = 7681 (101)

7681 /2 =3840 (1101)
3840/2=1920 (0 1101)

1920 /2 =960 (00 1101)

960/ 2 =480 (000 1101)

480 /2 =240 (0000 1101)

240 /2 =120 (0 0000 1101)

120/ 2 =60 (00 0000 1101)

60 /2 = 30 (000 0000 1101)
30/2 =15 (0000 0000 1101)
15/2 =7 (1 0000 0000 1101)

7 /2 =3 (110000 0000 1101)
3/2=1(111 0000 0000 1101)
1/2=0(1111 0000 0000 1101)=(F0O0OD)

So hav do we represent negatte numbers?

Use a sign bit
* makes adding and subtracting a pain
» two representations of zero

Use two's-complement representation (add binadye of lav n-1 bits to -(2-1))
» Think about it as a wheel
» Like signed binarythe high bit indicates the sign of the number

* sign tension: pad the high bits with whegg was in the old high bit

* To invert In binary complement each digit and then add 1
« Range: one more gative digit than positie: - to (" - 1)
* adding two’s complement
* add them just lie two binary numbers, just ignoreyaoarry out of the high bit
» overflow rule: when the tew numbers hae the same sign and the sign changes
* subtraction: imert one number and add them
» Examples:-4+4,5+6,-7+5,9+9

Other representations...

Binary Coded Decimals

* 0-9 using 4 bits

* low 4 bits of the ASCII representation are BCD
» useful for representing moyéransactions

Packed BCD representation

* use a fied number of 4-byte chunks with one chunk being the sign
* sign chunk is usually all &’

Gray codes: used for encoding position: only one bit changes at a time
* Gray codes are used in altimeters, motor encoders, etg.?Y\wh

ASCII codes: used for encoding both actions and characters

Encoding actions: tr&€ light example:
* NS go, NS wit, NS delayEW go, EW vait, EW delayG/Y/R for each,
* 6 codes: ha mary bits?

Often choose an encoding that minimizes the numbeateEgeeded
* balance gperimentation with time

FOO E21 Lecture #3

Err or-detection and erior correction
Error detection: use a dictionary of coderds that is a subset of thg @ssible code ards

A failure occurs when anvalid code vord is sent

Say we vant to knav all cases where a single bit might be flipped

Think about a ypercube, where each node represents a bit string
Each node only tads a one bit modification to get to its neighbor
Distance is defined asWwanary steps you ha to tak to get between wnodes

If we want to knev when am single bit is flipped, which nodes on thgkrcube can we use?

Any set of nodes such that noawalid code verds are less than a distance 2 apart
using a parity bit (eitherven or odd parity) alles such a code

Now say we vant to knev how to correct one-bit errors and detect 2-bit errors

Create a code with a minimum distance of 3

A one bit error will cause anvalide code wrd, hut it will be closest to onealid code
A two bit error will be detectableubnot repairable

Need to use more bits if youant to detect and correct 2 bit errors

* Ingeneral, use 2c + 1 bits to correct up to c bit errors.

Hamming Codes
A general method for constructing error correcting codes of minimum distance 3

There are i check bits fof-2-i information bits

The bits in positions that arepers of 2 are the check bits (1, 2, 4, ...)

Thecheckbits dealonly with the bitsin thosepositionsthathave a 1 in the samebit when
their position is gpressed in binary: for a 7-bit code: 1 -> 3, 5, 7, 2->3, 6, 7; 4->5, 6, 7
The check bits will hee even parity for their group

There are at least twparity bits for ap information bit

To correct a bit, we locate the column that possesses all of the odd parity groups

Example:
1-information bit => 2 code bits

Possible dataalues are 0/1
Code bits must makesen parity so 000/ 111 are thegal codes
A single bit flip can be corrected

Designing Simple Logic Cicuits

Combinational Logic

Circuit output is a function only of the current inputs.

Inputs: signals, orariables

Circuit: expressions, which areaviables related by Boolearpressions

Boolean logic is defined by a set of axioms
Boolean logic: tw-value logic (X =0 if X !1=1)

* Boolean product: AND function (1*X = X, 0*X = 0)
e Boolean sum: OR function (1 + X =1, 0+ X = X)
* Booleaniwerse:1->0,0->1

* Boolean theorems
e Sum axioms

e X+0=X

e X+1=1

e X+X=X

e X+X'=1)

* Product axioms

e X*1=X

e X*0=0

e X*X =X

e X*X'=0)

 DeMoman's theorem s
o (X1*X2*...*Xn)=X1'+X2'+ .. +Xn
e (X1+X2+..+Xn)=X1"*X2"*..*Xn'
Standard Representations
SOP representation: all of the 1 combinations
POS representation: all of the O combinatiomns,itwert variables and use product of sums
Example: F = Sum(1, 2, 4, 6, 7)

- SOP=ABC+ABC+ABC+ABC+ABC
+ POS = (A+B+C)(AB+C)(A+B+C)

Question: can we do it better?
Minimization using Boolean logic...

« SOP gpression: Combine the lastavterms into AB, combine 2nd and 4th to g&, B
combine 4th and 5th term to ge€A

Have everyone do F = Sum(0, 2, 6, 7)

Is there a better way?
Group minterms together that share bits
Do it graphically: Karnaugh maps

* 3 and 4 ariable K-maps
* 5 and 6 ariable K-maps (Bils method)
* Groupthe s

FOO E21 Lecture #4

Designing Simple Logic Cicuitsi

Mor e on Kamaugh Maps

* When you design a circuit, you doalways care aboutvery input all the time
* Priority situation: Allavs you to collapse the truth table to justwa fimes
» Example: Bg, Pop, 1, 2 case
» Drawing the Karnaugh map becomes easy

* Sometimes you dohtare about the outputs
* You usually care with combinational circuitsitimot necessarily with sequential ones
* Example: case where you only care about 5 of the 8 cases (last threevavilboeur)
* You can label a dontare as either a 1 or a 0 on the Karnaugh map
* You can use itin a group as you see fit to minimize xpesssion

» Static Hazards
» Can occur when you go between disconnected groups in a K-map
* One solution is to hee overlapping groups (more terms than you really need)
» Other solution is to use sequential logic that only samples during stable periods

Procedure for designing a combinational cicuit of 6 variables or less

» Write the truth table
* Fill a Karnaugh-map for each outpwnable
* Group the 1s by peers of 2
» Express each group as a term in the Booleanession
* Write the Booleanxgression
* Draw the logic diagram
» Build the circuit

When Karnaugh Maps don’t work...

» Karnaugh maps are good up todiables
» Difficult to visualize gpercubes bond 6 dimensions

Quine-McCluskey Method
Talular method wrks for 6-10 wariables, maybe aviemore

Find all of the size 1-subcubes (minterms in the truth table)

n=1

Group the minterms according toviaonary 1's they have in them

Use terms in adjacent groups to form (n+1)-subcubes

Label the lgel n minterms as to whether thare ceered by a leel n+1 subcube
Increment n and loop back to step 3

The list of terms not aeered by a subcube at a highereare the list of Prime Implicants

« Example 1: F =Sum(2, 3, 5, 6, 7)]
» Follow the procedure to create groupings at the highest p@ssible

ounhkwnhpE

Each non-ceered term is a prime implicant
Create a second table with the prime implicants
Pick the terms you need from the table (minimalec@eneration)

Groun ID Subcube Subcube Subcube
P Minterms Value Covered
Gl (2) 010 yes
G2 (3,5, 6) 011 yes
101 yes
110 yes
G3 (7) 111 yes
Gl (2, 3) 01X yes
(2, 6) X10 yes
G2 (3,7 X11 yes
(5,7) 1X1 no
6,7) 11X yes
Gl (2,3,6,7) | X1X no
Prl_me Expression Minterms 2 3 5 6 7
Implicant
P1 AC (5,7 X X
P2 B (2,3,6,7) X X X X

Minimal Cover Generation
The complete list of Prime Implicants [PI] do not necessarily form the mininaal egpression.

1. Find the Essential Prime Implicants [EPI]

Essential prime implicants ger a minterm not aeered by ap other PI

Make a table with a m@ for each Pl and a column for each minterms

Mark the minterms oeered by each PI

Any column with only one mark identifies an EPI, which must be included in the function

2. Find the Minimal Ceer Expression

Intelligently select from the remaining PIs to get a minimakcaxpression
Method 1:

 Form a POS, where each sum is the set of Pls that egparticular minterm
* Multiply it out to get a SOP term

* Remue ary expressions from the SOP that are@®d by simplerxgressions
* The remaining terms are the possible choices to combine with the EPIs
Method 2:

» Depth-first search, and compare the resulting possibilities

FOO E21 Lecture #5

Designing Simple Logic Cicuits

Minimal Cover Generation with Quine-McClusky

1. Find the Essential Prime Implicants [EPI]

Any column with only one mark identifies an EPI, which must be included in the function

2. Find the Minimal Ceer Expression

Intelligently select from the remaining PIs to get a minimakcaxpression
Method 1:

 Form a POS, where each sum is the set of Pls that egparticular minterm
* Multiply it out to get a SOP term

* Remae ary expressions from the SOP that are@®d by simplerxgressions
* The remaining terms are the possible choices to combine with the EPIs
Method 2:

» Depth-first search, and compare the resulting possibilities

* Example 2: random function [minterms 0, 2, 4, 3, 6,9, 7, 11, 13, 15]

Group ID S.ubcube Subcube Subcube
Minterms Value Covered?
GO 0) 000 yes
Gl (2) 0010 yes
4) 0100 yes
G2 (3) 0011 yes
(6) 0110 yes
(9) 1001 yes
G3 (7) 0111 yes
(11) 1011 yes
(13) 1101 yes
G4 (15) 1111 yes
GO ©, 2) 00X0 yes
O, 4) 0X00 yes
Gl (2,3) 001X yes
(2, 6) 0X10 yes
(4, 6) 01XO0 yes
G2 (3,7) 0X11 yes
(3, 11) X011 yes
(6, 7) 011X yes
(9, 11) 10X1 yes
(9, 13) 1X01 yes
G3 (7, 15) X111 yes
(11, 15) 1X11 yes
(13, 15) 11X1 yes

Groun ID Subcube Subcube Subcube
P Minterms Value Covered?
GO ©, 2,4,6) 0XXO0 no
Gl (2,3,6,7) OX1X no
G2 (3,7, 11, 15) | XX11 no
1XX1 no
Prime Expression| Minterms | O | 2 | 3 | 4 9 11|13 15
P1 AD 0,2,4,6) | X | X X
P2 AC (2,3,6,7) X | X
P3 CD (3,7,11,15) X X X
P4 AD (9,11,13,15) X [X | X | X
* P1 and P4 hee to be in thexpression (essential prime implicants)
» Shaded columns are the only ones netoed by P1 or P4
» Can pick either P2 or P3 to complete tkpression
Example of SOP method
Consider the function: F = Sum(2, 6, 7, 8, 9, 13, 15)
» Prime implicants areA CD,B C D, A B C, ABD, BCD, ACD
Prime Expression| Minterms 2 6 7 8 9 13 15
P1 ACD (2, 6) X X
P2 BCD (8,9) X
P3 ABC (6, 7) X X
P4 ABD (9, 13) X X
P5 BCD (7, 15) X X
P6 ACD (13, 15) X X

» Build the POS xpression for each column notvewed by an EPI (shaded columns)
e F=(P3+P5)(P4 + P6)(P5 + P6)
« F=(P3+ P5)(P4P5 + P5P6 + P4P6 + P6): R@rsoP5P6 and P4P6
« F=(P3+ P5)(P4P5 + P6)

« F=P3P4P5 + P3P6 + P4P5 + P5P6: PARBIscP3P4P5

« F=P3P6 + P4P5 + P5P6
» Choose ayof these three combinations to minimallywepthe circuit

Technology Mapping

Corverting AND-OR @ites to MND/NOR gates

* Rule 1: xy = ((xy))": AND ate is a MAND gate with an imerter on the output

* Rule 2: x+y = ((x +y))' = (X'y')": ORae is a MAND gate with irverters on the inputs
* Rule 3: xy = ((xy))' = (X' +y')": AND gte is a NOR ate with irverters on the inputs
* Rule 4:x+y =((x +y)): OR agte is a NOR gte with an imerter on the output
Example: ab + b’c + a’c

* cornvert to NAND gates

* convertto NOR @gtes

After corversion, optimize by renving inverter pairs

Example: full-adder function (sum)
e F=XYycC +Xxyc +XYyC+XycC

Term Decomposition

Sometimes we need to usatgs with fever inputs
» programmable logic often requires aefiknumber of gte inputs

Term decomposition turns m-inpuatgs into 2 or more n-inpuaites where n < m.
Term decomposition must occur before technology mapping

Process

* Make a table with the \els, number of inputs, and number ates

* Each leel takes an intgral number of gtes (inputs / inputs peatg)

* Remaining inputs go to the xtdevel

* There will be log_m(n) kels

* There may be numerous possible decompositions, ot @ optimize it

e Example: Cowert a 13 input AND —1_

gate to 2-input AND gtes —:D_‘—_D—:D—}
Level Inputs #oates —)—‘ _jj
1 13 6 —)—‘
R e
3 4 2 -
4 2 1
—
—1

Timing optimization

* There are often multiple dérent decompositions you can design

* Pick the one that optimizes timing
* minimize the longest path through the circuit

» Pick the one that reduces thefelience between the shortest and longest paths
* minimizes the likelihood of hazards

FOO E21 Lectur #6

Logic Families

History

* 19305: Relays

e 19405: Vacuum tubes (3500lts = high) (MOSFETs deloped)

» 19505: Bipolar junction transistors

» 19605: Intgyrated circuits, introduction of logiamilies, TTL, MOSFETs become practical
* 19705: Development of the single-chip microprocessor

e 1980%5: CMOS deelopment, CMOS replaces TTL logic

* 19905: 1-10 million transistor ICs

» 20005s: 100-200 million transistor ICs

The Basic Inverter Ve

To create an werter you need a switch aswitch will do) R

* The incoming signal controls the switch Vout
* The outgoing signal is determined byahthe switch is connected
« Pull-up netverk: circuit is usually ley, closing the switch pulls | {
the output high Gnd
» Pull-dowvn network: circuit is usually high, closing the switch
pulls the output ha

Better irverters aredster because theull the circuit high or lav more quickly
Better irverters use less p@r because tlyehave higher resistance to the disconnectelthge
The ideal inerter would have an instantaneous switch on boths sides:

* low source resistance to the connectedgydevel
» high resistance to the disconnectedgplevel

Bipolar Logic
Basis of bipolar logic is the bipolar junction transistor

* Diode: pn junction
* A positive wltage drop across a pn junction alocurrent to flar
* A negative wltage drop blocks current
* A large ngative wltage drop lets lots of current o
» Transistor: npn or pnp junction
* A positive wltage across the base-emitter pn junctionaadlourrent to flay
» It also allavs current to flar across the np junction from the collector to the base
* The emitter output current is the sum of the base and collector input currents
» The collector current is a multiple of the base current up to a saturation point

Low input wltage for TTL is 0-0.8Vhigh input wltage is 2.0-5.0M0.8-2.0 is undefined

Common-emitter configuration

» Confguration
* Resistor on the base input
* Resistor on the collector input
» Emitter connected to ground

» Effect
* A positive input wltage on the base causes current 1o flo
* A zero wltage on the base causes little or no current¥o flo

A basic inverter
* The simplest case is a single transistor with tesistors (base and collector)

Basic AND and OR gates
* OR gate: put tvo transistors in parallel to ground with each input connected to one transistor
* AND gate: put tvo tarnsistors in series to ground with each input connected to one transistor

TTL Families
* 74 = Basic &mily
* 74H = High-speed TTL
* Uses smaller resistors for high switching speeds

e 74L = Low-power TTL
» Uses lager resistors for lwer paver dissapation

e 74S = Schottk

» Uses Schottktransistors that donsaturate (diode connecting the base and collector)
* 3ns/19mWwW

e 74LS = Law-power Schottl
e Same switching speed than 74Hdt higher resistances and 1/5th thevpoconsumption
* 9ns/2mw

* T74AS = Adwanced Schottk
» Twice the switching speed of S, with the samegroconsumption
e 1.7ns/8mW

e T74ALS = Adwanced Lav-power Schottly
* Faster than LS, with l@er paver consumption
* 4ns, 1.2mW

CMOS: Complementary metal oxide semiconductor
 CMOS logic levels: traditionally 0-1.5V = i, 3.5-5V = high, 1.5-3.5 = undefined
» Other paover levels are used as well: 3.3%.7\, or lower for lage ICs

. Typlcal static pwer dissapation for an SSatg is 0.0125mW (12.5 uWw)
Typical dynamic pwer dissapation is 0.4mW/MHz (4mW at 10MHz)
» Power consumption is dependent upattage and frequeyd® = GpVc 2f
* Cpp = Paver dissapation capacitance, a characteristic of the transistors
» V= Power supply wltage, f = switching frequegc

Typical delays for an SSkge are 5-10ns
A MOSFET can be viged as a oltage controlled resistor

For aNMOS transistoycurrentflows from thedrainto the sourcewhenthe gatevoltageis
higher than the source.

For aPMOStransistoycurrentflows from the sourceto thedrainwhenthe gatevoltageis
less than the source.

