Verilog RTL Modeling
 This assignment introduces you to Verilog RTL modeling

» Similar in concept to VHDL RTL, just different syntax
» Will use serial data transfer as the problem to be solved

11/6/2002 BR 1

Serial Communication

 Serial communication is as widely (or even more widely
used) than parallel communication
— Especially true if communication occurs over long wires
* Many new high speed serial communication standards
have been developed
— USB, IEEE Firewire, HyperTransport, etc.
 This lab will introduce you to some basic serial
communication concepts, namely bit-stuffing and NRZI

encoding
— These techniques are used in the USB (Universal Serial Bus)
interface.
11/6/2002 BR 2

LI T S I T T TN S I Y

NRZ —> pua L
NRZI — mi e

Figgure 711, NIEI Dats Eneoding

Non-return to zero (NRZ) -
normal data transitions.

NRZ Inverted (NRZI, not a
good description, is not
inverse of NRZ). A
transition for every zero bit.

Strings of zeros means lots of
transitions. Strings of ‘1’s
means steady line.

Figgure -1, Flow Disgram for NREI

11/6/2002 BR 3

Bit Stuffing — a ‘0’ is inserted after every six consecutive ‘1’s in
order to ensure a signal transition so that receiver clock can remain
synchronized to the bit stream.

Data Encoding Sequence:
Raw Data | LI 1

- Syne Pattern — - Packet Data

- Stuffed Bt

Bit Stuffed Data s LML

iq Sync Pattern | g Packet Data

|F— Six Ones —-‘i

NRZL e | [T LT LT 1 1 I
Encoded Data | Sync Pattern wle Packet Data >

Figure 7-13, Bit Staffing

Bit stuffing done automatically by sending logic. Sync pattern
starts data transmission and is seven ‘0’s followed by a “1°.
11/6/2002 BR 4

A serial bit stream

NRZ NRZI
NRZ bitstuffed bitstuffed
serial Bit Stuff serial serial
stream (insert a ‘0’ stream stream
after every 6 NRZI
. consecutive Encoding
Gim ’s) (sout_nrz) (sout_nrzi)
NRZ NRZ
serial bitstuffed
stream Bit DeStuff serial

(remove a ‘0’

stream
- NRZI
consecutive Decode _

‘1s)

Bytes send LSB first!!!

11/6/2002 BR 5

Complete serializer/deserializer in thser.v

serializer module (ser.v)
din Shift
Reg bit stuff and sout
8 ! nrzi encode
x X '
d_rdy ! v
start FSM
reset
clk
serclk
deserializer module (deser.v)
dout : bit destuff
Shift and nrzi
g Reg decode | | sin
’ FSM '

11/6/2002 BR 6

The Task

* You are to design the serializer module (in file ser.v) using
Verilog RTL

— May need several modules within file ser.v, top level module is
called serializer and has the interface shown

— Your ser.v code must be synthesizeable
I have designed deserializer module (in file deser.v) and
testbench (thser.v).
— Testbench connects the serializer/deserializer modules together
— Also sends 32 bytes to serializer/deserializer for testing purposes

11/6/2002 BR 7

Serializer Module

* Should wait until start is asserted
+ Send value on din serially over sout

» Request new value on din by asserting d_rdy

— In testbench, there is a clock cycle latency between assertion of
d_rdy and a new din value being provided

+ Continually send serial data until reset is asserted.
* Main clock is signal clk. The serial clock is serclk which
has 1 clock pulse for every 4 pulses on clk.
— New serial data should be provided for every pulse on serclk.
— Both clk and serclk provided by testbench.

11/6/2002 BR 8

Zip Archive serial.zip

» Contains directory serial, which contains files thser.v,
ser.v, deser.v .

* Also contains a Modelsim golden waveform called
serial_vsim.wlf and command file serial wave.do To view
this waveform do:

— ghsim —view serial_vsim.wlf —do “do serial_wave.do”
— Shows all signals in thser.v from golden simulation.
» The file ghsim_gold_log.txt contains the golden output
— Testbench just sends 32 bytes to serializer/deserializer
— Each time a new byte comes out of the deserializer, it is printed to
screen.

» Synopsys script file ser.script for testing if verilog code is

DESerializer Operation

Understanding the DESerializer operation may help with
implementation of the serializer.

