Laboratorio di Fisica VI

1 Misura del "Common Mode Rejection Ratio" di un Amplificatore Differenziale

Relazione Gruppo

2 Amplificatore differenziale

2.1 Introduzione

L'amplificatore differenziale è un importante elemento dei sistemi analogici, utilizzato laddove sia necessario amplificare la differenza tra due segnali. Purtroppo, nessun differenziale amplifica solo la differenza tra i segnali di ingresso: una parte del segnale di uscita è riconducibile al contributo dato dal segnale di modo comune V_c .

In un amplificatore operazionale reale:

$$V_0 = A_d V_d + A_c V_c$$

con A_d amplificazione differenziale; A_c amplificazione di modo comune. È anche:

$$V_d = (V_+ - V_-)$$

 $V_+ + V_-$

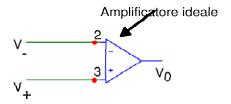
$$V_c = \frac{V_+ + V_-}{2}$$

Ad esempio, se $V_{+} = 2.1 \ V$, $V_{-} = 2.0 \ V$, avremo: $V_{d} = 0.1 \ V$, $V_{c} = 2.05 \ V$.

Un importante parametro da valutare nella scelta di un amplificatore differenziale \dot{e} il rapporto di reiezione del modo comune (CMRR):

$$CMRR = \frac{A_d}{A_c}$$

che, in dB è:


$$CMRR_{dB} = 20\log\frac{A_d}{A_c}$$

Più è alto il valore del CMRR, più l'amplificatore differenziale approssima il comportamento ideale $A_c = 0$.

L'operazionale reale può essere sostituito da un operazionale ideale con un generatore equivalente posto sull'ingresso non invertente (vedi figura 1).

In tal modo si tien conto dell'amplificazione di modo comune $\it reale$ del dispositivo.

Si dimostra che se $CMRR \gg 1/2$, la tensione di questo generatore equivalente è: $V_c/CMRR$.

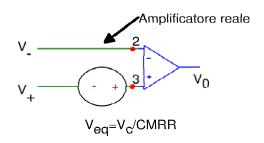


Figura 1:

2.2 Valutazione del CMRR di un $\mu A741$

Una valutazione del CMRR ci dà un'idea dell'adeguatezza di un operazionale nell'utilizzo come amplificatore differenziale.

Per la valutazione del CMRR del $\mu A741$ ci baseremo sul circuito di figura 2.

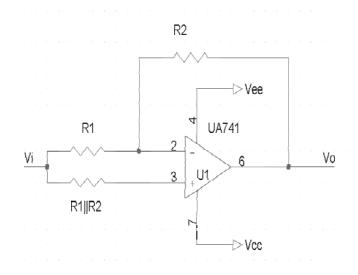


Figura 2:

Si tratta dello schema utilizzato dalla Philips Semiconductors per la valutazione dei propri dispositivi.

Siano:

$$R_1 = 100\Omega$$

$$R_2 = 10K\Omega$$

(quindi $R_1 \parallel R_2 = 100\Omega$)

Si applichi in ingresso una V_i sinusoidale, con: $9V < V_i < 10V$, valor medio nullo, frequenza 50 Hz.

Si descriva l'andamento di V_0 e si spieghi il funzionamento del circuito, assumendo l'operazionale ideale (basandosi quindi sul principio del cortocircuito virtuale).

Se consideriamo l'operazionale reale, cioè consideriamo anche l'effetto del generatore equivalente $V_i/CMRR$, applicando la sovrapposizione degli effetti ricaviamo che:

$$V_0 = V_i + \frac{V_i}{CMRR} \left(1 + \frac{R_2}{R_1} \right)$$

da cui si ricava il CMRR:

$$CMRR = \frac{V_i}{V_0 - V_i} \left(1 + \frac{R_2}{R_1} \right)$$

- 1. Utilizzando il multimetro digitale, misurare il valore di V_i e $(V_0 V_i)$ e ricavarne la misura del CMRR, a varie frequenze. (Effettuare le misure nel range di frequenze per le quali l'errore nella misura delle tensioni alternate con il multimetro è accettabile..). È il valore del CMRR misurato in accordo con quello specificato nel datasheet?
- 2. Riportare in un grafico l'andamento del CMRR (in dB) in funzione della frequenza.
- 3. Avremmo potuto misurare $(V_i V_0)$ con l'oscilloscopio? Motivare la risposta.
- 4. Perchè si evita di fare la misura del CMRR in DC?

2.3 Valutazione del CMRR di un amplificatore della differenza di due segnali

Si consideri adesso il circuito di figura 3.

Questo è lo schema classico di un amplificatore della differenza di due segnali.

Si mostri, in base al principio del cortocircuito virtuale e facendo uso del principio di sovrapposizione degli effetti, che è:

$$V_0 = V_2 \frac{R_4}{R_4 + R_3} \frac{R_1 + R_2}{R_1} - V_1 \frac{R_2}{R_1}$$

Si monti il circuito con $R_1 = R_2 = R_3 = R_4 = 10K\Omega$.

Si noti che in tale caso ci si aspetta $V_0 = (V_2 - V_1)$, cioè $A_d = 1$ e $A_c = 0$.

Il segnale di uscita dovrebbe dipendere quindi solo dalla differenza $V_2 - V_1$.

In realtà, se applichiamo ai due ingressi V_1 e V_2 del differenziale uno stesso segnale sinusoidale V_i , con $9V < V_i < 10V$, valor medio nullo, frequenza 50 Hz, possiamo verificare che $V_0 \neq 0$.

Dalle definizione di A_d ed A_c (con $V_1 = V_2$) segue:

$$V_0 = A_d(V_2 - V_1) + A_c \frac{V_2 + V_1}{2} = A_c \frac{V_1 + V_2}{2} = A_c V_i$$

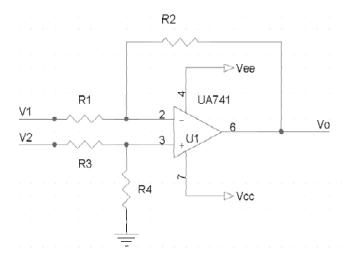


Figura 3:

Sostituendo, si ottiene:

$$CMRR = \frac{A_d}{A_c} = \frac{V_i}{V_0}$$

Misurare con l'oscilloscopio V_i e V_0 per vari valori di frequenza nel range DC-20 KHz e riportare in un grafico l'andamento del CMRR (in dB) ottenuto dalla precedente relazione, in funzione della frequenza. Quanto ottenuto è coerente con i risultati della misura del CMRR del solo operazionale effettuata in precedenza ?

Scegliere adesso quattro resistenze da 10 $k\Omega$, selezionandole con il multimetro in modo che il loro valore sia uguale entro, al più l'1%. Sostituirle a R_1, R_2, R_3 ed R_4 . Confrontare il CMRR ottenuto con quello appena misurato.