In both cases, when there is currenwitag, the MOS can be wieed as a resistor with a
small resistance (10-100 ohms)

When no current is fleing, the transistor appears as gdaresistor (1 Mohm or more)
Regardless of thealtage, \ery little current flavs through the ate

A basic inverter

NMOS and PMOS are used in a complementaspibn to design CMOS
Put a PMOS and an NMOS transistor in series

Connect the PMOS to Vcc and the NMOS to ground

Connect the input to theates of both transistors

When the input is high, the N-channel transistor is open, pulling the output to ground
When the input is b, the P-channel transistor is open, pulling the output to Vcc
When the input switches, there is a transistion period where curngatfftum Vcc to

Gnd

If the output is connected to another CMCfieg then almost no per is usedxcept
when the input switches

There is a capacitance at tregethat must be filled up/drained in order for thtedo
reach steady-state

» This capacitance dns paver

» This capacitance sies davn the reaction time of the circuit

FOO E21 Lecture #7

Logic Families

CMOS NAND and NOR gates

* k-input NAND and NOR @tes can be created with CMOS logic
* For k-inputs there are k p-channel and k n-channel transistors

* For a NAND gate
» connect the p-channel transistors in parallel to Vcc

» connect the n-channel transistors in series between the p-channel transistors and ground

» connect each input to thatg of one p-channel and one n-channel transistor
» If any of the @ates are I, the output is pulled to Vcc
« If all of the gates are high, the output is pulled to ground

 Fora NOR ate
* connect the n-channel transistors in parallel to ground
» connect the p-channel transistors in series between the n-channel transistors and Vcc
e connect each input to thatg of one p-channel and one n-channel transistor
» If any of the @ates are high, the output is pulled to ground
» If all of the gates are M, the output is pulled to Vcc
Fanin
How mary inputs can you hee?

* Each transistor has a certain resistance

» Having more inputs means a higher resistance for the current to go through
» Each transistor has a certain capacitance

* Having more inputs means a higher capsaeitoad

Typically you dont want to ha&e more than 4 (NOR) to 6 MIND) inputs on a singleaje
(NMOS have a laver resistance than PMOS, hence théedghce)
If you want more than that, use cascadatég

Noninverting gates
You get iverting cates “for free” with CMOS technology (with most, arct)

« AND
» Connect an iverter on the end of aAND gate

+ OR
» Connect an iverter on the end of a NORg
Fanout
How mary gates can you connect to the output of a CMOS circuit?
* Estimate: maximum L@/-state output current = 20uA, max input current = +/- 1uA
How much current are you going to drérom the circuit?
* Look at an inerter and treat the NMOS and PMOS transistors as appropriate resistances

Model the load as a resiaiload

* Thevinin equialent of a 2k/1k gltage dvider is a 667 ohm resistor and a 3.3 V source
* Case one (PMOS BMNMOS = 100 ohms): lw output, .43 V (sinking current)

* Case tw (PMOS =100 ohms, NMOSf@fhigh output, 4.78 V (sourcing current)

Note: non-ideal inputs can cause problems because the transistor resistances change

Manufacturer will usually specify a load current that indicates what the maximum loads can
be in order to maintainoltages that are less than (greater thanex (\bhmin)

Typical fanout from a CMOS dkce to other CMOS déces is about 20

Note: at switching speeds, we alsed#o worry about AC characteristics
» Capacitances slodown the switching speed
* More fanout, means a single source ividig more capacitances in parallel

CMOS Inputs
CMOS inputs should alays be connected

» Gate will generally she a “low” value
* Only small amounts of current (static) will switch treue
» Tie inputs to ground or aoltage source

* AND/NAND gates: tie the free input high

* OR/NOR @utes: tie the free inputwo

Schmitt-Trigger Inputs

Because of feedback in the transisibfollows a lysteresis cum
* Ifthe inputis a lav value, then it wn’t go lov again until the wltage rises abhe 2.9V
* Ifthe input is a high alue, then it wn’t go high agin until the wltage drops beio 2.1V

The lysteresis helps to ceart a noisy signal into a clean signal

Thr ee-state Outputs

Sometimes you ant a circuit to hae no output
* When you hae multiple circuits connected to a single wireelik lus

A three-state output has three states: high, &amd high-impedence
You can think of this state as occurring when both the P- and NMOS transistoffs are of

A three-state Wiffer takes as input the signal and an enable input

* when the enable is high, the output has the satue \as the signal
* when the enable is\ug both transistors are in thef gtate

» Connect a MND gate to the PMOSaje, with EN and A as inputs
« Connect a NORafe to the NMOS ate, with A ancEN as inputs

CMOS families
Format: 74FFnn (54FFnn series are military grade)

HC = High-speed CMOS

HCT = High-speed CMOS, TTL compatible
* Input ranges are compatible with TTL input logiedks

AC = Advanced CMOS (introduced in the mid 80’

e Can sink lots of current in both directions
* Have extremely Bst rise anddil times
» Are so Bst in their rise andafl times that thg can be a major source of analog noise

 ACT = Advanced CMOS, TTL compatible

* FCT = Fast CMOS, TTL compatible
» Faster switching times
* Lower paver consumption

ECL: Emitter Coupled Logic
Emitter coupled logic haswahys been theaktest logic eailable

» Take two bipolar transistors and connect their emitters
» Put the inputs to the transitor bases
» Each collector has itsam resistor to a sourcehtage
» Basically a diferential amplifier circuit
Emitter coupled logic wrks by changing currents

* The wltage change isery small (0.8V diference between high andup
» They switch between tw current flov states, dfand on
* By switching the current, tgeswitch the wltage through the collector resistors

Typical logic \aluse are: 4.2 (l@) and 5.0 (high)
ECL logic has allays been theaktest @ailable

* Current ECL &mily (ECLIinPS) dfers maximum delays under 0.5ns, including the signal
delay getting on and bthe chip (2GHz)
» Useful for communications gediberoptic intertices, and gapit ethernet

ECL uses a lot of poer

» Current is alvays flaving
o 26mW per @te, plus from 10-150mW peatg for termination

FOO E21 Lecture #8

VHDL: VHSIC Hard ware Description Language

Digital Design (Old style)
* Using hierarchical methods,\ddop a design on paper
» [Post 1980: graphically design the circuit in CAD, otttially describe the structure
* Run the design through a discreteat simulator]
* Build the circuit
* Test & delng g/cle

How would you like to do digital design?
» Design in terms of circuit beler and/or datafi
* Use hierarchical methods
* Be able to describe and simulate the circuit dedkht levels
» Have designs be portable and reusable (modular)

Why do you vant a hardare description language?

» To simulate hardare before implementing it

» To male design entry simpler than mog boxes and connecting wires

» To simplify verification and testing

» To simplify communication between fifent tools in a CAD esronment

* To permit a standard for specification of inputs, outputs, andsimeltd digital circuits

VHDL offers a standard language (IEEE Standard 1076 plus some additional standards)

* There are competitors (AHDL evilog HDL)

» Latest VHDL standard is 1993

* |EEE Standard 1164 standardizes data types for simulation

» |EEE Standard 1076.3 standardizes data types wasdlate to hardare

How do you use VHDL?

» Design specification stage
» can describe subcomponents in VHDL using input/output specifications
» Design synthesis
» following certain styles of VHDL, you can map VHDL onto hasdes
» Design simulation
* you can simulate your design before putting it into harew
» Design documentation
» since VHDL is a standard, you can use the VHDL code as a formal specification
* provides an alternate to schematics
» provides an alternate to proprietary languages (AltesgAHDL is one gample)

What is the werall structure of a hardae description language?

» At its essence, the HDL consists of methods of describing th@aws of a circuit
» The input/output characteristics of the circuit (entities)
» The internal functioning of the circuit (architectures)

» The other main structures of the language are designeduoradicachical design

Simple Example 1: A comparator
entity compare is
port(A, B: in bit_vector(0 to 7);
EQ: out bit);
end compare;

architecture comparel of compare is
begin

EQ <= ‘1" when (A=B) else ‘0’;
end comparel;

Entities & Ar chitectures

* The entity describes the input/output babeaof the circuit
* bitis a data type that describes a single wire carrying a Bootda® v
* Dbit_vector is a data type that describes a set of wires carrying Boalkeas v
» The architecture describes the function of the circuit
When the bits on the A and B wire sets are identical, then the circuit outputs a ‘1’
Otherwise, it outputs a ‘0’
The conditional assignment statement is a basic tool of VHDL
Note the architecture has toveaa unique name, since there can be more than on
architecture for a gen entity
* A completeVHDL designmustcontainatleastoneentity andatleastonearchitecturdor
that entity

Other major language elements

» Packages
» Like the class declaration for a C++ class
» Specify constants, data types, function prototypes, aliases, etc..
» Tell the rest of the wrld hav to use the functions declared in the related package body

» Package Body
* A set of functions/routines/circuits you can put into a library for reuse

» Configurations
» Specify which architectures go with which entities, etc.

Levels of Abstraction (styles)

* Behavioral
» Performance descriptions
» Test Benches
» Sequential Descriptions
» State machines

You canimply registersandregistertransferausingbehaioral languagebut thereis no guarantee
the circuit will work exactly as you wnt it to. Altera can handle some bebgal constructs

» Dataflov (RegisterTransfer Leel)
» State machines
* Raister transfers
» Selected assignments

* Arithmetic operators
* Boolean equations

Dataflav is often the highest¥el that synthesis tools can handle

e Structural
* Boolean equations
* Hierarcly
» Physical Information

The structural representation is considered a netlist representation of the circuit

Ditched the rest of this and just did atample of using dataflo (case 1) and beti@ral model-
ing (case 2) to demonstrate a 3-bit priority encoder for the wm@minput circuit

Behavioral Modeling

Think about circutis as implementing an algorithm (sefev= hardwre)
* Process statement is theykthings within a process are implemented sequentially
* You can write a general algorithm within a process
* A process isxecuted continuouslyout must hae some sort of ait condition
» Until the wait condition is reached, you can think about all processsitng in the
same delta-t.
* Within a process you can describe an algorithm

Designing combinational logic using asynclanous assignment statements

Saywe wantto implementour own XOR gate.In VHDL we justdescribehefunctionof thecom-
bination circuit just lile we were writing a Boolearxgression

entity myxor is
port(A, B: in std_logic;
F: out std_logic);
end myxor

architecture dataflowl of myxor is

-- this implements an xor gate

F <= (A and (not B)) or ((not A) and B)
end dataflow1;

architecture dataflow2 of myxor is
arl, ar2: std_logic;

arl <= A and (not B);
ar2 <= (not A) and B;
F =arl or ar2;

end dataflow?2;

Designing combinational cicuits using a piocess statement

In a process statement we can writpressions lik if statements, which mek coding some
combinational logic easer
entity FourToTwo is
port(inLines: in std_logic_vector(0 to 3); -- eight bits of input
outLines: out std_logic_vector(0 to 1); -- three output bits

inactive: out std_logic);
end eightToThree;

architecture behavioral of FourToTwo is

process(inLines) begin

if inLines(0) then
outLines <= “00";
inactive <= “0";

elsif inLines(1) then
outLines <=*"01";
inactive <= “0":

elsif inLines(2) then
outLines <= "10";
inactive <= “0";

elsif inLines(3) then
outLines <= "11";

inactive <= “0";
else

outLines <= “000";

inactive <= "“1";
end if;

end process;
end behavioral,

FOO E21 Lecture #9

IEEE 1164 Data Types
std_ulogic

» Treat it like a bit, ‘0’, ‘1’ are what you will use most of the time
std_logic

» Treat it like a bit, ‘0’, ‘1’ are what you will use most of the time

» Differentisthatstd_logicis “resolved”, whichmeanghatthereis a matrix thatdefineshe
output if two bits of type std_logic are traling over the same wire
std_logic_ector
» Vector of bits, need to declare it with the range of the indices and order left to right
* A:instd_logic_ector (2 davnto 0);
e B:outstd _logic_ector (0 to 7);
» Access by A(i) or B(i)
» Conceptuallythe range labels the bits left to right

Combinational Logic Design Components

Given a basic understanding of VHDL, we camrook at hev we can represent MSI compo-
nents as logic, netlist, dataflpand behaoral elements.

MSI design components are functions thateharoze to be useful in the design of digital circuits
» Basic liilding blocks for interdéce circuits, control logic, and medium conxtie circuits

Read sections 5.1 and 5.2 on documentation and timing ana tbkkon as appropriate

Aside: Rules for dnaing MSI circuit elements

* Inputs on the left

* Outputs on the right

* Inputs that are werse logic hee a lubble (or eerline)
* Outputs that are werse logic hee a lubble (or @erline)
» Power connections are not normally sho

Decoder

* Function
* Binary number as input
« One of 2 outputs is high
» With enable inputs, you can cascade decoders together to hagdtenNanrds
» Commercial binary decoders useatve logic on the output
* Logic diagram
» Each output hasxactly one entry in the truth table
» Each output has a unique ANRtg combination
» Enable is an additional input to each AN&Xe

* Netlist representation
» Entity and port statement

* component declarations in the declaration section of the architecture

* note: you hae to write the definitions for inand and3 as other VHDL files
* intermediate signal declarations
* port map statementes to instantiate eatb g

library IEEE
use ieee.std_logic_1164.all

entity VV2toddec is
port (10, 11, EN; in std_logic;
YO0, Y1, Y2, Y3: out std_logic);
end V2to4dec;

architecture structural of V2to4dec is
signal invl0, invlO: std_logic;
component inv port(l: in std_logic; F: out std_logic);
end component;
component and3 port(a, b, c: in std_logic; F: out std_logic);
end component;
begin
U1: inv port map (10, invi0);
U2: inv port map (11, invil);
U3: and3 port map (invl0, invl1, EN, YO0);
U4: and3 port map (10, invll, EN, YO0);
U5: and3 port map (invi0, 11, EN, YO0);
U6: and3 port map (10, 11, EN, Y0);
end V2to4dec;

» Dataflov representation 1
* Use the concurrentith statement to determine the outputs
» Change the port statement to use a std_logictov on the inputs and outputs
* Note the use olvhen othersto guarantee there are only 4 cases.

entity VV2toddec is
port (EN: in std_logic;
I: in std_logic_vector(0 to 1);
Y: out std_logic_vector(0 to 3));
end V2to4dec;

architectures dataflow of V2to4dec is
signal Yi: std_logic_vector(0 to 3);
begin
with | select Yi <=
“1000” when “00”,
“0100” when “01”,
“0010” when “10”,
“0001" when others; -- simplifies the logic by using only 4 choices
Y <= Yiwhen EN =1’ else “00007;
end dataflow;

» Dataflov representation 2 (hierarchical)
e Say you vant an easy ay to control whether the output logic is ðigh or actie low

* create a V2toddec entity which uses\actiigh logic (as abe)
» Use a port map statement to insert it into an entity whose inputs or outputs\aedoacti
» Control the logic leel switching at the highervel.

» Behavioral style representation 1
» Use a process, with a case statement and an if statement
* Note the use of when others to limit the number of cases to 4
* Note the inclusion of ¥in the sensitiity arguments to the process statement
* Theariables inside a process dbgeét their assigments until the process completes
» Thereforejt takestwo passeshroughthe procesgo getYi assignedo Y, andwe have
to male sure and puti¥n the sensitiity list so that the process gets called twice
» Could male the if statement a concurrent conditional assignment and accomplish the
same thing without héng to include Yin the process sensitiy list.

architecture behaviorall of V2to4dec is
signal Yi: std_logic_vector(0 to 3);
begin
process (EN, I, Yi) begin
case |l is
when “00” => Yi <= “1000";
when “01” => Yi <= “0100";
when “10” => Yi <= “0010";
when others => Yi <= “0001";
end case
if EN = ‘1" then
Y <=Yi;
else
Y <=*“0000";
end if;
end process;
end behaviorall;

FOO E21 Lectur #10

Combinational Logic Elements
Continue &amination of hw to design and ark with MSI elements

Decoder
Given the entity declaration:
entity VV2toddec is
port (EN: in std_logic;
I: in std_logic_vector(0 to 1);
Y: out std_logic_vector(0 to 3));
end V2to4dec;

We can na complete ourxamination of the &ys to represent the function

» Behavioral style representation 2
* Go all out and write an algorithm
* Note that each bit is only written once within the process (Altera requirement)
architecture behavioral2 of V2to4dec is
begin
process (EN, I)

variable i: integer range 0 to 7; -
begin A L
if EN = ‘1’ then B— —
foriin 0to 7 loop
if i = conv_integer(A) then A_T
Y(i) <= ‘1% B— [
else C_ | H- —
Y(i) <=0 D— jIA— L
end if; _ B | -
end loop; EN I
else —
Y <="0000"; A L
end if; B_| —
end process; —

end behavioral2;
What if we want a lager decoder?

