
1

BR 8/99

A D-Latch in VHDL
entity mydlatch is port (

signal d, gate: in std_logic;
signal q: out std_logic

);
end mydlatch;
architecture behavior of mydlatch is
-- rising edge triggered DFF

state: process (gate)
if (gate = ‘1’) then

q < = d;

end if;

end process;
end behavior;

No default
assignment for
‘q’; only assigned
when gate is high.

D
Q

G

BR 8/99

A Dff in VHDL
entity mydff is port (

signal d, clk: in std_logic;
signal q: out std_logic

);
end mydff;
architecture behavior of mydff is
-- rising edge triggered DFF

state: process (clk)
if (clk’event and clk = ‘1’) then

q < = d;

end if;

end process;
end behavior;

Rising edge

Assignment
‘protected’ by
clock edge. So
DFF is
synthesized.

D
Q

C

BR 8/99

Another way to do a Dff in VHDL
entity mydff is port (

signal d, clk: in std_logic;
signal q: out std_logic

);
end mydff;
architecture behavior of mydff is
-- rising edge triggered DFF

state: process
wait until clk’event and clk = ‘1’);
q < = d;

end process;
end behavior;

Wait for Rising
edge

Assignment after
rising edge clock
so DFF is
synthesized.

D
Q

C

No sensitivity list

BR 8/99

Comments on Examples
• Process with a clock in sensitivity list or a ‘wait’

on a clock edge is called a ‘clocked process’.
• ALL assignments that are protected by a clock

edge will have a DFFs placed on the logic outputs.
• Can very easily insert DFFs between blocks of

logic in VHDL.

BR 8/99

An example

D
Q

C

D
Q

C

D
Q

C

D
Q

C

A

B

C

D

D
Q

C

D
Q

C

D
Q

C

A_1

B_1

C_1

D_1

ABC_1

D_2

Y

BR 8/99

Entity Declaration

library ieee;
use ieee.std_logic_1164.all;

entity plogic is
port (signal a,b,c,d: in std_logic;

signal clk: in std_logic;
signal y: out std_logic

);
end plogic;

2

BR 8/99

Architecturearchitecture a of plogic is
signal a_1, b_1, c_1 :std_logic;
signal d_1,d_2, abc_1: std_logic;

begin
s1: process
begin
wait until clk'event and clk='1';
a_1 <= a; b_1 <= b; c_1 <= c; d_1 <= d;

end process s1;

s2: process
begin
wait until (clk'event and clk = '1');
abc_1 <= a_1 and b_1 and c_1;
d_2 <= d_1;

end process s2;

s3: process
begin
wait until (clk'event and clk = '1');
y <= abc_1 or d_2;

end process s3;
end a;

Each process defines
a block of logic plus
DFFs.

Could have used ‘if’
statements with clk in
sensitivity list as
well.

Logic in process can
be as complex as you
wish.

BR 8/99

Processes S1, S2, S3

D
Q

C

D
Q

C

D
Q

C

D
Q

C

A

B

C

D

D
Q

C

D
Q

C

D
Q

C

A_1

B_1

C_1

D_1

ABC_1

D_2

Y

Process S1
Process S2 Process S3

BR 8/99

A Problem with VHDL Semantics vs
Maxplus Synthesis…...

architecture behavior of pipetest is
signal a_1, a_2, a_3: std_logic;

begin
process
begin
wait until clk'event and clk='1';
a_1 <= a;
a_2 <= a_1; -- what happens??
a_3 <= a_2;
y <= a_3;

end process;
end behavior;

What logic
should be
synthesized for
this architecture?

BR 8/99

VHDL Definition of Signal Update
VHDL defines that SIGNAL UPDATE within a PROCESS
takes place after the process is EXITED. This means that
that the logic synthesized should act like the following:

D
Q

C

A
D

Q
C

D
Q

C

A_1 A_2
D

Q
C

A_3 Y

On the clock edge, signal A_1 is updated with A. However,
according to VHDL semantics, the signal does not change its
value until process EXIT. This means that A_2 will get the old
value of A_1, as is shown above.

BR 8/99

A Problem In Maxplus Synthesis
The Synopsys and Synplicity synthesis tools do synthesize to 4
Dffs; this is correct. Unfortunately, Altera Maxplus synthesizes
to just:

D
Q

C

A
Y

This is incorrect, but at the same time, the signal updating
rules that VHDL uses can be confusing. The code looks
like it should produce the above logic!!!

BR 8/99

What to do????
• If you really want 4 FFs in a chain, then use four separate

processes, with wait statements in each process. This way,
your intentions will be clear and Maxplus will produce the
correct logic

• If you need temporary placeholders for intermediate
results, then use VARIABLES.
– Variables can only be declared within processes
– Variable update semantics act like variable update in normal

programming languages. Variables are updated IMMEDIATELY.
– Variable assignment uses the ‘ := ‘ operator. Signal assignment

uses ‘ <= ‘ .

3

BR 8/99

VHDL Variables
architecture behavior of pipetest is
begin
process

variable a_1, a_2, a_3: std_logic;
begin

wait until clk'event and clk='1';
a_1 := a;
a_2 := a_1; -- what happens??
a_3 := a_2;
y <= a_3;

end process;

end behavior;

Variable declaration

Variable assignment

Synthesizes correctly to :

D
Q

C

A
Y

BR 8/99

Variables vs. Signals
• ALWAYS use variables for temporary values

within processes
– However, for the RTL done in this class I doubt if you

will ever need to use variables.
• Use SIGNALS for passing information between

processes
– Variables cannot be used outside of processes
– A variable ‘x’ in a process cannot be accessed by other

processes. Can only be used within the process it is
declared.

BR 8/99

Registers
The most common sequential building block is the register. A
register is N bits wide, and has a load line for loading in a new
value into the register.

DIN

N
CLK

LD

R
E
G

DOUT

N

Register contents do not change
unless LD = 1 on active edge of
clock.

A DFF is NOT a register! DFF
contents change every clock
edge.

ACLR used to asynchronously
clear the register

ACLR

BR 8/99

VHDL for 8-bit Register (Entity)

library ieee;
use ieee.std_logic_1164.all;

-- 8 bit register
entity reg8 is

port (clk: in std_logic;
reset: in std_logic; -- async reset
ld: in std_logic; -- synchronous load
din: in std_logic_vector(7 downto 0);

-- outputs
dout: out std_logic_vector(7 downto 0)

);
end reg8;

BR 8/99

VHDL for 8-bit Register (Architecture)

architecture a of reg8 is
begin

main:process(clk, reset)
begin
if (reset = '1') then

dout <= "00000000";
elsif (clk'event and clk='1') then

-- rising edge of clock
if (ld = '1') then
dout <= din;

end if;
end if;

end process main;
end a;

Asynchronous Reset

Change register state
on rising edge and
assertion of load line.