Bit DeStuff
) NRZI (remove a ‘0’
NRZI Decode | \rz after every 6
bitstuffed . consecutive
. blts.tuffed Ts) NRZ
seria serial serial
stream stream
Dout[7..0] stream
Output Shift
2 Register 8 Register
Tload
3bit Load asserted every 8 bits
shifted in so that shift
counter .
register value transferred to
11/6/2002 BR output reg. 10

synthesizeable.
11/6/2002 BR 9
NRZI Decode If last b1t‘ =, this b‘lt,, then
outputa ‘1’ else ‘0’.
sin @equal Sin 01z | pewdbit is
— D E—
n D Q en LDQ asserted
— b when
newbit |sin_nrz has
D Q valid data.
E—

H S0 is reset state. Sin_nrzi = 0 is start

of transmission (idle state is ‘1, a ‘0’

BOE ©

——— bit is always transmitted first).

L———1 en is asserted every four clocks

I — (know that serial clock is %4 of clock
frequency).

11/6/2002 BR 11

Finite State Machine for desnrz

nodul e desnrz (sout, newbit,clk, reset,sin);

out put sout, newbit;
input clk,reset,sin; reg declaration required
anytime a signal is assigned a
value from an assignment

statement in a procedure

sin, en, sout, newbi t;
2:0] state,nstate;

“define SO ' b000

“define SI ' b001 block

“define S2 ' b010)

\gg:: ne 3 E%é Does not imply that a
“define S5 ' bl01 ‘register’ will be synthesized
“define S6 ' blio

“define S7 'bl1l

State definitions

11/6/2002 BR 12

Procedural block for FSM state storage | Triggered on rising edge of Combinational Block Triggered on any changes to
clock, so outputs will have alvays @state o sin) begin State or sin
al ways @ posedge cl k) begin - -
if (reset == 1)_ begin arlsilngtedge DFF nstate = state; | Default output assignments
state = "~ S0; synthesized. en = 0; .
Do case (state) (en negated, stay in same
sout = 1. *S0: // wait for start edge | state)
end ‘Synchronous reset if (sin ==0) nstate = "SI,
el se state = nstate; "Sl: begin 3
en = 1;
newbit = 0; len -assertedfylFSli\/I s
i == i ogic every 4 clocks - e ; -
if (en == 1) begin N y . S2: nstate = "S3; Need begin/end if more
if (I_sin !==sin) sout =0; |since we know serial *S3: nstate = 'S4 than one statement in
el se soutg L clock is ¥ clock freq. 'S4 nstate = "SL;
newbit = 1; N block.
| sin =sin; default: nstate = 'S0;
B . . . endcase
en dend 1_sin is last serial input. If last serial input not equal end
to current serial input, then was a ‘0’ value. If the last endnmodul e
serial bit is equal to current bit, then a ‘1°. The newbit
asserted to indicate a valid serial output bit.
11/6/2002 BR 13 11/6/2002 BR 14

8-bit Shift register in deser.v

Bit De-stufﬁng modul e des_shift (dout, sin, clk, reset, newbit,pause);
output [7:0] dout;
input clk, reset, newbit,pause, sin;

pause asserted when six ‘1’ reg [7:0] dout;

bits detected. The pause signal al ways @posedge cl k) begin

used to halt shift register so

that the ‘0 bit which was if ((newbit == 1) && (pause == 0)) begin

stuffed is not shifted into 2§3: 0 ;] dgu;i > L [shift occurs if newbit
register. end ' available and not

if (reset == 1)
end

dout = ' b00000000; destuffing (pause == 0).

endnodul e

i

Data sent LSB first so shift data

Synchronous reset into MSB.

® ® 06

— newbit

11/6/2002 BR 15 11/6/2002 BR 16

3-bit Counter register in deser.v 8-bit Register in deser.v

nodul e descnt (dout, zero, clk, reset, newbit, pause);

modul e outre ,d,r,clk,1d);
output [2:0] dout; g (a)

out put zero; put put [7:0] q;
input clk,reset, newbit, pause; input [7:0] d;
2 . input r,clk,ld;
::g [ze.rg]' dout; Assert zero when counter
. / value = 0. This output used reg [7:0] q;
al ways @dout) begin .
it (dout == 'b000) zero = 1; |tO control loading of output Hex formattin
else zero = 0; register~ al ways @ posedge cl k) begin g.
end if (I1d==1) q=d
al ways @ posedge cl k) begin if (r == 1) q = 'h00;
end '\
?f ((newbit == 1) &&% (pause == 0)) dout = dout + 1; endnodul e
if (reset == 1) dout = 'b000; /"
end Note that synchronous reset takes
endmodul e Increment counter if newbit available precedence over synchronous load.
and not destuffing.