» Cascade them using enable inputs
» If you hare an N-output decodeunse the enable inputs to get a 2N-output decoder
» If you hare an N-output decodense a 2-4 decoder to get a 4N-output decoder

Encoder

* Function
« 2"inputs, ag number of which may be high
* One binary number (n bits) as output, encoding the highest priority line that is high

* Most useful definition is bekaral
* Behavioral 1: use an if statement thajpeesses the priorities of the inputs

» Behavioral 2: use a for loop that loops through the inputs in order or priority

Note: with an encodedecoderand tri-state bffer we can
start to mak a lus and hs controller

* A busis asetof wiresthata numberof devicesmay

want to use ENC DEC
* Let the encoder handle all requests for the b

» Sendtheoutputto adecodethatcontrolsa setof tri- Dev 1 S
state liffers o
* The tri-state bffers control what goes on thas Dev 2
Multiplexer (MUX) Dev 3 B
« Function Dev 4—%

« 2"input signals

* ninput address

* enable signal

* 1 output, which is the signal indicated by the address

» Cool things you can do with a MUX
* Implement an arbitrary truth table for Mnables
* Use it as an implementation of ®RI (identical to a truth table)
* Makebig MUXs by cascadinghemusinganenablenputsandputtingtheresultsthrough

an OR a@ite
 Dataflav: Could hae one conditional assignment state-|1 |
ment (long) 12 —|
* Behaioral 1: case statement is a multe 13—

« Itis generally implemented as such when synthesiZéd |
to hardvare R |_ @7
AB C

* This is wly you want to mak your case statements

powers of 2, if possible [—
* Behavioral 2: cowert the address to an iger and inde :%]
into the input array to get the output 14 —

Demultiplexer L]

« Function AB C
* One input and one address as inputs
« 2" outputs, one of which gets the signal
e Same function can beecuted with a decoder with an enabddue

» Dataflov: one conditional case statement for each output

* Behavioral 1: case statement, one line for each address

» Behavioral 2: set all the outputs to 0, a@nt the address to an iger and set that output high
This is an alternate hus arrangement

* MUX controls what signal gets on thaswire
 DEMUKX controls where the signal goes at the other end
» Somehwv have to decide who gets to send the signal and who gets teadcei

FOO E21 Lecture #11

Combinational Logic Elements
More comple combinational logic elements

Comparators
An XNOR gate acts as a one-bit comparator: high if equal ilmot

» To compare multiple bits, we could cascade X@ieg and AND gtes (see belg
* This is the vay Altera would implement a for loop: unfolding the logic
» A faster vay is to compare multiple bits simultaneously and the OR the result

We could also do a cascade system to test for gribetiefiess-than

* Greaterthan: start with the MSB andosk dovn

» Less-than: start with MSB andonk dovn

* RealimplementationsiseoneAND gatefor eachcaseandthenanOR gateto seeif any of
the potential greater than/less than situations are true

Al
Bl
A
B2
A3
53 ﬁD@—} A >B?
Shifters/Rotators

We canuseDEMUXs ontheinputsto generate shifter/rotatorcircuit (right shiftershovn below)

* One DEMUX for each input
* Address of DEMUX indicates momuch to shift the input
» Each output is an ORate with inputs from the appropriate DEMUXs

11 12 13 14
| | | |
A __| A] A __| A __]
B — B —] B | B —

g v

o1 02 O3 04

Ripple Adders
The first combinational circuit we loeH at vas an adder

» Can mak a multiple-bit adder by cascading full-adders together
» [Each adder tas A, B, Cin, and outputs S and Cout

+ S=AXORB XOR Cin

 Cout=AB + BCin + Ain

Carry Lookahead Adders
Ripple-adders are sho signal has to propate

» Difficulty is the carry bit: use a circuit to precalculate the carry bits
» A particular full adder will generate a carry if itscvaddend bits are 1 (A,B)
* A particular full adder will propagte a carry if either of its twaddend bits are 1
 Ateachleel G,y =G + R *C;
* Gj =X *Yj: generate term
P =X + Y propagte term
* We can iteratiely expand this to get a twvlevel logic expression for the ith carry
e« C1=G0+P0*CO
e C2=G1+P1*C1=G1+P1*GO0+P1*P0*CO
* C3=G2+P2*C2
C3=G2+P2*(G1+P1*G0+P1*P0*CO0)
C3=G2+P2*G1+P2*P1*G0+P2*P1*P0*CO
e C4=G3+P3*C3
C4=G3+P3*(G2+P2*G1+P2*P1*G0+P2*P1*P0*CO0)
C4=G3+P3*G2+P3*P2*G1+P3*P2*P1*G0+P3*P2*P1*P0*CO
» [Each 4-bit adder circuit only tak 3 leels of logic to calculate the last carry
* Full binary adder is on pp. 437 ofakérly
* Note the use of INVEROR-AND logic, which is the dual of AND-OR-INVER
» This logic can be implemented inavayers of transistors, so it is @sf as oneaje
» Carry equations are slightly tefent: Ci+1 = Pi * Gi + Pi * Ci
» Same equation, though, because Piviags 1 if Gi is 1
» Allowsfactoring:Ci+1 = Pi* (Gi + Ci) (thisis sourceof theINVERT-OR-AND logic)

When you hild large (i.e. 32-bit) adders, you use carry-lookahead between blocks as well as
within a group

ALUs
MSI Arithmetic Logic Units are all purpose computational circuits: sakevigy pp. 439
» Shifting
* Rotating
» Bit-wise logical functions
» Subtraction
* Addition
ALUs generally hee 8, 16, or 32 functions the&an &ecute

» They will have carryin andcarryoutlinessothatmultiple ALU’ s canbe cascadedo han-
dle more bits of data

FOO E21 Lecture #12

Programmable Logic Devices

Circuits that use AND-OR combinations are common
» Can generate arbitrary truth tables using minterms
Programmable Logic Array: PLA

* N inputs and their werses at the firstvel

« P AND cates with all possible inputs at the seconeligP < 2Y)

* M OR gates with all possible inputs at the seconglléM = number of outputs)
* The AND and OR gte levels both hae fuses on all lines into eachtg

» Blow the fuses to program the circuit

Programmable Array Logic AR

* OR-gate array is figd (no fuses, fed number of product terms)

» Outputs can be inputs of one block can be inputs to another block

* AND gates can connect toyamput or the output of another block

» Output pins are bi-directional: one ANtg controls the direction of the pin
* Pin has a tri-stateuffer at the output of the ORate
* If the tri-state bffer is enable, the pin is an output
* Otherwise, it is an input since the ORg does not connect to the wire

» Diagram on pp. 341 of Wkerly

Generic Array Logic: GAL

 EEPROM controls the fuses
» Output polarity can be controlled by an XO&e on the output of each main O&tey
» fuse on the second input to the XO&eaywhich connects to ground
» if the fuse is blan, the XOR @te irverts the OR gte output
» Can be set up to do some sequntial logic as well by encoding a flip-flop out of NE&R g

Large Scale PLDs, of Comp{é°LD [CPLD]

» Altera MAX7000 family: thousands of logicages in blocks, or macrocells
* The chip number indicates Wwanary macrocells there are (e.g. 7128 has 128 cells)
» Electrically programmable
» Electrically erasable
» A “fitter” puts the designs on the chip

MAX 7000family is built from a setof macrocellghateachconnecto I/0O pinsandto aprogram-
mable interconnect array [PIA].

» Each macrocell is aA2 device with an output flip-flop that can be used or bypassed

* A macrocelicansendproducttermsto othermacrocellssothatasingleOR gatecanhave
up to 20 product terms in it

» The output of the ORale goes through an XORg so that the output can beearted

There are seeral fixed inputs to a MAX7000 that are globally distriied

* Two clock inputs
* One reset input

Field Programmable Gate Arrays [FPGA]

These are more complegeneral programmable logiculees than CPLDs, and are designed so
that state machines and arithmetic logic units are easy to configure.

FLEX10k family

From 10,000 to 250,00Gate equialents

Consist of Logic Array Blocks [LAB] and Embedded Array Blocks [EAB]

* LABSs consist of eight foumput lookup tables, each with a flip-flop on the output
» LABs are cascaded to thean be joined together to form full-adders, etc.

» EABSs consist of 2048 bits of memory that can be configuredferdift ways

* EAB inputs and outputs can come from or go to a flip-flop

All of the LABs and EABs are connected bywoolumn luses

Each LAB/EAB can route information between its adjacewsrand columns

Xilinx XC4000 family

From 2000 to 250,000ate equralents

XC4000 is a 2-D array of configurable logic blocks [CLB]

» Each CLB contains 2 fotinput lookup tables

* Each CLB has a flip-flop on the output

» Each CLB also has a 3-input LUT connected to the Zifgaut LUTSs, which allavs
functions of 5 or moreariables

» Each CLB can also sexas a 32x1 memory block (using both 4-input LUTS)

CLBs are inteconnected using “routing channels”

* routing channels ha different wires of arious lengths

Sequential Logic

Sequential logic circuits ka memory

Flip-flop: 2 NAND gates
What does this do?

S-R Flip-flop S
Bistable deice)
» Give starting alues to QQ

Assign \alues to S/R

Follow through the circuit

S = 1: sets the flip-flop to 1

R = 1: resets the flip-flop to 0

S = R = 0: holds the flip-flopalue) Q
S = R = 1: both outputs are 0, indeR
terminate alue if Sand R -> 0 Basic S-R
simultaneously

Ql

FOO E21 Lecture #13

Sequential Logic
Sequential logic circuits ka memory

Flip-flop: 2 NAND gates
What does this do?
* S-R Flip-flop
» Bistable deice
« Give starting alues to QQ
* Assign\alues to S/R
* Follow through the circuit
S = 1. sets the flip-flop to 1
R = 1: resets the flip-flop to O
S =R = 0: holds the flip-flopaue

terminate alueifSand R ->0
simultaneously

Useful Flip-flops
* Clocked S-R
* D Flip-flop

* JK Flip-flop
* T Flip-flop

Problem with basic flip-flops is that the
can change as long as the clock is high

* MasterSlave Flip-flop
» Two-flip-flops, with the clock
pulse iverted on the second
* Ouputonly change®nthefalling
edge

. D edge-triggered Flip-flop
pp. 215, [Mano 1991]
* Also, pp. 543 [Vekerly, 2000]
» Outputonly change®ntherising
edge

S = R = 1: both outputs are 0, indeR

)

Basic S-R

D=
CPk
R—| P —
Clocked S-R
D :
CP
DD_ Clocked D
| g: éi_
CR
J \ pr—
|—_/
Clocked J-K
T I__\
| J % Ei_
CR
[
|—_/

Clocked T

Ol

Ql

Ol

Ql

Q|

FOO E21 Lecture #14

Sequential Logic

State Machines

A sequential circuit can implement a state machine State Output -
» A state machine is aay of representing a * ‘
time/history dependent process
« Astate is a set ofariables that represent al|_> Next
of theknowledgeyou needin orderto predict : State ,
the net state of the systemgin a set of
inputs.

» State ariables are held in flip-flops
* Next state calculation is a combinational circuit
» Feedback loop from the current state
» Also depends upon the current input
» Outputs are combinational circuits with at least the stt@es as inputs
» Moore: output is only a function of the statgiables
* Mealy: output is a function of both the statgiables and the inputs

Designing a Sequential Cicuit
Define the task usingords.

Determine, if possible from the task description, whether your outputs should be a function of
only the state (Moore state machine), or a function of both the state and the inputs (Mealy state
machine).

Draw a state diagram

States are represented as circles

Directed edges connect the states

Inputs are list on the edges, as are outputs in a IN / OUT notation

There should be one edgeuaey each state for each possible inpariable combination

Assign state alues to the states

» Decide hav mary flip-flops are necessary (stat@rables)
» Decide hav to assign &lues to the states
e binary
e gray codes
based on output logic considerations
based on similar meanings
» use all 05 or all 15 for the initial state (reset state)

Set up a state table

* Inputs

e State alues

* Next state alues
e Outputs

Minimize the number of states in the state table/diagram

» Two states are the same if
» They produce the same outputs for the same inputs
* They go to the same westates (or equalent nat states) for all inputs

Select a flip-flop type

* Based on your requirements
» Based on which one is easiest to use
* Based on which one optimizes the circuit

Design the combinational circuits

* For the flip-flop inputs
* For the output

Draw the logic diagram anduidd the circuit.

Example: 1.Designastatemachinethatholdsa 1 valueontheoutputfor 1 clock cycle any time
three 05 are receied on a bit stream, with nwveralap between sequences of 3.

=

Has to be a Moore machine to hold the output

2. Createthestatediagramand
assign alues to the states 1 O 0

3. Create the state table and

minimize the number of

states (already done) 11
4. Select the kind of flip-flops
to use: S-R.
1
Input A B A B’ Output|| Sp Ra Sg Rg

Rl ol k| ol rl olrlo
Rl R Rl ol ololo
Rl Rl ookl rlolo
olo|o|r|l ol rlolo
ol r|o|r|l oo olr
o|lo|o|r|lolololo
olo|lo|alolr|l oo
Rl R Rl olalolala
olalo|r|l o o olr
Rl ol alol k|l alo

5. Calculate the logic equations for the output and flip-flop inputs
* The output is a function of only A and B
« O=AB
* The logic equations for the inputs to each flip-flop are functions of A, B, and |
« Sy,=TAB,Ry=IA+AB
« S3=TB,Rzg=IB+AB
6. Build the circuit based on the logic equations

Sequential Logic

FOO E21 Lecture #15

Characteristic Excitation Tables

Revisit the characteristicxeitation tables

Q

Q

S

R

Q

Q

= = O O

| O] k| O

| O+~ O

ol | O &

| | O O

| Ol k| O

R Ol k| O

R | O O

| Ol k| O

Ol | | O

R = O] O

= Ol »,| O

ool O

Ol | Q| Q

Use these tables to fill in the flip-flopaitation \alues in the state transition table.

Example: Timer circuit
Build a timer circuit that counts from 0 to 15 and outputs a hadrevon the 0, 10, and 14.

1. Has to be a Moore machine (only input is a clock)
2. State diagram is 16 states from 0 to 15ymg from one to the ne.
3. Build state table: states cannot be minimized

A B|C|D|A|B | C|D]JO]|h | Kaldk | |Kgldk | Kc|db]|Kc
o o0 o (0 jo |0 0 |2 11 |06 |d |0 |d |0 |d |1 |d
o o o0 1 jo |0 2 |0 0 |6 |d |0 |d 11 |d |d |1
o o0 11 |0 jo |0 17 |2 0 |0 |d |0 |d |d |0 |1 |d
o o0 17 |1 jo |1 0o |0 0 |6 |d J1 |d |d |1 |d |1
o 1 0 (0 jo |27 0 |2 10 |0 |d |d |0 |0 |d |1 |d
o 1 0 |1 jo 1z 2 |0 0 |6 |d |Jd |0 11 |d |d |1
o 1 727 0 jO |27 17 |2 0 O |[d |d |0 |d |0 |1 |d
o 1 27 1 j 0o (0 |0 0 J1272 |d |d |1 |d |1 |d |1
1 |0 0 O |21 O |0 (171 (6 d (0O |0 (d |0 (d |2 |d
1 0 [0 2 |2 0 |27 0 |6 |d (0O |0 |d |1 |d |d |1
1 {0 2 0|2 0 j7 1 1 [d (0 |0 (d |Jd (0 J1 |d
1 |0 j1 2 |2 12 |0 0O |6 |d (O |1 |d |d |1 |d |1
1 |2 0o 0 |21 2 |0 1 (6 d (0O |d (O |O (d |12 |d
1 |2 0 2 |1 12 |7 0 |6 |d (0O (d (0O |1 |d |d |1
1 j»2 j» 0o 2 2 |7 1 1 [d (0O |d (0O |Jd (0O |1 |d
1 j2 |1 12 (0 (O |O 0 |6 |d (1 [d (1 |d |1 |d |1

4. Select J-K flip-flops for this circuit.
5. Calculate the logic equations:
o 'JD = KD =1
* J=D,Kc=D
 J=CD,Kg=CD
« Jy=BCD, Ky =BCD
- O=ABCD+ACD
6. Build the circuit

Useful Sequential Cicuits

Simple Registers
A set of D flip-flops with the load line being the clock pulse

Need logic attached to the clock pulse to enable/disable the load feature gidtes re

* Usually a system will hae a master clock
* We want delays in clock to be minmal at best
» Logic between the clock and the flip-flop inputs delay the system

SR flip-flop reyister with parallel load and clear

» Load signal goes through after
* Reduce thedn-out seen by other circuits
* Inputs to SR go through ANDages with the load signal
Clear signal goes directly to the FF clear input
* Rajister clock goes through arverter to decrease the load on the master clock
* Flip-flops change state on thaling edge of the master clock

D flip-flop register with parallel load and clear

* When load line is high, the inputs are ANDed with the load line t@dhe D inputs
* Whentheloadlineis low, theD outputsareANDed with theinverseloadline to drive the
D inputs
» D flip-flop valuemustbefed backaroundin orderto maintainits valuewhentheload
line is lowv because there is naawto tell a D flip-flop to maintain its lasale

Example: ROM and a Register

If we have a lage truth table, we mayamt to implement the circuit with®M and a rgistet

« 2Nstates

* Given a truth table with I inputs, N stateriables, N net state alues, and M outputs
« Create an N + | input®&M (2V*' words) with N + M outputs

* Feed N of the outputalues back into the gester at each clockycle

» Outputs come directly from thedm/

» 2-chip circuit implementation of aevy comple& state machine

» simple uCode controller for a processor

FOO E21 Lectur #16

Useful Sequential Cicuits

Shift Register
Bi-directional shift rgister with parallel load

PonNE

* Ragjister can shift theatues left one bit, right one bit, load in parallel, and maintain
* Raister also has a parallel clear input
* You can implement one using D flip-flops and a MUX for each bit.

Clear control to clear theggster to O

CP input for a clock pulse

Control lines: 00 = maintain, 01 = load input, 10 = shift left, 11 = shift right
N input lines, as well as left and right input lines

Use MUXs on the D flip-flop input and V&2 input select lines:

Clear is liffered
Clock is irverted

Counters

A counter is a r@ster with an incrementer circut on each bit: half-adder

* It's like adding O to the currenalue with a carry-in
* An XOR ate handles the nevalue of each bit
* An AND gate handles the carry profeigpn
* You can do carry-lookahead to speed things up

To male an up-dwn counter you use a half-adder subtractor

* Add a direction input D: 0 = count up, 1 = countvio

* Add an enable input E: 0 = ddrchange, 1 = foll direction input
* New bit value is still an XOR gte for both directions

¢ New carry \alue is G,.; =DQ,C; + DG;C;

« Enable input is the @nput

To male a presetable up-dm counter you use:

* HAS for each bit
* load inputs
* a2-1 MUX to handle the loading @ounting

BCD counters

» Set up circuitry so that instead of counting to 10, it loads O after reaching 9

» To effect an up-davn BCD counteryou want to load either 0 or 9 upon reaching 9 or 0.
* Use a 2-1 selector for each bit of the load inputs to load either O or 9.

* Have the load go high when the outputs are either 0 or 9 in the appropriate direction
» Have the direction input specify whether to load the 0 or 9 at tkiechark

* This requires a synchronous load in order twki

* With asynchronous load youveto do other things

* AND theclockanda10 outputtogetherandfeedit into theloadsignalfor countingup
* AND theclockanda 15 outputtogetherandfeedit into theloadsignalfor goingdown

Ripple counters

* You can mak a \ery simple counter using T flip-flops

* Connect the erse output of each bit to the clock of thetrist

» Have an enable line go in parallel to each T input (1 = enabled, 0 = hold)

» Connect the clock to the first bit

* Ripple counters are sip but easy to bild

* You can mak faster ripple counters by using blocks of 4 bits and calculating the carry
between chips

Timing signals
You can use a counter as a timer

» Select a flip flop of the timer as an output taidk the clock frequerycby a paver of 2
* On a synchronous counter (‘163), set it up so that when it reaches a carain vesets
or loads a n& value on the n« rising edge.

