Laboratorio di Fisica VI

1 Multivibratori con timer 555

Relazione Gruppo

2 Multivibratore astabile

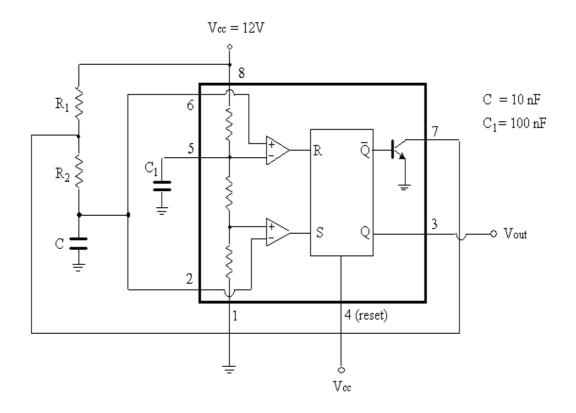


Figura 1:

- Montare il circuito di figura 1 scegliendo i valori di R_1 e R_2 in modo da avere un segnale V_{out} caratterizzato da un duty cycle dell'80% e una frequenza di circa 5 KHz:
- Visualizzare sull'oscilloscopio il segnale di uscita e il segnale ai capi del condensatore e disegnarli sulla stessa scala dei tempi

• Misurare i tempi in cui il segnale di uscita e' rispettivamente alto (T1) e basso (T2) e verificare che rispettino il periodo ed il duty cycle voluto:

$$T_1 =$$

$$T_2 =$$

• Spiegare l'andamento dei due segnali e fornire l'espressione del Duty Cycle $(T_1/(T_1+T_2))$ in funzione dei componenti del circuito.

3 Multivibratore monostabile

Figura 2:

• Montare il circuito di figura 2 scegliendo il valore di R in modo da ottenere un impulso di durata $T = 200\mu s$ (in figura il circuito 555 e' rappresentato a sinistra sinteticamente come una scatola nera, ed a destra in dettaglio con le sue parti interne, per rendere piu' comprensibile il funzionamento del circuito).

- Utilizzando il generatore di impulsi, inviare in ingresso un impulso con grande duty cycle ed ampiezza massima. È inoltre importante che il tempo in cui l'input sta a massa non sia superiore a quello della durata dell'impulso di uscita, cioè $200\mu s$. Visualizzare sull'oscilloscopio il segnale di uscita e il segnale ai capi del condensatore C e disegnarli sulla stessa scala temporale.
- Spiegare il funzionamento del circuito ed in particolare verificare che la durata dell'impulso di uscita corrisponde al valore aspettato :

$$T_{misurato} =$$

$$T_{aspettato} =$$

4 Trigger di Schmitt

Montare il circuito di figura 3 scegliendo i valori di R_1 , R_2 e V_{cc} in modo da ottenere le seguenti soglie:

$$V_{inf} = -1V$$

$$V_{sup} = +3V$$

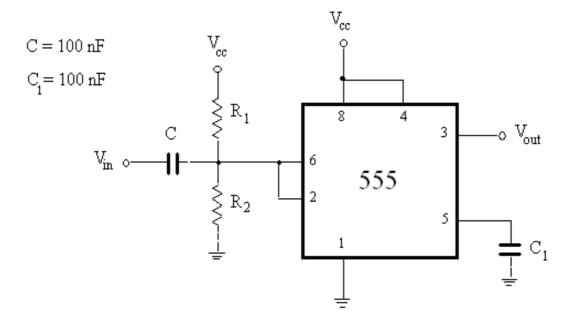


Figura 3:

- Inviare in ingresso un'onda triangolare di ampiezza opportuna e frequenza intorno a 10 KHz e verificare all'oscilloscopio il funzionamento del circuito.
- Disegnare sulla stessa scala temporale le forme d'onda V_{in} e V_{out}
- \bullet Spiegare il funzionamento del circuito e motivare la scelta di $R_1,\,R_2$ e V_{cc} .