11/6/2002 BR 17 11/6/2002 BR 18

Deserializer module — connects other modules together

nodul e deserializer (dout, clk, reset, sin);
output [7:0] dout;
input clk, reset, sin;

Must explicitly declare the
wire [2:0] bitent; | widths of any wires whose
wire [7:0] sdout; width is not 1. (default
wire [7:0] dout; . .

width is 1).

df f u_dff (lat_sin,sin reset,clk);

desnrz u_desnrz (sout_nrz,newbit, clk, reset,lat_sin);
destuff u_destuff (sout, pause, newbit, sout_nrz,reset,clk);
descnt u_descnt (bitcnt, zero, clk, reset, newbit, pause);
des_shift u_shift (sdout, sout, clk, reset, newbit, pause);
outreg u_outreg (dout,sdout,reset,clk, zero);

endnodul e

11/6/2002 BR 19

Continual Assignment vs. Procedural assignment

Procedural assignment,

reg zero; / requires a ‘reg’ declaration
al ways @dout) begin

if (dout == 'b000) zero = 1;
el se zero = 0;
end

Can also be done as shown below. This style is known as
a continuous assignment. Only used for combinational
logic blocks. Output (right hand side) updated anytime an
event occurs on any signal in left hand side.

assign zero = ~dout[2] & ~dout[1] & ~dout[O]

11/6/2002 BR 20

Asynchronous vs Synchronous Inputs

reg ¢; Synchronous reset
al ways @ posedge cl k)M
if (r ==1) q =0;

else q = d;
reg q;
al ways @ posedge cl k) begin ASynChronouS reset —
q = d; note use of
end assign/deassign in
always @r) begin procedure block.

if (r) assign q = 0;
el se deassign q;
end

‘desasign’ needed to
disable continuous
drive when reset = 0

11/6/2002 BR 21

Incorrect Asynchronous Reset

reg q;

al ways @posedge cl k) begin
q=d

end

always @r) begin

it (r) qa=0;

end v\

Does not work for all cases. On change of
‘r’, will assign ‘q’ to a ‘0’ value. However,
next clock edge, ‘q’ will be assigned the ‘d’
value.

11/6/2002 BR 22

tbser module in thser.v

nmodul e tbser;

reg clk,reset,start;
wire [7:0] din;
wire [4:0] addr;
wire [7:0] dout;
reg [7:0] l|ast_dout;

Declaration of wires
«— | with non-default widths

Any block with ‘initial’

initial begin /
clk = 0; keyword only executed

reset = 1; once.
start = 0;
I ast _dout = ' hO0O;

end

11/6/2002 BR 23

tbser module in thser.v cont.

‘ Clock generation

al ways #(200/2) clk = ~clk;

sercl kgen u_serclk (serclk, clk, reset);

serializer u_ser (sout, d_rdy, din, clk,serclk,reset, start);
deserializer u_des (dout, clk, reset, sout);

cnt5 wu_cnt5 (addr, clk, reset, d_rdy);

romu_rom (din, addr);

‘serclkgen’ module generates serial clock.

‘rom’, ‘cnt5’ used to generate 8-bit input values to serializer
module (‘rom’ provides data values, ‘cnt5’ is 5-bit counter
that provides address to ‘rom’ module. ‘cnt5” incremented
anytime that ‘d_rdy’ is asserted.

11/6/2002 BR 24

tbser module in thser.v cont.

trace block prints dout value anytime it changes and
serclk is asserted.

Can name blocks
(not required)

al ways @ posedge clk) begin : trace

if (serclk == 1) begin

if (last_dout !== dout) $display("Dout = % ", dout);
| ast _dout = dout;
end
end
Print in hex format.
11/6/2002 BR 25

al ways begin :
@ posedge cl k) ;
@ posedge clk);

tbser module in thser.v cont.

stim stim block provide stimulus for

input signals.

reset = 0;
@posedge clk); Note use of @(posedge clk) --
start = 1; / waits until rising edge before
@ posedge clk); S
start = 0; continuing.
while (addr == 0) begin
@ posedge clk);
end
while (addr !== 0) begin
@ posedge clk);
end
while (addr == 0) begin
@ posedge clk);
end
$fini sh;
end

11/6/2002

BR 26