Ring counter
» A set of flip-flops where a 1 goes around in a circle
2N stage pulse timer

« N-bit counter connected to a decoder to credtstaggered timing signals
» Commonly used in computer systems to contrdeckit stages of operation

Duty ¢ycle

* The duty gcle of a timer is the percentage of time it is at a higtage
* 50% duty gcle is equal time on andfof
» 25% duty gcle means a pulse of duration 1 within a period of duration 4

Example: Serial to Farallel Converter

Build a circuit that ta&s a clock and a bit stream as input. In the idle state, the bit stream input is
low, and the circuit waits for input. Upon receing a high bit, the circuit then collects thexne
eightbits (data)into aregisterandanoptionalninth bit (parity) dependingipona parity flag. The

clock signal after receing the last bit (8th or 9th), the circuit should output a high signal indicat-
ing data is ready

FOO E21 Lecture #17

Useful Sequential Cicuits

Timing signals
You can use a counter as a timer

» Select a flip flop of the timer as an output tadk the clock frequerycby a paver of 2
* On asynchronous counter (‘163), set it up so that when it reaches a cadaiit vesets
or loads a n& value on the nd rising edge.

Ring counter

* A set of flip-flops where a 1 goes around in a circle

2N stage pulse timer

* N-bit counter connected to a decoder to cre%ltstaggered timing signals
» Commonly used in computer systems to contrdeckiht stages of operation

Duty ¢ycle

* The duty gcle of a timer is the percentage of time it is at a higtage
* 50% duty gcle is equal time on andfof
* 25% duty gcle means a pulse of duration 1 within a period of duration 4

Register Files
For fast access of a small number djisters (cache, gester files in a CPU)

2D array of flip-flops that each Vethe follaving inputs

* read enable

* write enable

* input

* clock

D = WE * Input +WE * Q

Output is a 3-stateuffer with output enable = read enable line

Ragister files can often read dwegisters perycle and write to tw registers perycle

Decoders determine whichgister (rav) to read/write, with one decoder for each operation.

RAM
Static (SRAM)

Information stored in flip-flops

* Faster

* Valid as long as the peer is on

» Takes more chip space per bit (at leastAND gates (8 transistors) per bit)
» Typically used for rgisters and cache

Dynamic (DRAM)

Information stored in capacitors

» Slower

* Chage dissapatesery fav milliseconds

» Takes less chip space per chip (one transistor per bit)
» Typically used for main memory on computer systems

RAM read/write process

1. Chip select

2. Decode the address

3. Activate the appropriate locations in memory

4. Write data to the memory cells / Interpret and output data

With each bit you need to be able to get:

* Input

e Output

* Read/write
e Select

Like in the M, a decoder selects thew (N inputs, ¥ output lines)
We also need to be concerned about timing

* Address decoding tak time
» Chip selection tads time
* RW select taks time

Timing pattern for reading: gerned by CS and OE inputs

e Put address on the address lines

» Set chip select [CS] and output enable [OE]

* Output enable time determines when the data is ready to be read

* Address can be changed withoutatfing the output for a certain amount of time
e output hold time

» Chip deselect

* Outputs are still good for a certain amount of time
* output disable time

toutput hold

Address LD T
Chip Select [CS] - ..~ QNN 2
Output Enable [OE]

Output Data

TSRS KSR
________________ %070 20702070 %% %0.%0.%0 %0 %026 % % %% %,

toutput enable

5

RAM

FOO E21 Lecture #18

Timing pattern for reading: gerned by CS and OE inputs

Address s

Chip Select [CS]
Output Enable [OE]
Output Data

Put address on the address lines

Set chip select [CS] and output enable [OE]

Output enable time determines when the data is ready to be read

Address can be changed withoueating the output for a certain amount of time
* output hold time

Chip deselect

Outputs are still good for a certain amount of time

» output disable time

toutput hold

toutput enable

Timing parameters for read operations

taa: Access time from address. This isshlong it tales for the data to beald given a
new address on the address lines (and assuming CS and OE are enabled)

tacs Accesgime from chip selectassumindOE andaddressThisis usuallythesameas
tan, but not alvays (enables the decoder signal)

toe: This is hav long it tales for the 3-state outputifbers to leae the high impedence
state once OE and CS are both asserted. This is usually lesgtgaamt can be used to
gueeze just one more bit of data on tbhe.b

toz: Output disable time. AU need to knwe this to maximize the throughput on thesb
ton: Output hold time. This tells you imdong the output data isalid after you change
theaddressThis canalsobe usedto maximizethroughputon abuswhenaccessingnulti-
ple memory locations.

Address mmm

Chip Select [CS]
Output Enable [OE]
Output Data

SBEERS

Thediagramabove maximizeshroughputDatais readatthesamplingpointsshaovn. This shavs

a single memory chip pvaling four spearate memory locations. At the end of thsthba nes
memory chip is selected, and the address gighed to it before the last chunk of data is read

from the current memory chip. Note that the output enable timing controls when the chip is put-
ting information on the us.

SRAM Diagram: Vékerly pp. 857

Do Dy Do Dn-1
Lo Lgemy Loy 2 wordo
WR WR WR WR
Address—»| DEC
e (e e e wordwer
WR WR WR WR
WE_L N
CS_ L J
OE_L) T Out
Qo Q1 Q> On-1

« WR=WE_L*CS L
« IODE=OE_L*CS L

Timing pattern for writing: gcle governed by CS and WE inputs

* Put address on the address lines (address setup time)
* Address hold time
» Select chip [CS] and set write enable [WE]
» Data is put into the flip-flops on thalling edge of CS
* Assert data
» Data needs to be stable befaatlifig edge of CS (data setup time)
» Deassert CS andVRselect
* pulse width of CS and\R need to be stitiently long (write pulse width)
* Data is read into flip-flops
* Deassert address

Why falling edges in RAM chips?
* RAM chips use latches rather than edge-triggered flip flops
» Edge triggering requires, in essence flip-flops.
* This means the data to be written must be stable for a time period befakitigecstige
» Level-triggered flip-flop
» Level controlling the flip-flop is a combination of the chip-select and the write signal
Timing parameters for the write/cle
* tpg Address setup time before write. All of the address inputs must be stable for this
amountof time beforebothCSandWE areassertedptherwisethe datamay bewritten to
the wrong place.
* tan: Addressholdtime afterwrite. All of theaddressnputsmustbestablefor thisamount
of time after either CS or WE are deasserted, otherwise the data may be written to the
wrong place.
* tcswi Chip-select setup before end of write. CS must be asserted at least this long before
the end of the writeycle in order to select a cell.

* typ Write-pulse width. WE must be asserted at least this long to reliably latch data into
the selected cell

* tpg Datasetuptime beforeendof write. All of thedatainputsmustbe heldstableat least
this amountof time beforethewrite cycle ends.Otherwiset maynotbelatchedcorrectly

« tpy: Data hold time after the end of the writele. All of the data inputs must be held at
least this amount of time after the writecke ends.

RAM is never oganized lile a rgister file in a 1D arrayinstead, it is @anized so there is awo
and a column combination to access a particular bit, ideally each with N/2 input bits.

You can do this using woand column decoders, or you can do this usingvadexoder and col-
umn multiplexors (similar compleity to decoders). Thexample belar shaws a possible layout
for a 16K x 4 memory chip.

A6-A13 8 to 256 256 x 64 | 256 x 64 | 256 x 64 |256 x 64
= Decoder—» Array Array Array Array
v v y v
AO-AS 64tol1 | |[64tol | |64tol | |64t01

For digital design, we often design Memory circuits from smaller components

» Use higher address lines to select the Memory chip
* Use laver address lines to get the data

FOO E21 Lecture #19

Synchronous Circuits: RAM

SRAM Performance
Asynchronous SRAM: 1999

» Large SRAMs hee 4 or 9 Mbits
« 4M = 256K x 16, 512K x 8, or 1M x 4 bits (7.5-10ns access times)
* 9M =512K x 18 (7.5 - 10ns access times)
* Fastest SRAMs hee 4Kbits
1K x4 bits
* 2.7ns access time
» Example: from IDT (Intgrated Dgice Technology) (wwwdt.com)
* 64K x 16 (1M) asynchronous static RAM comes in 10, 12, 15, and 20ns timings
* 32K x 32 (1M) pipelined brst synchronous static RAM comes in 5, 6, 7ns timings
* 512K x 18 (9M) Synchronous flethrough SRAM comes in 7.5, 8.5 and 9.5ns times
» Example: from Cypress (wwaypress.com)
» 1024k x 32 (4M) asynchronous static RAM has a 12ns access time

Synchronous SRAM: 1999

» clocked interfice for control, address, and data
» allows for straightforvard pipelining of the process and maximum throughput
* can be used in trst” mode where consecuti addresses are read or written
* no need to send aweddress (internal addresgister increments)
* you get nev data on each clockscle
* SSRAMs areailable with clock gcles as high as 200MHz
* Assume you can access 32 bisle
» 800 MB/s throughput
* This is still a &ctor of 4-8 slaver than the processor

DRAM
A transistor and a capacitor

* High densities:dctor of 64 x SRAM densities
» Values need to be refreshegts 60ms or so, refreslyae tales 80ns or so
* Chip is still available for R/W 99% of the time

DRAM timing someavhat diferent than SRAM timing

* Asynchronous DRAM timing is strange, and uses both the risingadimdjfedges
* Synchronous DRAM timing is simpler andmaominates the PC memory matk
* DRAMSs generally tak the rov and column addresses sequentially

* Row address actates a “bank”

e Column address grabs the appropriatiei®(s)
» DRAMSs tale much longer to read than SRAMS

* 50ns - 100ns is typical for a single readle

e 20ns Rav-column delay

* 20-30ns column-output delay

» SDRAMSs help because the operations are pipelined and you can rumsti thode
* Burst modes are approaching 166MHz, or a 6ns clock

* Examples: http://wwwmitsubishichips.com
* Synchronous 64M DRAM: 46-54ns fromwactvation to getting the first datahe

This is wly you hare a memory hierargh

+ CD-ROM

» Hard Drive

» Hard Drive cache (DRAM or SRAM)

« DRAM

* SRAM

* Internal rgisters of the CPU

ROM: Read Only Memory
In structure ®Ms are similar to RAMept thg dont need the flip-flops to storales

Basic ROM
Also called a Mask &M because it is manaétured with the information on it

* Manufacturer uses a mask to control what bits are written into@iéd R
* Design time: about 4 weeks

Diode-based RM design (bipolar technology) v
CcC

* N bit Address, N = X + Ywith X and Y as equal as possible
» Decoderselectsaarow basednthe X highestaddresdits andpullsit low
» Diodes connect selected columns to eagh ro
» Each column is connected to Vcc through a resistor
» If adiodeconnectsacolumnandarow thatis pulledlow, thenthecolumn
is pulled lav
* The columns feed into multipters that select a column based on theYoaddress bits
* Output is a single bit for each multipkr

Transistorbased ®M (MOS technology) Ve

* An NMOS transistor connects each column to ground

* The aqte of the transistor is connected toa ro

» Decoder selects awoand sets it acte-high

* A high transistor connects the column to ground, pulling the column lo
* 10-200ns access time

PROM
Programmable @M

» Bipolar technology

» The circuit is lilt with each column connected to eactvithrough a diode
* Afuse connects the diode to the column

* The user can bl fuses (just once) to program the chip

* < 100ns access times

* Design time: 10-50 us/byte

EPROM
Eraseable programmabl®©R]

» Floating @gte technology
* A transistor connects each column (drain) to ground (source)
» A capacitor sits between thew@nd the gte

» To program a I bit, apply a high eltage, which stores clge in the gte capacitor

* Toerasat, exposethechipto UV light, which breaksdown the capacitomaterial(dielec-
tric) and lets the chge escape

» EPROMSs store 70% of their chge for at least 10 years

* (Note: most PRMs are EPRMs without ag lid for erasing them)

EEPROM
Electrically eraseable programmabl®R

* Uses thinner material as the dielectric for tagegcapacitor

* Gate can be erased by applying gatee chaging wltage to the gte
» Limited number of erases: ~10,000 per bit

* Flash EP®Ms: erasing only happens indarblocks

» Use: configuration memories for computers

ROM configuration & timing
Configurations

* Inputs:
* Output enable [OE] line (3-stateffers on each data output)
* Chip select [CS] line
» Pair are ANDed together to control the 3-staiéfdrs

» Connection to microprocessor
* ROM is often set up as a high address space
* When the high N address lines are all asserted, then acce€3Nhe R
* Feed the rest of the address lines to tO&/R
» Feed the microprocessor READ output to the OE input of @kl R
* Have a MUX select and control the CS line if yowé&anultiple ROM chips
* CS line de-asserted also tends to set the chip intawvarqalmwn mode

* Timing Parameters
* taa:Access time from address
* tacg access time from chip-select
* tog access time from output enable
* 1oz output disable time
* top: output hold time

* Process
» Processor asserts the address, which sets the chip select and starts the access process
* Time passes by
* Processor asserts the READ line (OE)
» Data appears on the output lines
» Processor de-asserts READ, address

FOO E21 Lectur #20

Algorithmic State Machine Design

Algorithmic state machine design is a method for designing data processing circuits
Principles

» Specify the data processing task as a harewlgorithm that consists ofgister transfer
(information transfer) operations and a sequencing mechanism

» Separate the design of data processing logic and control logic

* Gives the designer aay to graphically indicate timing and processing actions

Building Blocks

» State bors (square)

» each state box corresponds to one state, and one state encoding

» the state boas indicate which output signals are asserted during that state

» the state boas indicate rgister transfer operations that occur during that state

* the deéult value of a ariable is 0 in ay state for which it is not otherwise specified
» Decision bors (diamonds)

» Each decision box depends upon one Booleaiable: two exit paths
» Condition boes (wvals)

» Theconditionboxindicateswhatoutputsignalsor registertransfershouldtake place

along a conditional path.

ASM Blocks

» A state and all of the folleing decision and conditional bes form a block

» All outputs of a state appear just after the rising edge when the gjate be
* Outputs are a function of the statiables

» All register transfer operations occur just after the rising edge when the state ends.
» Setuptimeis duringthe state andtransfervaluesmaybe dependentiponstateoutputs

Designing the Data Pocessing Unit
ASM statesandconditionalblocksprovide all of theinformationnecessaryo createthe datapro-
cessing unit(s).

» Assume the control section is a black box.

» Assume a single line out of the black box for each control signal
» Data processing unit should be designable by ohserv

Designing the Contol Unit

There are numerous methods you can use to design the control unit.

Design by standard state machine techniques

» Corvert the ASM control flov to a state machine
» Build the state transition/output table
» Design based on the transition/output table

Design by using a flip-flop ér each state
» Corvert the ASM control flov to a state machine
» Use one flip-flop for each state in the state machine

» Designdirectly from thestatemachineby ANDing theincomingconditionsto eachstatewith
the state thecame from

* When using a ggster to hold the flip-flopalues:
* Invert the logic coming out of the first flip-flop so that when tlygster is cleared at star-
tup, the first flip-flop has an outputlue of one
* Invert the logic coming into the first flip-flop so that it represengatie logic

* FPGA synthesis algorithms &ko use the “one-hot” method of state machine design
* Scan the case statement for all conditions coming into a state
» Create the appropriate AND-OR tree for each state F/F

» This also helps the synthesis algorithm design the data unit
» Since there is a signal line for each state, the data trampiessions are easy to design
Design with decoders
To simplify output and inputariables that rely on the current state, we can use a decoder at the
output of the state machine where a single line represents each state.
Design with multiplexers
We can design with multipkers by using them to calculate theingtate alues
» The output of the current statgyigter is connected to the selector inputs of the MUX(s)
* The output of the MUX(s) is connected to the staggster inputs

* The MUX(s) inputs are determined by the inpatiables and the control flo
» Create a table shang all current state -> nestate transitions
» List the diferent input @riable combinations ralant to these transitions
* The MUX input for a particular state bit is the sum of the 1 ternsnga state

Example

Design a circuit to recognize the nomedapping string 0110 in a bit sequence.

> Idle —p Seen0 Seen 01 Seen 011
1 0 0 1 0 1
1
0 0

1 | Seen 0110
Output 1

Flip-flop per state design

Put a decoder on the output of the staieables so there is one control line associated with each
state. Then for each state AND together the incoming transition conditions with the appropriate
state controls signals.

SIS0 STS TS, TS, T
L L]

S11 S21 S31

SO S1 | S2 | S3 S4

Mux design
Use binary labels for each state and feed the state information to a MUX address.

Table 1. Example MUX Design &ble for 0110 bit string recognition problem

@ | 01 | @ | oo | or | Q2 | inputs '\g”(;‘ '\gulx '\guzx

0 0 0 0 0 0 |

0 0 0 0 0 1] 0 0]

0 0 1 0 0 1]

0 0 1 0 1 0 | 0 |]

0 1 0 0 0 1]

0 1 0 0 1 1 | 0 | I+l =1

0 1 1 0 0 0 |

0 1 1 1 0 0]] 0 0

1 0 0 0 0 0 |

1 0 0 0 0 1] 0 0]
=

MUX (3->8) MUX (3->8) — MUX (3->8) Q1

FOO E21 Lecture #21

VHDL State Machine Design Echniques
The standard structure of a state machine is:

» Declare a stateaviable/rgister in the architecture
* If reset then put the state machine into the reset state
» Elseifitis arising edge
» Execute a case statement based on the curaére of the stateariable
» Within each case, test the input conditions and update the state and atighles

The standard structure requires you to specify the binary state latelsaiY also ge the syn-
thesizer the task of assigning state labels by defining an enumerated type.

» type SATE_TYPE is (Initial, seen0, seen01, seen011, seen0110);
* Inthe case statement, use the state names rather than hil@sy v

A more radical departure in VHDL design is to use records (gatg®) to eplicitly store the
statetablein aVHDL program.Thefollowing is a statemachinethatrecognizeswo consecutie
0’s or 15 in a bit string. This state machine is a Mealy machine implemented using three states.

entity two_consecutive is
port(clk, r, X: in bit; Z: out bit);
end two_consecutive;

architecture fsm of two_consecutive is
type state is (s0O, s1, s2);
signal fsm_state: state := s0;

type transition is record
output: bit;
next_state: state;
end record,;
type transition_matrix is array(state, bit) of transition;

constant state_trans: transition_matrix :=
(sO=>(‘0' => (‘'0’, s1), ‘1’ => (‘0’, s2)),
(s1=>('0'=> (1", s1), ‘1’ => (‘0" s2)),
(s2=>(‘'0'=> (‘0’, s1), ‘1" => (1", s2)));
begin
process(r, x, clk, fsm_state)
begin
if r ='0" then -- reset
fsm_state <= s0;
elsif clk’event and clk="1" then -- clock event
fsm_state <= state_trans(fsm_state, X).next_state;
end if;

if fsm_state’event or x’event then -- output function
Z <= state_trans(fsm_state, x).output;
end if;
end process;
end fsm;

This program is our 0110 recognizer implemented as a 5-state Moore machine

entity recognizer is
port(clk, r, x: in bit; Z: out bit);
end recognizer;

architecture fsm of recognizer is
type state is (sO, s1, s2, s3, s4);
signal fsm_state: state := s0;

type transition is record
output: bit;
next_state: state;
end record,;

type transition_matrix is array(state, bit) of transition;
constant state_trans: transition_matrix :=

(sO => (‘0' => (‘0’, s1), ‘1’ => (‘0’, s0)),
(s1=>(‘0' => (‘0’, s1), ‘1’ => (‘0’, s2)),

(s2 =>('0'=> (0", s1), ‘1’ => (‘0’, s3)),
(s3=>('0'"=> (0", s4), ‘1’ => (‘0’, s0)),
(s4 =>('0' => (‘1’, s1), ‘1’ => (1", s0)));
begin
process(r, clk)
begin
if r =0’ then -- reset
fsm_state <= s0;
elsif clk’event and clk="1’ then -- clock event
fsm_state <= state_trans(fsm_state, x).next_state;
Z <= state_trans(state_trans(fsm_state, x).next_state, x).output;
end if;
end process;
end fsm;

Communication between deices

I/O Configuration for a computer

* Memory hus (Proprietary)

* Main peripheral bs (PCI / SCSI)
» Secondary peripheralb (ISA)

» Parallel port

e Serial port

« USB
* Firewire
+ Ethernet

On the computer end of things, each I/O port hasaits rotocol for communication

FOO E21 Lectur #22

Communication between deices

I/0O Configuation for a computer

* Memory lus (Poprietary)
* Main peripheal bus (PCI / SCSI)
» Secondary periphat bus (ISA)

» Parallel port
e Serial port
+ USB

* Firewire

* Ethernet

On the computer end of things, each I/O port hasaits rotocol for communication
An 1/O port will generally hae the follaving information

» Data r@jisters
* Might have luffers associated with them
» Often mapped to memory locations or vitual files (Linux)
» Control rgisters
» Specify the configuration of the I/O unit
e Transmission speed
» Communication protocol
e Status rgisters
» Specify the state of the 1/O unit
» Data ready
 Data sent
* Errors

General models of communication

Strobing

* One unit controls the interaction
» Sending information

» Strobe actie indicates unit has information to send

» Strobe and data go inaati after some period of time

* Has to vait as long as the skest deice before remang the data
* Receving information

» Strobe actie indicates unit ants some information

» Data is read after some time period

» Strobe goes inaci after the data has been read

* Has to vait as long as the siest deice before reading the data
* Problem: you hee no idea what the otheruee is doing

Handshaking

* Both units communicate their readiness
* Sending information

Sending unit sets strobe/request\acto indicate the data is ready
Receving unit sets reply high to ackwtedge it has receed the request

» Sending unit sets strobe/request ingctd indicate it is about to rewm®the data

» Receving unit sets reply inacte to indicate it is ready for another transmission
* Receving informaiton

* Receving unit sets strobe/request &etto indicate it \ants some data

* Sending unit sets reply ao#i after it has put the data on the data lines

» Receing unit sets strobe/request inaetafter it has read the data

» Sending unit sets reply inagdi when it is ready to rea@ another request

Handshaking between state machines
» State machines are a simple method of controlling communication.

Parallel Communication
Centronics mode

* One-way communication controlled by the host

* Uses the 8 data lines and a strobe

» Peripheral has auy line and an ack lineubthey may not be ackwaedged by host
* Process

Host places data on the data lines

Host checks if bsy line is lav (peripheral ready?)

Host asserts nStrobe (aetilow)

* Host de-asserts nStrobe

* Peripheral may assentigy/ack lines while reading the data

Nibble mode

* One-way communication from the peripheral to host
* Sends 4 bits at a time through the statgsster input lines
* Process
* Host signals readiness by setting HostBusy lo
» Peripheral puts the first nibble on the four input lines
» Peripheral signalsalid data by asserting PtrClkWo
* Host sets HostBusy high until it is ready for thetrrebble
* When host sets HostBusywagain, peripheral repeats process for second nibble

EPP: Enhanceddrallel Port mode

* Two-way communication using bi-directional data lines
* Achieves 500kB to 2MB data rates
* From the hosts point of we it just involves a write to the EPP data port
* Process for a data writgde
* Program writes to the EPP data port (port 4)
* The nWrite line is asserted and the data is output to the parallel port
* The data strobe is assertedM)since nVAIT is asserted by
* The port vaits for the ackneledge from the peripheral (MWT de-asserted)
* The data strobe is de-asserted and the FEIE ends
* nWAIT is de-asserted by the peripheral to indicate that tkeayele may bgin
* Process for an address/command write is the same

ECP: Extended Capability Port

» Standard includes run-length encoding compression
* Also a bi-directional communication protocol

Negotiation

* Devices that are compliant with the IEEE 1284 standard (which includes EPP/ECP) must
be able to ngotiate what mode to use and what ID aicke might hae

Serial Communication
Common method of communication

» telephones

* motor control systems

* peripheral communication
* bandwidth is limited

Methods of serial communication

* Simplex mode: information flews one direction only (2 wire communication)
* Radio/TV are ramples
* Half duplex mode: information flevs both directions,ut only in one direction at a time
* Old-modems
* Requires some turnaround time to switch directions
* Need 3 wires to hee a control line
* Full-duplex mode: information fivs both directions simultaneously
* Requires either 3 wires, or noreslapping frequencbands
» Synchronous communication
* Both the transmitter and regeihave clocks that are at the same speed
* Aregular timing signal is used taekp the clocks synchronized
* Asynchronous communication
» Transmitter and rece2r may hae different rate clocks,ui an agreed upon data rate
» Information is only broadcast when there is information to send
» Format of the message indicates when there is informatiomnayri

FOO E21 Lecture #23

Serial Communication

Methods of serial communication

Simplex mode: information flows one dation only (2 wie communication)

Half duplex mode: information flows both ditions, It only in one diection at a time
Full-duplex mode: information flows both ditions simultaneously

Syntironous communication

Asyntironous communication

Asynchronous communication potocol

Start bit (0) (opposite of idle line)
Character bits (7 or 8 of them)

Parity bit (1)

Stop bit (1-2 of them) (equal to idle line)

Synchronousgransmissioroesnot usethe startandstopbits, but mustusetiming signalsto keep
the bits synchronized to the clock

Example asychonous recever
Recever is based on a$t clock

Process initiates on a start bit assertion, sample time is set to be in the middle of a bit
Character bits get read in the middle

Parity bit is read

Recever indicates to host that data is ready and resets back to the idle state

Sensing & A/D interfaces

Digital circuits are ery nice, because théave a natural bffer against noise

It takes a lot of noise to send a zero to a one, or \écsav
We have straightforvard digital means of detecting and correcting single bit-flips

The world is continuous

How do we get from the analogowd to the continuous ovld?
We digitize it/quantize it/corert it to information

What can we measure?

count

» fingers, toes, ticks
length

» reference stick
voltage

» reference zener diodes

Counting and gltages are the most useful for us to measure

An oscillator can prade a time-arying signal that can dwe a digital circuit (be con-
verted to a clock)

A voltage can be ceomrrted to a set of bits representing édue relatve to a range

Keywords

Precision: number of significant digits in the result

Accurag: how close you are to the trualue

Sensitvity: what is the smallest change you can sense reliably

Resolution (signal): # bits in an ADC

Resolution (time): sampling frequenc

Resolution (spectral): loprecisely can you measure frequghc

Dynamic Range: range within which the sensor operates

Nyquist Criterion: you hae to sample at least twice the frequeyou want to see
* Remember: aliasing creates signals thattdactually eist

A/D corverters

Common circuit

One or more input pins that can handbtages within a specific range
N output pins that output th@lage leel corverted to a number
Analog referencealtage(s)

Digital Pover/Gnd

Enable/Clock input pin

Important characteristics of A/D cegrters

Resolution: number of bits N
* The resolution of the A/D ceerter depends on N
* N of 8is common
* Nof 12 is neav common, 14, 16 bits are wgossible
* In a5V range, 8 bits = 20mY2 bits = 1.2m\16 bits = 80uV
Number of input lines
Number of samples that can bedamultaneously
Parallel/Serial output
Maximum sampling frequegyc
* 1Gsps is nw possible at 8 bits: can pick up 500kHz signals
» Direct RF/IF processing (damave to do it in analog circuitry
» High-speed data acquisition
» Digital Oscilloscopes
* Radar/ECM systems

FOO E21 Lectur #24

Sensing & A/D interfaces

Design of a high-end ADC: MAXIM MAX1400 ADC ($9 each)
Resolution: 16 bits
Sample frequenc 480sps at 16-bits/sample, or 4800sps at 12-bits/sample

» This chip communicates via a serial inte&d (slav sampling rate)

* You can set it to scan all of the inputs sequentially and output the results

* The modulator (ADC component) and digital filtew@anultiple settings

* You can puteternal signal processing circuitry in between the analog MUX and the cap-
ture huffers that hold the signablues

External signal ~ Amp can be set Internal/external clock
processing to gains from 1 to 128* +
\ 1 Y
mp [
N inputs Buffer Modulator|-| Digital
— [Filter
| | | |
REF+__ | Buffer SAC Serial Interfice &
REF - — 1 l Control
7 \
Buffers isolate inputs
from the Amp/Modulator load E;,A g]ereEDogihoiLsets caused

Designing an A/D system

Measurement methodology
First you hae to decide ho you are going to measure something
Direct measurement

Directly comparing the measurand to a calibrated standard
* Meter stick
* Zener diode

Indirect measurement

Measuring a quantity that is related to the thing yantwto measure
* Measuring the wall of a furnace rather than sticking the thermometer inside
» Measuring blood pressure using theotitkoff” sounds

Null Measurement

Comparing the measurand to a calibrated source and then adjusting one of them until the dif-
ference between them is zero

» Take a knavn reference eitage source connected to a potentiometer and anwnkno
voltage soruce and put them on a zero-cergkagometerAdjust the pot until theajva-
nomter reads zero then read the pot.

» Scales

System Components

External stimulus -> sensor/transducer -> amplifier -> analog processing -> A/&teon
-> computer port -> softare processing -> sensor output/decision-making
Transducer: corerts one form of engy (information) to another (usually electrical)

» piezoelectric material: corrts pressure to electricity
» silicon: temperature sensil, EM sensitie, pressure sensié
* spring: conerts force to a distance

Amplifier circuit:

* May include some processing before amplicatiow/fho-pass filters)

* Amplifiers are lav-pass circuits: higher the amplication theéw the cutdffrequengy
Analog processing

* You can do quite a bit in analog hasahe
» Can significantly reduce the load on a computer (microcontroller or PIC)
* Has to include a lo-pass filter that meets the Nyquist criterion (g 2f

* May include a dc cutbtapacitor (hi-pass filter)
A/D corverter
* Precision is determined by the number of bits
* Frequeng is determined by the signal yowamt to measure
» Often needs to be much higher than jugt 2f
Computer Port

* Shielding issues
* Need a computer intexte circuit
* Bandwidth issues

Software procesing

* Correctness
* Are you getting the right signal?
* Speed

Decision-making
» Control g/cle, hav do you mak a decision once youvea measurement?

Sensing and Eror

Measurement error

* Theoretical error
» Transducers are non-lineartlyou assume linearity
» Equations used to produce the sensor output are approximations of theaoegl v

e Static Error

» Interpolation errors: reading a meter stick
» Environmental error

* Manufacturing or design errors (eéts, flavs in the meter stick)
* Dynamic Errors

* The measurand is mimg while youte trying to measure it

» Inertia of mechanical dces

* Frequenyg limitations

» Hysteresis
* Instrument Insertion Error

* The enironment is altered by the measurement process

Nature imposed noise

Johnson Noise: thermodynamic origin

* Arresistor has instantaneous current in it (whigéradime will create poer)
* White noise phenomenon
» Constant in magnitude across the spectrum

Shot Noise: quantization of clygr
* Also a white noise phenomenon
Flicker (1/f noise): origin is quantum mechanical

* Related to the uncertainty principle
* Increases in magnitude with decreasing frequenc
* Engineers canahys hang the “blame” on some particulavide

ThesearenatureimposedThey arelowerboundson how well you cando. It is alwayspossibleb
do much verse.

A

power lines

radio, TV raday cellular phones
galactic
drift

lerror| continental

computers, netarks
effects

tides
seasons
diurnal

1/t light, heat, cosmic rays
White noise

10121010108 10% 194 102 1 1¢ 10" 16 16 100 102 104
Log(Frequenyg)

lyear| 1lhour
100 year 1 month

Human imposed noise

* Rotating machinery
* Power Lines

» Traffic

* Radio

e TV

* Microwaves
 Radar

Other noise souces

e Galactic efects
* Continental drift

e Seasons

* Tides

* Diurnal efects
* Weather

» light, heat, and cosmic rays

Solutions to measuement error

Use high-quality instruments and good designs
Use the instrument that least disturbs what is being measured
Use segeral diferent instruments to measure the quantity

Use multiple measurements anegi@ge the results
* Will remove zero-mean Gaussian noise
* Will not remove salt & pepper noise

Use multiple measurements andedke medianalue
» Will remove salt & pepper noise
» Will probably be close to the tru@le unless the measurements are biased

Solutions to noise

Lock-in Amplifier

* Turn a slavly varying signal (ot not the background) on and ef a relatvely high hut
arbitrary frequeng

* This creates an@signal that is amplitude modulated by the information of interestt

* Rectify the resulting signal

Measuring diferences directly
* Don’'t measure tw lage quantities and then subtract them, this magnifies errors
* Example: measuring the distance between a door and a door frame

Use noise to our adntage

* When digitizing a signal add some white noise

» Take multiple measurements of the signal

* The arerage will be more accurate when you add the noise

* What you are doing is equlent to rounding to the nearest significant figure (LSB)

Watch out for “antennas, magnetic pickup loops, and ground loops

FOO E21 Lectur #25

Genetic Algorithms and Ewlutionary Programming

The traditional design of systems hasleed a set of useful design tools

* Mathematical models

* Lumped parameter systems

* Analog system simulators based on thevalq&PICE]
» Digital components and design methods

» Discrete-gent simulators

* Programming languages

* Modular design

Thesedesigntoolsallow usto designcircuitsthatbehae well over arangeof temperaturesjoise
levels, and othengernal influences

These design tools also allaus to understand, simulate, and trouble-shoot our designs
However, they also limit our ability to create systems

* We abstractwaay from the plsical world to simplify the task

* We stay within a particular domain--digital logic / analog design / functional program-
ming--to keep the system simple, intwigély understandable, and modelable

» This limits the space of possible designs we consider for a particular system

What if we could let the system@ore the space of possible designs onwe?

» Biologically motivated

» Evwolution is the gploration of design spaces by a self-modifying system
» We can applywlutionary techniques to algorithms?

» Can we applywlutionary techniques to ghical systems?

Genetic algorithms [GA]
GAs were originally designed as a mashbi parallel optimization/search method
Basic genetic algorithm

* Represent a solution to a problem as a bit string
* Generate a population (N) of random bit strings (population size)
» Evaluate all of the bit strings in the population
* A ‘“Fitness Function” ealuates each indidual
* A better solution should be assigned a higher fithess
» Stochastically select N strings from the population to become Ktg@eeration
» Strings with a higher fithess are moreelikto be selected
» Stochastically select M <= N strings to participate in cress(crossuer rate)
» Stochastically select a location on the bit string
* Swap the hales so that te nev strings are created from theawwarents
» Stochasticaly mutate some of the bits on strings in the population (mutation rate)
» Set a mutation rate and test each bit in the population to see if it flips
» Repeat the fithesyva@uation and ne& generation selection (# generations)
* Terminate when the solution is good enough, or the population gatylatabilized

Variations

» Elitism: guarantee that at least oneyopeach of the best B solutions appears in tx¢ ne
generation

* Ewolution stratgies: use the actual numbers instead of bit strings, andobeeestandard
deviations the determine othe numbers get modified each generation

* Population-based Incremental Learning: ditch the population andgettke statistics, gen-
erate ne/ populations and then me the statistics toards the best indidual
Issues with GAs

» Good fitness functions are essential
» The GA will learn to optimize the fitness function
» The fitness function should be a continuous function (although it ddese’'to be)
* If you want rolustness to temperature, etc., put that in the fitness function

* The mutation rate is important
* No mutation limits the search space
e Too much mutation mas the search random

* The population size is important
* A larger population size ges you a better sampling of the search space
* A smaller population mads the process gadter (It does it go to the right place?)

Example

Maximize (x-20¥ over the range [0, 31].
Representation: 5 bits, interpreted as a binary number
Population size: 15 (class size)

Mutation rate: 1 in 12

Number of generations: 10

Evolvable Hardware

Hardware circuits form an interesting system

» Subject to pissics
» Situated in the real evld
* Time-varying components
» Current designs are limited by our tools
Just like ary other system, we canvave hardvare circutis
» Set up a pysical system
» Develop a bit string representation for it

* Develop a method ofvaluating the systers’fitness
* Runthe GA

FOO E21 Lectur #26

Evolvable Hardware

Hardware circuits form an interesting system

Subject to pisics

Situated in the real evld

Time-varying components

Current designs are limited by our tools

Just like ary other system, we canave hardvare circutis

Set up a pysical system

Develop a bit string representation for it

Develop a method ofvaluating the system’fitness
Run the GA

Example: Tone Discriminator
Task: discriminate between a 1kHz signal and a 10kHz signal (both scaea® w
Physical circuit: Xilinx 6200 programmable logic chip

Use only one quadrant of the FPGA: 100 blocks in a 10x10 array

Each block has four inputs and four outputs (N, S, E, W)

Blocks on the interior edgesveaeither three, or twinputs/outputs

Blocks on the eterior edges connect one I/O pin (select a direction)

Each block as the folNwing structure

* Three multiplgors that select among the four input signals

* One multipleor that selects a function F

Each output is a MUX that selects among three inputs or F as the output

GA: population = 50, crosser rate = 0.7, mutation rate = 2.7 per generation

Fitnessfunction: maximizeshedifferencebetweernthe averageoutputvoltagesor a 1kHz signal
and a 10 kHz signal

Result: after 5000 generations the circuitrks perfectly

Always changes correctly on ttadling edge of an input aveform

» At the end of 200ns the circuit has made a decision

Only uses a small portion of the 10x10 grid (21 blocks)

Forms three components (A, B, C)

» Parts A and B go inaate during the high part of a pulse

» Part C remains static during the high part of a pulse

» 200ns after adiling edge, the circuit assumes the correct state
* The designers catrfigure out hav it keeps time

The output is temperature sengti

Example: Robot controller
Task: aoid walls and lkeeping mweing
Physical setup: tw sonars, tw motors

Electrical system: “Dynamic” state machine

* 1k by 8bits RAM
e 10 address input (6 inputs i)
» 8 data outpus
* Only 32 bits of information, since 6 address lines aefix
» Optional latches on the RAM addresses (signal can be latched by a clock, or passed
through asynchronously) (4 bits)
» Optional latches on twvof the RAM outputs going to the motors (2 bits)
* The 2 RAM motor outputs go back to the 10 address inputs
» The clock frequengcis evolved (16 bit gray code: range 2Hz toaseal kHz)
» 54 bits to represent a particular DSM

GA: population = 30, crosser rate = 0.7, mutation rate = 1/generation
Fitnessfunction:integratesa valueproportionalto distancerom thewall, andsubtracts valueif
the robot is stopped (penalizes a stopped robot).

* Fitness of each bit string (configurationpkiated for 30s

» Towards the end of the training, fithesasmsaluated for 90s

» Training took place in a robot “virtual reality” with the wheel§tbe ground and simu-
lated sonar inputs
* Noise was added to both in order to simulate reality

Results: after 35 generations the robotshgood performance
* Robot used 32 bits of RAM

o 3 flip-flops
» Clock generation
Analysis

* evolved to use a 9Hz clock (~twice the sonar frequemammm)

» sonar inputs to the RAM were asynchronoasrif slow pulse signals)
* both motor outputs were cloe#

* internal state ariable for the left motor as asychronous

» internal state ariable for the right motor &s clocled

This is neat: since the motors are clegkwe can think of the state as being sampled by the
motors on a 9Hz schedule

* The clock alleved the robot to ma with a slight veggle, causing the sonars to scan the
walls and minimize erroneous sonar readings (hmmm)

Training for robustness I: obot controller with bit err ors
Task: same as beforagjttone of the RAM bits gets incorrectly stucktoalora0
Problem: carnt’feasibly test each inddual for 32 diferent fwults

Solution:

» Start by training a population as akdor N generations (85)
» After N generations, test the consensus string for alaBRsf, pick the wrst

* consensus stringwith eachbit beingthe mostlik ely for its positionin the population
» lterate the follaving

» Create the nd generation, wluating the fitness function using the “currentlf’

» Test the consensus indiual on all 32 &ults and pick the arst as the “currenafilt”
By generation 204, the consensuswidlial displayed completadilt tolerance

Training for robustness Il: the Ewlvatron
How do you mak a circuit rohst to temperature?

* Put one circuit in the freezer

» Put one circuit in a heatedwronment (n&t to a light lulb)

» Put one circuit on the table

* Use FPGAs from diérent batches, and with thfent cases

» etc..

» Evaluate the fitness function on all of thefelient FPGAs in all of the situations
Custom hardware for evolution of buildable circuits: the Ewlvable Motherboard
Make a programmable crosspoint architecture that can connagesy\of elements
The crosspoint architecture also alyou to monitor each signal in the system
Hook it up to a computer using a$sbased connection (ISA, PCI, etc.)

Each switch on the crosspoint architecture has some resistance

Example: Inverting amplifier
Task: Ewlve an iwverting amplifier with a gin of -10
Physical setup:

* EM connecting the bases, emitters, and collectors of transistors
» Switches act as resistors in the circuit

Fitness function: hae the output match the amplified input signal
Driving function: 1kHz sine ave, 2mV peak to peak amplitudefsst at 1.4Vdc
GA Characteristics: population = 50, elitism, cragsaate = 1, mutation rate = .01 per bit

* 48 ravs/columns
* Each column could va up to 4 connections to awvo
» 1056 bits in each string

Results: it varked, using tw amplifiers and lots of switches

Example: Evolving in simulation
Task: generate a transistor amplifier

» Have to require the simulator to use standadi@s for capacitances and resistances
* Have to put in penalties for high collector and emitter currents
» Haveto matchcomponenparameterso therealworld suchassaturatiorcurrentandgain

With these constraints, the GAs trained morgvblpbut had a higher probability ofavking
when luilt

Without these constraints, the GAs trained more quitkitydidnt create hildable circuits

FOO E21 Lecture #27

Intellectual Property Rights
What is it?
* ldeas

* Manifestations of ideas: books, art, catghrases

* Processes andventions
* internal comhstion engine
» process for manatturing intgrated circuits
* person detector
» combination of sensors in awmand unique configuration
» digital logic to tie it all together and implement it

» Software (only possible through computers)
* Algorithm
» Source code
* Object code
* Look & feel

Why do we have intellectualqperty laws?
In order to promote art and science.

* Reward people for their inn@tion

» Ensure that knwelege is distriluted

Four useful catgories

* Trademark: phrase, name, logo

» Trade Secret: something you dowant to let agone else knw about
» Copyright: manifestations of ideas

» Patent: processes\Mentions

Trade Secet

Trade secret {@s allov companies toéep secrets.
A trade secret must:

1. have novelty

2. represent an economio/gstment to the claimant,

3. have involved some dbrt in development, and

4. the compay must shw that it made somefeft to keep the information a secret.

Most well-knavn example: Coca-Cola
In the technical wrld: Industrial Light & Magic
Problems:

» Laws are not uniform throughout the U.S. (and definitely npbhe)
* The lavs were not written with computer technology in mind

* There is arisk if you go to court in untested territory

e court could decide that trade secretdadont apply

The compay must reeal the secret to sell the soéive

Once the trade secret is kmo, the trade secrgdaws do not apply

Copyright

Copyright office has been accepting computer program source code since 1964.

In 1980, congress amended theyaght law to explicitly include programs under the cate-
gory of literary works that are automatically wered

Definition: “a set of statements or instructions used directly or indirectly in a computer in
order to bring about a certain result.

Weak form of protection

Only protects thexgression of the idea

Can write the algorithm in another language
Can deelop the code independently (not gomm)
Burden of proof is on the cgpght holder

* Have to shav access

* Have to shav that you copied the material

Does copright extend to the look and feel of a program?

The structure, sequence, andarization of a progranafls under cogright protection
However, external forces may require similar structure among programs

Is the look and feel of a @yram the idea, and the sa#r and object code themression?
» Look and feel could not be cppghted, then.

Recent changes in cgpght law affect digital transmission and encoding of information.

You cannow beprosecutedor building devicesto breakencryptionslesignedo maintain

copyrights.

Certain encryption & digital technologies alled under the ne laws threatendir use

» Pay per use encryption methods means librar@sldvhare to chage for each use by
a borraver

* You would have to pay a price if you anted to let your friend bomoa document

Some copright staleholders are lobbying for cgpght to databases that just contaacts
(like NBA statistics).

Current lav is that a database is not gaghtable unless it wolves a create process.

Fair use lavs

Copying is permitted under certain restricted situations

Archival copy of software

Copying for personal scholarly useufnot for the design of commercial products)
Copying for classroom use in certain situations (only the first time iryroases)

Whether a use iair use depends upon foarctors

The purpose and character of the use, including whether such use is of a commerical
nature or is for nonprofit educational purposes.
the nature of the cgpighted work

* the amount and substatiality of the portion used in relation to theigbfed work as a
whole; and
» the efect of the use upon the potential nmetrfor or \alue of the cowrighted work

In fair use cases, the four criteria are supposed to be weighted ebupibctice, &ctors #1 and
#4 have receved the most attention since it is usually commer@atwres that sue, and yhean
throw up numbers in support of their case.

FOO E21 Lectur #28

Administri via

1) When to hee the gam
2) Project presentations

Intellectual Property Rights: Patents

A patentis the strongesform of protectionfor intellectualpropertybecausét givesthedeveloper
a monopoly wer the use of that idea for a period of 14 or 20 years.

Main purpose of a patent?

* To encourage the admcement of useful arts and sciences
» Foster ivention

* Promote disclosure ofwentions

» To ensure the idea is in the public domain

What can be patented?

* Process

* Machine

* Article of manuéture

» Composition of matter

* Improvement of ap of the abwe

* Ornamental design of an article of maatire

» Asexually reproduced plantavieties by design and plant patents
* Gene sequences and chemical compounds thatdpecific utility
» Software with a specific, limited utility

What cannot be patented

abstract ideas,

laws of nature,

physical phenomena,

literaray dramatic, musucal and artistioms

inventions which are not useful ofefisve to public morality

To give someone the right to these thingsuld inhibit scientific thought and aalwcement.
A patent claim must:

agrwdE

o

fall within the catgory of permissible subject matter

have utility

have novelty

must be nonollous

be adequately described or enabled (for one of ordinary skill in the art éoandluse the
invention)

claimed by the iwentor in clear and definite terms

What types of patents ae there?

Utility patents may be granted toyamme who inents or disceers ay new, useful, and nonat-
ous process, machine, article of mawtfire, or composition of matfer ary nev and useful
improvement thereof. These are the most common.

Design patents may be granted tg@re who inents a ne, original, and ornamental design for
an article of manuwicture.

Plant patents may be granted tg@me who ivents or disceers AND asgrually reproduces an
distinct and ne variety of plant.

Provisional v. Non-provisonal patents
Thenon-prwisionalapplicationestablisheghefiling dateAND initiatesthe examinationprocess.

Theprovisionalapplicationonly establishethefiling dateandautomaticallypecomesbandoned
afteroneyear Youmayfile aprovisionalapplicationwhenyou arenotreadyto enteryour appli-
cationinto theregularexaminationprocess.A provisionalapplicationestablisheafiling dateata
lower cost for a first patent application filing in the United States andsalle term "Btent
Pending'to beappliedto theinvention. Claimsarenotrequiredin a provisionalapplication. The
PTO doesnot examinea provisionalapplicationandsuchanapplicationcannotbecomea patent.
You must submit the non-prisional application within one year of submitting younpsmnal
applicationin orderto possiblyreceve the benefitof the provisionalapplication'diling date. You
do not hae to file a preisional application before filing a non-pisional application.

Process

Generate a great idea, process, wemion

Figure out if your idea is patentable

Figure out if it infringes on gnother patents

Start the process with a pisonal application (optional)
Develop your non-praisional application (usually with avger)
» Title

* Background of the wention

» Description of the prior art

* Summary of the wention

» Brief description of dnaings in the application

* Detailed description of thewention

* Claim(s)

» Claims define the irention and are what aregidly enforceable. Therefore, thare
extremelyimportant Whethera patentwill begranteds determinedin largemeasure,
by the wording of the claims. Claims continue to be important once a patent is
grantedpecauseguestion®f validity andinfringementarejudgedby thecourtsonthe
basis of the claims.

* Abstract

» Oath or declaration

* Sequence listing, if there is one

6. Go through the challenge process with a pateatnaer

* You try to mak as broad claims as you can

* The patentxaminer tries to minimize your claims (prosecutes the patent)

arwNE

7. If you patent is granted, then you can claim a patent on yeemtion
* You naw have the right to license or sell your patent
* You naw have the right to sue someone for infringement

You haveto payasmallinitial feeto applyfor andreceve the patent.Thenyou have to pay main-
tainancedeesat3.5,7.5,and11.5years.Thefeesgoup eachtime, but they areprettysmall($850,
$1950, and $2990 for lge oganizations, half that for small).

Software Patents

Computer software faces its greatest challenge with numberat.tke purpose of a patent, soft-
ware is generally considered a process.

70s and 80s, thegument vas the softwre could be duplicated by a mental process, which is
inappropriate subject mattén the 90s, attention focused onthcomputer algorithms are tf-
ent from mathematical algorithms (if at all)

* Freeman-\dlterAbele test: mathematical algorithms are abstract ideas and unpatentable
unless there is a practical application of the algorithm. Ivigue cases a practical applica-
tion of analgorithmconsistedf databeingtransformedhroughmathematicatalculationgo
produce a smoothaveform display on a mointoA practical application required yéical
elements or steps.

* In State Street Bank &rtist Col v Signature Financial Group (1998), Inc., the Court of Cus-
toms and BRtent Appeals held that “the transformation of data, representing discrete dollar
amounts, by a machine trough a series of mathematical calculations into a final share price,
constitutes a practical application of a mathematical algorithm, formula, or calculation,
because it produces a useful, concrete and tangible result - a final share price”.

* This remwaed the “plysical element” aspect of patentable saitev
* This requirement ne becomes that a computer program, method, or process must pro-
duce a useful, concrete, and tangible result.

The concern n@ is that there are too masoftware patents

» Before you sell a piece of sofae you hae to do a patent search

* The oganization of softwre by the patent fae is poor at best, and is continuously being
reoiganized by the USRJD

» This males softvare deelopment a risk business, and creates barriers to entry

Digital System Ratents

You no longer hee to pravide source code somethingdila robot controller that relies on soft-
wareto run (you usedto). You do have to saythatit relieson softwareandgive anexplanationof
the function of that softare. There has to be fiafent explanation that a person “cegrsant in
the field” could recreate it. (Robotidsion Systems, Inc..Wiew Engineering, Inc., 1997).

You might vant to preide the source code to the pateriitcefto help keep future patent seeis
from infringing onyour patentor from trying to patentsomethingyou alreadycreated Translogic
Corporation vTele Engineering, Inc, 1997). Thivks in two ways

* It will make it easier for a patent sexko do a patent search.
* It will keep others from trying to patent a piece of saferthat you hae already created.

FOO E21 Lecture #29

I/0O Interfaces: USB Protocol

Theoriginal methodof addingdevicesto a computemwasto give eachdevice its own I/O interface

* Add an ISA or PCI card to the computer
» Connect to the serial or parallel port

In the mid-908, s&#en companies (Compaqg, DEC, IBM, Intel, Microsoft, NEC, and Northern
Telecom) got together to mala nev standrard with the folleing goals:

» Users must not ha to set switches or jumpers

» Users must not lva to open the case to installindevices

* There should be only one kind of cable

» /O devices should get their peer from the cable

* Upto 127 deices should be attachable to a single computer

* The system should support real-timeides (sound, telephone)

* Devices should be installable while the computer is running

* No reboot should be needed after installing\a device

* The nev bus and its I/O deces should be ing@ensve to manudcture

The USB [Uwersal Serial Bus] protocol meets all of these requirements
Bandwidth: 1.5MB/sec (12Mbits/sec)
Root hub &ists inside the computer

« Additional devices and hubs can be attached to the root hub
» Topology is a tree

Cable

* 4 wires: 2 data, 1 peer, 1 ground
Bit representation

* 0 = wltage transition

* 1 =no wltage transition

 AOQis defined as D- > D+, and 1 is D+ > D-, in both cases by gimafr200mV

» String of 05 is a string of pulses

» Definition: Non-Return to Zero \rerted

* Note: a 0is “stded” in long bit strings of B so that no more than Gldppear in a
Plugging in nev devices

* Root hub detects the wedevice

» Device is queried as to lomuch bandwidth it needs

» If sufficientbandwidthexists,theroothubassignsaanaddresso thedevice anddownloads
the address and other configuration information to the @@ele

* Uninitialized deices start out with address 0O

Data trael

* View the setup as a set of bit pipes between the root hub and thevié¢@sde
* /O devices do not communicate with each other

Communication protocol

Every 1ms (+/- 0.05ms) the root hub broadcastsmafreane

A frame consists of one or more patk

A frame addresses a singlevibe

* Each deice gets polled according to bandwidth needs

* A keyboard may be polled onceezy 50 frames (50ms)

* A scanner may be polled often when it has datanbt at all otherwise
* A spealer may be polled (sent data) oneery 10 frames (10ms)
There are four kinds of frames

» Control: sending control information to avitse

* Isochronous: sendinggalarly timed pacéts to a déce (no re-transmission)
» Bulk: sending one-time information to or from avibe

* Interrupt: used for gular polling of deices

Paclkets

General format

» SYNC field: 00000001 (pulse stream)

* PID field: paclet type, 4 bits identifying the pagktype, 4 bits which are the comple-
ment of the pacit type for error detection

» Data/Address field

* CRC field: Cyclic RedundagdCode

» EOPfield: endof pacletfield, bothvoltagesaresetlow for atime, andthenin Idle for
1 bit's time

Four types of tokn packts

* SOF: start of frame

* IN: command to send data from theside

* OUT: command to recee data from the computer

e SETUP: used for configuring avdee

Data packts

» Can contain up to 1024 bytes of data

* 16-bit CRC code

Handshak paclets

* ACK: ok

* NAK: error detected

o STALL: device or computer isusy

* no CRC field

Example formats

Out: [Sync][Type = 10010110][Déce address 7 bits][Port Address 4 bits][CRC][EOP]
Data: [Sync][pe = 11000011][Data, up to 1024 bytes][CRC 16 bits][EOP]
Handshak: [Sync][Type = 01001011][EOP]

Overall

The computer must kia a substantial amount of support safitevto handle USB
The deices can bedirly simple, and may not kia to do more than send”X signals
Eachdevicewill have amicrocontrolleror programmablehipto handlethe USB protocol

Device Classes

Since maw devices are similar in function, there are a set of standard classes

* Common class, Communications, Hub, Printerage, MonitorMass Storage, Audio,
HID [Human Interbce Deice], PID [Plysical Interce Deice], and puver.

* Some deices can belong to more than one class

» Eachclasshasastandardoftwaredriver from which you candevelopspecializedirivers,

or mini-drivers.

Building a USB device
There are sseral USB protocol chip-sets on the metrk

* Marny are simple microcontrollers withx@mple firmvare that you can modify
* This means you may not need/ather computing on the peripheral

* Some hsge a serial integfice with another microcontroller

* Some hwae a parallel intedce with another microcontroller

You can also purchase prototype USBaies
* Some of them automatically @aload the “firmvare” from the USB integice on startup
» This males for \ery simple prototype delopment
If you want to lild your avn USB chip

* Much more complicated than a standa@RT (serial interéce)
» Using a microcontroller mas sense in this situation
» Write the USB code in C rather than trying to design a digital circuit to handle it

FOO E21 Lectur #30

I/O Interfaces: PCI Bus Protocol

If you need more bandwidth than prded by the USB specification then your options are:

* Firewire: external fast serial protocol (25 to 400 Mbits/s)
* PCI: internal &st masseely parallel (32/64 data bitsub protocol

High-bandwidth, processandependent s architecture that can function as a mezzanine or
peripheral bs (often there are WPClI luses, one for each purpose).

Currentspecificatioris awidth of 32 or 64 bitsandaclock speedf 33MHz or 66 MHz, for amax
raw transfer speed of 528MB/s.

Designed to be economical and requireg ¢aips to lild.

Developed by Intel in 1990, specifications and patents all released to the public domain
Current ersion is PCI 2.1 (1995)

Typical PCI lus struture for a desktop and a serv

* PCI lus is connected to a bridge/DRAM controller in the desktop system
» Mutliple PCI luses connected to ast systemss via host bridges
» Can support dierent speed processors and othgra@sion bses

Bus structure
Required 49 pins

» System pins: includes clock and reset

* Address& Datapins:32linesthataretime-multiplexedfor addresseanddata.Also includes
lines used to interpret andlidate the address & data lines (i.e. parity)

* Interface Control pins: control timing of interactions andvpies coordination among initia-
tors and tagets

» Arbitration pins:thesearenot sharedines,but a pair of dedicatedinesbetweereachmodule
and the PCI arbiter

» Error reporting pins: used to report parity errors and other errors

Optional 51 pins

* Interrupt pins: these are not shared lines,dach PCI dece has its wn interrupt line to an
interrupt controller

* Cache support pins: supports a memory on the BEI b

* 64-bit extension pins: 32 additional lines that are time-mulkptefor addresses and data.
Includes tvo lines that aller devices to agree whether to use 64 pins or 32

» JTAG/Boundary Scan Pines: alldesting procedures defined in an IEEE standard

PCIlI Commands

Bus actvity occurs as interactions betweenus Inaster and a tget. The bhs master determines
the type of interaction that is going to occline lus master can change each interaction

Interrupt acknwledge: tells the interrupt controller to place the id of the interrupte®n
the data lines and specify the size of the id number

Special gcle: used to broadcast a message to multiple modules simultaneously
I/O read: read data from an 1/Owilee

I/O write: write data to an 1/O dee

memory read: read data from memory

» with cache, brsting one-half or less of a cache line

» without cache, 2 data transfefctes or less

memory read line:

» with cache, brsting more than one-half a cache line to three cache lines

» without cache, birsting 3 to 12 data transfers

memory read multiple

» with cache, brsting more than 3 cache lines

» without cache, brsting more than 12 data transfers

memory write: transfer data in one or moyeles to memory

memory write and walidate: transfer data in one or moyeles to memory

» guarantees that at least one line of cache is written

configuration read: read dee configuration parameters

» each deice can hae up to 256 internal configuratiorgisters

configuration write: enable and update configuration parametersviocese

dual addressycle: using 64-bit addressing (which meany@es of address at 32 bits)

Data Transfers
Read transaction (fs master ants to read data from adget)

1.

wmn

oo

When the bs master has beervgn control of the Ws, it asserts FRAME. This line remains
asserted until the initiator is ready to complete the last data phase. The initiator also puts the
start address on the address band the read command on the C/BE lines

At the start of clock 2, the et device will recognize its address on the AD lines
Theinitiator ceasesliriving the AD bus.A turnarounccycle is requiredon all multiply driven
lines to let the bs drop. The initiator changes the information on the C/BE lines to designate
which AD linesareusedfor transferof the currentlyaddressedata.Theinitiator alsoasserts
IRDY to indicate it is ready for the first data item

After one empty clockycle, the taget asserts DEVSEL to say it has recognized its address
andwill respondlt placeshedataontheAD linesandassertd RDY to saythatvalid datais
present on theus.

The intiator reads the data and changes the byte enable lines in prepraration xirréesdne
In this exkample, the tayet needs time to prepare the second block of data for transmission.
Therefore it deasserts TRDo signal the initiator that there will not beweata in the fifth
clock gscle. It reasserts TRDIn clock g/cle 5 and the data is read at thgibaing of clock
cycle 6.

At clock gycle 6, the taget places the third piece of data on the AD linasthe initiator is

not ready and deasserts IRO'hus, the tayet maintains the data for another clogkle.
Theinitiator knows this datatransferis thelast,anddeassert6RAME to tell thetargetthisis

the last transfeit then asserts IRDto indicate it has read the third piece of data.
Theinitiator deassertfRDY, returningthe busto anidle state andthetargetdeassert§ RDY

and DEVSEL

FOO E21 Lecture #31

I/O Interfaces: PCI Bus Protocol: A State Machine Repesentation

Table 1: State table ér a simple 1/0O device (Read cycle)

Current Next Condition Action
Idle Idle Frame DEVSEL, TRDy deasserted
Idle Check Address Frame 1) latch command lines
2) latch address lines
Check Address Idle My address Disregard and return to idle state
Check Address Get & Place Data | My address & Read 1) latch byte enable lines

2) Assert DEVSEL
3) Assert TRIY
4) Place data as specified by C/BE
5) Increment internal address

Get & Place Data | Get & Place Data IRDY 1) Maintain data
2) Maintain TRDY
Get & Place Data Idle Frame 1) Deassert DEVSEL
2) Deassert TR
3) Deassert Data
Get & Place Data | Get & Place Data Frame & IRDY 1) latch byte enable lines

2) Assert TRIY
3) Place data as specified by C/BE
4) Increment internal address

PCI Bus: Arbitration
PCI uses a centralized arbitration scheme with a PCI arbiter

1.

2.
3.
4

Device asks for use of thaub by sending a REQ signal

PCI controller tells a dece it can use theus by sending a GNT signal
PCI specification does not specify an arbitration algorithm
» first-come first semd

¢ round robin

e priority queue
Example:

A asserts REQ signal, the arbiter samples the signal at glolek
During clock gcle 1, B requests thaib.
At the same time, the arbiter grants fequest by asserting GMI

Bus-master A samples GNY at the bginning of ¢/cle 2 and starts a transfer process by
asserting FRAME. It also continues to assert REQ-A because it has multiple transfers to
make.

Thearbitersamplegshe REQIlinesin clock cycle 3 anddecidedo grantthe next transferto B.

It then deasserts GNA and asserts GNB. B will not be able to use theub, havever, until
after FRAME and IR have been deasserted by A.

6. A deasserts FRAME,ub still asserts IRW to tell the taget to read the data

7. When IRDY and FRAME are deasserted, B is able t@tedintrol of the bs by asserting
FRAME. It also deassertes its REQ-B line since it has only one transactiong¢o mak

This process is referred to as hidden arbitration because# jpdkce while other transfers are
happening.

Micr ocontrollers

Computers were first gleloped in the 4@, kut for 30 years thewere degeloped using SSI and
MSI components.

« 1971 an engineer at Intel (Marcian jafias working on a chip for a specific application

* Hedevelopedagenerabpurposechip thatcouldexecuteaprogramsothatreprogramming
it was easy to do

* Intel bought back the rights for the chip from the conyfan which the did the work

» It was later sold as the 4004, thend’s first microprocessor

* It had 4096 4-bit memory locations

» It could eecute 45 instructions

Later in 1971, Intel released the 8008, and 8-dision of the 4004 with 48 instructions that
could access 16kBytes of memory

In 1973, the 8080 &s released, whichas 10 timesdster than the 8008 and had more instruc-
tions and a layer address space.

In 1978, the 8086 and the 8088 were released, which were the basis of the ensuing PC boom.

In 1978 these were considered state of the art, high performance microprocestEyrsh§
would be considered slomicrocontrollers.

Micr ocontrollers v. Micr oprocessors
What is a microcontroller?

* A simple computer: memoygontrol unit, ALU, Rgisters, 1/0
* Generally hae a single fied program in RM/ PROM/ EPROM/ EEPFOM
» Intended to be ralst, cheap solutions where some simple processiwgrpaill work

How do the differ from microprocessors?

* Limited memory
» Usually on the chip
e Limited program size
» Usually on the chip
* Rohlustness
» reset themsebs on startup and on livo-outs

 Speed
* not slav, but usually 2 orders of magnitude sier than a microprocessor
 1-40MHz

* On-chip peripherals
» A/D corverters

» USART: Universal sychronous/asynchronous reegtransmitter
 USB interfaice

» [Easy to program
* Don't really hae an operating system, per se
* Flexible I/O pins

» Same inputs can be A/D, input pins, output pins, or cae drius directly
Who used to be the lgest manwdcturer and user of microcontrollers? GM
* Motorola is the lagest today (and tlyehave the best delopment tools)
What does a microcontroller cost?

» Between $2 and $20 (Motorola 68HC908JB8 with USB 1ilt-n is $2.50)

FOO E21 Lecture #32

Building a Micr ocontroller
Move avay from a special purpose digital circuit

» Circuit should gecute a fird number of general-purpose instructions
* How do we design a general purpose digital circuit?
* How do we decide what instructions to &i®
* How do we implement it?

A computer must contain six components that altkntogether

» Control Unit
» State machine that specifiessththe CPU is to carry out specific instructions
» Execution is controlled by a set of controyjigers and the program instructions
» Can hae microcoded instructions where the control unit ssatn state machine
» Can use a hardwired design where the instruction contains all of the commands
* Four important questions the control unit must answer
* What are the operands for this instruction?
* What is the operation that is supposed to happen?
* Where does the operand go when its finished?
* Where does the reinstruction come from?

 ALU
» Executes addition, logical operations, increment and decrement
» Combinational circuit controlled by the CU

» External memory
» If some kind of ®M, then it only holds the program to beseuted
* If some kind of RAM, then it can also hold temporary results

* Internal Memory / rgister file
» register file that allavs temporary data storage
» Sequential rgister file controlled by the CU

* |/O interface
* How the microprocessor/microcontroller communicates with xereal world
» Sequential/combinational circuit controlled by CU

* Internal lus
* How data is mged around internally betweergisters, ALU, I/O channels
» A set of wires connected througbfters and latches, controlled by the CU

Register Transfer Language
A method of describing motion through the data path

» Definitions
* Ragisters hage names [PC, IR, D1, D2, etc.]
* Motion between mgisters is indicated by an awe>
» Operations like +, -, shl, shretc. are indicated by operators
* Inan RIL, the conditions for thevent happening are\gn before the operation
e e.g. K1:D1->BusA

Control-Unit: Fetch-Execute Cycle
The control unit is basically a simple state machine thaesthrough a set of states

Fetch the instruction

* Increment the program counter / load from the stack / do nothing

* Send the instructiog’address to memory so that it appears on the memory output lines
* At the baginning of the gecute gcle, latch the address into the instructiogister

Decode the instruction
» Set control signal lines that specifyscontrol and ALU operations

Read the data/operand
 Data maes across theuls to the ALU

Process the data
» Data mwes through the ALU

Write the data
+ Data maes across theuls to its destination

Datapath construction for a microcontroller
The datapath has to support the fetzbesite gcle

Single lus architecture

* All components hang b& single lns

» Each e@ecute gcle can mae one piece of data across thes b

* ALU has an accumulator associated with it

» All binary operations imolve the accumulator and data from thue b
* ALU operations require multipleycles

Two bus architecture

* One lus is an input s to the ALU

* One lus comes from the ALU

* ALU still has a dedicated accumulator

» All binary operations imolve the accumulator and data from thes b
e Can complete an ALU operation in a singjele

Three lus architecture

* Two huses as input to the ALU

* One lus comes from the ALU

* ALU does not need a dedicated accumulator

* Binary operations wolve two operands from the internabjister file
» Can complete an ALU operation in a singjele

Example: PIC Microcontroller Ar chitecture

One-lus architecture
* ALU has a dedicated gester, called Wrg
* All binary operations ivolve Wrey
* The other ggument can come from the instruction or from thester file
» Arithmetic results can go to either Vgreor back to the location of the other operand
* /O devices hang on the samash
» 1/O registers are memory mapped: frare addresses justdikhe internal rgister file

FOO E21 Lecture #33

Micr ocontroller Example: PIC Micr ocontroller Ar chitecture
Let's look at the major design characteristics of the PIC microcontroller (167XXX series)

Bus architecture
PIC is a one-brs architecture

» Everything hangs éfof one 8-bit data s except the program memory
» All binary operations use the Wgister as one operand

Address modes
* Immediate: operand comes from the instruction (literal instructions)
» Direct: address comes from the instruction (filgister address)
* Indirect: address comes from the FSEister (File Select Rpster)
* Indirect addressing treats the FSRBister as an indeinto an array of igisters

Harvard v. Von Neumann Architecture (Memory design)
Where do you put the program and where you put the data? Do you put them in the same place?

Von Neumann architecture:

* Program and data are located in the same memory spasicgland logical)
* Generally this is RAM memory

» For a microcontrollerthis means the RAM must be loaded from@MRat startup
* Von Neumann architecture isteemely general
* Programs can be self-modifying (which can be interesting, and leads to viruses, etc..)
» This puts constraints on the size of your instruction

* Must be some multiple of the basic data element, which is generally 8 bits (1 byte)
* More difficult to pipeline the fetch ancecution gcles, lut it is possible

Harvard architecture

* Program and data are located irfafiént memory spaces (gdical and logical)
* Program memory does notyeato be RAM
* If the program memory is®V, then &erything can be on one chip
* The instruction size is not constrained by the basic data unit
» The fetch and»ecute gcles can occur in parallel, because there are sepaisds b

Examples: 6811, and PIC
6811: Memory and data spaces are the same

* Not a pipelined architecture

* Requires dftchip ROM and RAM in order to function
PIC: Hanard architecture

* Program memory is ERRVI

* Doesnt require ag off-chip modules to function
* Pipelined architecture

Pipelining
Pipelining is, in &ect, an assembly line inside the computer
» Split the fetch-recute gcle into smaller subdisions
* Develop a datapath that careeute the smaller sulwiions in parallel

* Once the pipeline is full, you argexuting more instructions per seconekrethough
each instruction tads the same amount of time as it did before

Example: PIC architecture

* PIC is an gample of simple pipelining

* Fetch gcle for the ngt instruction is gecuted in parallel with the curremtexzute phase
The eception is a branching statement, which may t&o cycles to complete
Conditional branch only tas 1 gcle if it doesnt branch
Unconditional branch alays tales 2 gcles

Fetch 1| Execute [L

NJ

Fetch 2| Execute

Fetch 3 |Execute 3 NOP Branch instruction

Fetch 1| Execute L

The Fetch Cycle

The control unit has a set ofgisters that alle it to evaluate instructions and fetch thexhe
instruction

* Instruction Rgister [IR]: this rgister holds the current instruction

* Program Counter [PC]: thisgister holds the address of thexhmstruction

» Status Rgister [SATUS]: this register holds arious flags necesary for operation, includ-
ing flags describing the result of the last ALU operation

» Stack: Set of gisters (8 on the PIC) that hold P&lwes in order toeftilitate branches to
subroutines and returns from subroutines

The fetch gcle is quite simple

* The PC holds the address of thatriastruction

* At the appropriate time, this address accesses the program memory and thetne-
tion is loaded into the IR

* The IR is then decoded and controls the actions ofxbeuée gcle

Example: PIC

» Clock is dvided into four states: Q1-Q4

e Q11:increment PC

* Q2, Q3: hold address for program memory

* Q4: latch instruction gister

* In the case of a branch theamnaddress is loaded into the PC on Q4 and the control unit
suspends operation until the fallmg Q4 so that the correctxtanstruction gets loaded

Execute Cycle
On some microcontrollers the length of tixe@ute gcle depends upon the instruction

* Motorola 6811: diferent instructions takdifferent amounts of time
» This means the control unit is usually microcoded, which means each instrucken is e
cuted by a simple program in the control unit microcode memory

On other microcotnrollers the length of theseute gcle is constant

* This often means you ddriare comple instructions (like multiply or dvide)
e All instructions follov the same format

Example of a constant lengtkezution gcle (PIC):

* Clock is dvided into four signals Q1 - Q4
e QI instruction is latched into the instructiogister
* Address is applied to the RAM or I/O units, if necessary
* Q2: operands are latched into the ALU
* Q3: ALU processes the data and the result appears onghe b
* Q4: Data is latched into its destination
» Since the PIC is pipelined, the instruction fetgble tales place simultaneously

FOO E21 Lecture #34

Example Instructions
The PIC instruction set is rather small; 35 instructions
Typical examples are

* MOVLW: move a literal to the W ggster
e Q1I: IR[literal] -> ALU Mux input
* Q2: ALU latches thealue
* Q3: Value appears on ALU output
* Q4: Value latched into the W gester
* MOVF: move the contents of a filegister either to the W ggster or back to itself
* Q1I1: Apply address from IR or FSR to filegrster
 Q2: ALU latches thealue on the dataus
* Q3: \alue appears on ALU output
* Q4 Value latched either into W or the filegister (d = 0, or d = 1, respeetly)
* The case d = 1 is useful for testing tladue of a bit in the gaster
« ADDWEF: add the contents of f and W and put the result in either W or f
* Q1: Apply address from IR or FSR to filegrster
 Q2: ALU latches thealue on the dataus
* Q3: \alue appears on ALU output
* Q4 Value latched either into W or the filegister (d = 0, or d = 1, respeetly)

Instruction Formats
Somehar you need to indicate to the computer what it is supposed to do

* Operation
* Operands
» Destination

Horizontal format

* There is one bit in the instruction for each control line in the computer
* This males the control unitalst and easy
* It makes the instructionsery long

Vertical format

* Encode the control lines in appropriate groups
» Each group will hee a decoder associated with it
* The control unit is more compdebut the instruction is more compact

How mary addresses?

* In part depends upon wanary buses you hae
* More luses => more possible operands and destinations
* In part depends uponWwdong your instructions can be
* Longer instruction => more potential addresses
* In part depends upon Wwamary instructions you ha
* More instructions => more possible addressing modes and numbers of addresses

Thearchitecture of the computer is the set of instructions it caecaeite and the R describing
what each instruction does.

Knowing anarchitecture means you can write a program for the computer

Thearchitecture is independent of therganization, which is hev the instructions are actually
implemented.

» Different PIC chips hee the same architecture
» Therefore, most programs will run orveeal diferent kinds of PICs

Example: PIC Microcontroller Instruction Set
14-bit instructions

» Byte-oriented file rgister operations
* [opcode (6 bits)][destination bit (0,1)][File # (7 bits]

» Bit-oriented file rgister operations
» [opcode (4 bits)][bit # (3 bits)][File # (7 bits)]

» Literal and control operators
» [opcode (6 bits)][literal (8 bits)]

* Call and GQO operations
* [opcode (3 bits)][literal address (11 bits)]
» High 2 bits for the address come from the PCHAegister
* This means to ma&ksome jumps you kia to use tw instructions
* Move high tw bits to PCLAH
* GOTO/CALL operation

These four types of operations ardefiéntiated by the first twbits

» [0Q]: byte rayister operations or one of six special ops

» [01]: bit oriented rgister operations (indicates a logical operation & flags with the ALU)
* [10]: Call or goto (indicates stack push action)

* [11]: Operations with literals (controls ALU input MUX)

* All0’s in the first 6 bits indicates one of these six special instructions
* NOP (all 05, ut dont care for bits 5:6)

MOVWEFE: move Wre to register F (no ALU op)

RETFIE: return from interrupt

CLRWODT: clear vatchdog timer

RETURN: return from subroutine

SLEEP: sleep

FOO E21 Lectur #35

Example: Subroutines on a PIC
CALL, RETURN, and RETW allow you to implement subroutines
Why do you vant subroutines?

* It makes the code more compact when you can separate out repeatedly used chunks

* You have to be able to jump to the starting address of the routine
* You have to remember where you jumped from
* You have to be able to jump back to where you were

The PIC handles subroutines return addresses through a stack mechanism
CALL
* The address of the subroutine is in the instruction (11 bits, plus 2 bits inTHJLA

* The \alue of the incremented PC (Q1) is pushed onto the return address stack (Q2/Q3)

* The nev address is loaded into the PC (Q4)
* There is a NOP while the address is applied to the program memory (Q1-Q3)
* The IR loads the first instruction from the subroutines (Q4)

RETURN

* The PC gets the address on the top of the stack (Q2/Q3)
* There is a NOP while the address is applied to the program memory (Q1-Q3)
* The IR loads the instruction just after the subroutias valled (Q4)

RETLW

* The PC gets the address on the top of the stack (Q2/Q3)
» A literal value k in the instruction goes through the ALU into the Wister (Q2-Q4)
* There is a NOP while the address is applied to the program memory (Q1-Q3)
* The IR loads the instruction just after the subroutias valled (Q4)
* You can use the RET instruction to create a lookup table in program memory
» CALL the lookup table subroutine
» Calculate the d$et into the lookup table and add thdsef to the PC
» Eachentryin thelookuptableis aRETLW instructionthatreturnsfrom the subroutine
while putting the appropriatealue in the W rgister

Interrupts

What are thg?

* A method that an asynchronous process can communicate with the processor
» /O and A/D processes are widor example, compared to the processor speed
» 1/O and A/D ports hee their avn state machines to control their actions

How are thg implemented?

* Aninterrupt bit is set when adee signals for an interrupt

* At the bginning of each instructionycle, the internal logic tests the interrupt bit
» The processor sas its current instruction on the stack and disables interrupts
* The processor then enters an interrupt service routine

» The processor polls the interrupt flags to find thecgethat caused the interrupt

» The processor tas care of the situation
» The processor then returns to the instruction just after the interrupt occurred
* Interrupts are re-enabled on the return

On the PIC the interrupts all come into a single line

* OR aate tree with tw levels

» The GIE (Global Interrupt Enable) bit is ANDed with the Interrupt input line

* The interrupt service routine must poll the interrupt flags to see what caused the interrupt
* More than one interrupt could happen at the same time, so the polling order is important

PIC Process specifics

* INTF flag is sampledwery Q1

* On the Q1 in which it is high, the instruction currently beirgcated is alled to finish
* The instruction being fetched is nokeeuted on the follwing cycle, which is a NOP
* The current glue of the PC is pushed onto the stack

» On the secondycle after the INTF flag is sampled high 0x0004 is loaded into the PC

* Onthethird cycle afterthe INTF flag is samplechigh, thefirst instructionof theinterrupt
service routine isx@cuted

« LOOP: BCF INTCON, GIE --Disable the GIE flag

» BTFSC INTCON, GIE --test if it is still disabled

« GOTO LOOP --loop back to BCF if not disabled
* MOVWF W_TEMP --save W raister

* MOVF STATUS, 0 --swap SRATUS and W rgisters

« BCF STATUS, RPO --change to memory bank 0O

* MOVWEF STATUS_TEMP --save STATUS rayister

» ...Interrupt service routine goes here

* MOVF STATUS_TEMRO --get old \alue of SATUS rayister
* MOVWEF STATUS --put it back in the SATUS register
* MOVFW_TEMP --get the old W rgister \alue

Also note, W_TEMP mustxé in both “banks” of memory since the currealue of the RPO bit
could be either 0 or 1 in &TUS.

	E21: Digital System Design Lectures, Fall 2000
	Course Description

	F00 E21 Lecture #1
	Introduction
	Administrivia
	The most important thing...
	Focus of the course
	Final project
	Expectactions
	Syllabus

	The basis of digital systems
	1's and 0's
	Logic gates
	Table 1: Truth Tables

	SSI components

	F00 E21 Lecture #2
	The basis of digital systems
	Number Systems
	So how do we represent negative numbers?
	Other representations...

	F00 E21 Lecture #3
	Error-detection and error correction
	Hamming Codes
	Designing Simple Logic Circuits
	Combinational Logic
	Standard Representations
	Is there a better way?

	F00 E21 Lecture #4
	Designing Simple Logic Circuitsi
	More on Karnaugh Maps
	Procedure for designing a combinational circuit of 6 variables or less

	When Karnaugh Maps don’t work...
	Quine-McCluskey Method
	1. Find all of the size 1-subcubes (minterms in the truth table)
	2. n = 1
	3. Group the minterms according to how many 1’s they have in them
	4. Use terms in adjacent groups to form (n+1)-subcubes
	5. Label the level n minterms as to whether they are covered by a level n+1 subcube
	6. Increment n and loop back to step 3

	Minimal Cover Generation
	1. Find the Essential Prime Implicants [EPI]
	2. Find the Minimal Cover Expression

	F00 E21 Lecture #5
	Designing Simple Logic Circuits
	Minimal Cover Generation with Quine-McClusky
	1. Find the Essential Prime Implicants [EPI]
	2. Find the Minimal Cover Expression

	Example of SOP method
	Technology Mapping
	Term Decomposition

	F00 E21 Lecture #6
	Logic Families
	History

	The Basic Inverter
	Bipolar Logic
	A basic inverter
	Basic AND and OR gates
	TTL Families
	CMOS: Complementary metal oxide semiconductor
	A basic inverter

	F00 E21 Lecture #7
	Logic Families
	CMOS NAND and NOR gates
	Fanin
	Noninverting gates
	Fanout
	CMOS Inputs
	Schmitt-Trigger Inputs
	Three-state Outputs
	CMOS families
	ECL: Emitter Coupled Logic

	F00 E21 Lecture #8
	VHDL: VHSIC Hardware Description Language
	Simple Example 1: A comparator
	Entities & Architectures
	Other major language elements
	Levels of Abstraction (styles)
	Behavioral Modeling
	Designing combinational logic using asynchronous assignment statements
	Designing combinational circuits using a process statement

	F00 E21 Lecture #9
	IEEE 1164 Data Types
	Combinational Logic Design Components
	Decoder

	F00 E21 Lecture #10
	Combinational Logic Elements
	Decoder
	Encoder
	Multiplexer (MUX)
	Demultiplexer

	F00 E21 Lecture #11
	Combinational Logic Elements
	Comparators
	Shifters/Rotators
	Ripple Adders
	Carry Lookahead Adders
	ALUs

	F00 E21 Lecture #12
	Programmable Logic Devices
	Field Programmable Gate Arrays [FPGA]

	Sequential Logic
	Flip-flop: 2 NAND gates

	F00 E21 Lecture #13
	Sequential Logic
	Flip-flop: 2 NAND gates
	Useful Flip-flops

	F00 E21 Lecture #14
	Sequential Logic
	State Machines
	Designing a Sequential Circuit
	Example:
	1. Design a state machine that holds a 1 value on the output for 1 clock cycle any time three 0’s...
	1. Has to be a Moore machine to hold the output
	2. Create the state diagram and assign values to the states
	3. Create the state table and minimize the number of states (already done)
	4. Select the kind of flip-flops to use: S-R.
	5. Calculate the logic equations for the output and flip-flop inputs
	6. Build the circuit based on the logic equations

	F00 E21 Lecture #15
	Sequential Logic
	Characteristic Excitation Tables
	Example: Timer circuit
	1. Has to be a Moore machine (only input is a clock)
	2. State diagram is 16 states from 0 to 15, moving from one to the next.
	3. Build state table: states cannot be minimized
	4. Select J-K flip-flops for this circuit.
	5. Calculate the logic equations:
	6. Build the circuit

	Useful Sequential Circuits
	Simple Registers
	Example: ROM and a Register

	F00 E21 Lecture #16
	Useful Sequential Circuits
	Shift Register
	1. Clear control to clear the register to 0
	2. CP input for a clock pulse
	3. Control lines: 00 = maintain, 01 = load input, 10 = shift left, 11 = shift right
	4. N input lines, as well as left and right input lines

	Counters
	Timing signals
	Example: Serial to Parallel Converter

	F00 E21 Lecture #17
	Useful Sequential Circuits
	Timing signals
	Register Files
	RAM
	1. Chip select
	2. Decode the address
	3. Activate the appropriate locations in memory
	4. Write data to the memory cells / Interpret and output data

	F00 E21 Lecture #18
	RAM

	F00 E21 Lecture #19
	Synchronous Circuits: RAM
	SRAM Performance
	DRAM

	ROM: Read Only Memory
	Basic ROM
	PROM
	EPROM
	EEPROM
	ROM configuration & timing

	F00 E21 Lecture #20
	Algorithmic State Machine Design
	Designing the Data Processing Unit
	Designing the Control Unit
	Design by standard state machine techniques
	Design by using a flip-flop for each state
	Design with decoders
	Design with multiplexers

	Example
	Flip-flop per state design
	Mux design
	Table 1: Example MUX Design Table for 0110 bit string recognition problem

	F00 E21 Lecture #21
	VHDL State Machine Design Techniques
	Communication between devices

	F00 E21 Lecture #22
	Communication between devices
	General models of communication
	Parallel Communication
	Serial Communication

	F00 E21 Lecture #23
	Serial Communication
	Asynchronous communication protocol
	Example asychronous receiver

	Sensing & A/D interfaces
	Keywords
	A/D converters

	F00 E21 Lecture #24
	Sensing & A/D interfaces
	Design of a high-end ADC: MAXIM MAX1400 ADC ($9 each)

	Designing an A/D system
	Measurement methodology
	System Components

	Sensing and Error
	Measurement error
	Nature imposed noise
	Human imposed noise
	Other noise sources
	Solutions to measurement error
	Solutions to noise

	F00 E21 Lecture #25
	Genetic Algorithms and Evolutionary Programming
	Genetic algorithms [GA]
	Variations
	Issues with GAs

	Example
	Evolvable Hardware

	F00 E21 Lecture #26
	Evolvable Hardware
	Example: Tone Discriminator
	Example: Robot controller
	Training for robustness I: robot controller with bit errors
	Training for robustness II: the Evolvatron
	Custom hardware for evolution of buildable circuits: the Evolvable Motherboard
	Example: Inverting amplifier
	Example: Evolving in simulation

	F00 E21 Lecture #27
	Intellectual Property Rights
	Trade Secret
	1. have novelty
	2. represent an economic investment to the claimant,
	3. have involved some effort in development, and
	4. the company must show that it made some effort to keep the information a secret.

	Copyright

	F00 E21 Lecture #28
	Administrivia
	Intellectual Property Rights: Patents
	1. fall within the category of permissible subject matter
	2. have utility
	3. have novelty
	4. must be nonobvious
	5. be adequately described or enabled (for one of ordinary skill in the art to make and use the i...
	6. claimed by the inventor in clear and definite terms
	What types of patents are there?
	Provisional v. Non-provisonal patents
	Process
	1. Generate a great idea, process, or invention
	2. Figure out if your idea is patentable
	3. Figure out if it infringes on any other patents
	4. Start the process with a provisonal application (optional)
	5. Develop your non-provisional application (usually with a lawyer)
	6. Go through the challenge process with a patent examiner
	7. If you patent is granted, then you can claim a patent on your invention

	Software Patents
	Digital System Patents

	F00 E21 Lecture #29
	I/O Interfaces: USB Protocol
	Building a USB device

	F00 E21 Lecture #30
	I/O Interfaces: PCI Bus Protocol
	Bus structure
	PCI Commands
	Data Transfers
	1. When the bus master has been given control of the bus, it asserts FRAME. This line remains ass...
	2. At the start of clock 2, the target device will recognize its address on the AD lines
	3. The initiator ceases driving the AD bus. A turnaround cycle is required on all multiply driven...
	4. After one empty clock cycle, the target asserts DEVSEL to say it has recognized its address an...
	5. The intiator reads the data and changes the byte enable lines in prepraration for the next read.
	6. In this example, the target needs time to prepare the second block of data for transmission. T...
	7. At clock cycle 6, the target places the third piece of data on the AD lines, but the initiator...
	8. The initiator knows this data transfer is the last, and deasserts FRAME to tell the target thi...
	9. The initiator deasserts IRDY, returning the bus to an idle state, and the target deasserts TRD...

	F00 E21 Lecture #31
	I/O Interfaces: PCI Bus Protocol: A State Machine Representation
	Table 1: State table for a simple I/O device (Read cycle)

	PCI Bus: Arbitration
	1. A asserts REQ signal, the arbiter samples the signal at clock cycle 1
	2. During clock cycle 1, B requests the bus.
	3. At the same time, the arbiter grants A’s request by asserting GNT-A.
	4. Bus-master A samples GNT-A at the beginning of cycle 2 and starts a transfer process by assert...
	5. The arbiter samples the REQ lines in clock cycle 3 and decides to grant the next transfer to B...
	6. A deasserts FRAME, but still asserts IRDY to tell the target to read the data
	7. When IRDY and FRAME are deasserted, B is able to take control of the bus by asserting FRAME. I...

	Microcontrollers
	Microcontrollers v. Microprocessors

	F00 E21 Lecture #32
	Building a Microcontroller
	Register Transfer Language
	Control-Unit: Fetch-Execute Cycle
	Datapath construction for a microcontroller
	Example: PIC Microcontroller Architecture

	F00 E21 Lecture #33
	Microcontroller Example: PIC Microcontroller Architecture
	Bus architecture
	Address modes
	Harvard v. Von Neumann Architecture (Memory design)
	Pipelining
	The Fetch Cycle
	Execute Cycle

	F00 E21 Lecture #34
	Example Instructions
	Instruction Formats
	Example: PIC Microcontroller Instruction Set

	F00 E21 Lecture #35
	Example: Subroutines on a PIC
	Interrupts

