Experimental Methods in
Chaotic Vibrations

Perfect logic and faultless deduction make a pleasant
theoretical structure, but it may be right or wrong:
The experimenter is the only one to decide, and he is
always right.
L. Brillouin, Scientific Uncertainty and Information, 1964

4.1 INTRODUCTION: EXPERIMENTAL GOALS

A review of physical systems that exhibit chaotic vibrations was presented
in Chapter 3. In this chapter, we discuss some of the experimental tech-
niques that have been used successfully to observe and characterize chaotic
vibrations and strange attractors. To a great extent, these techniques are
specific to the physical medium, for example, rigid body, elastic solid, fluid,
or reacting medium. However, many of those measurements which are
unique to chaotic phenomenon, such as Poincaré maps or Lyapunov
exponents, are applicable to a wide spectrum of problems.

A diagram outlining the major components of an experiment is shown in
Figure 4-1. In this example, the vibrating object is an elastic beam with
either nonlinear boundary conditions or multiple equilibrium positions.
Also, the source of the vibration is an electromagnetic shaker. In the case of
an autonomous system, such as the Rayleigh—-Benard convection cell, the
source of instability is a prescribed temperature difference across the cell,
and the nonlinearities reside in the convective terms in the acceleration of
each fluid element.

The other major elements include transducers to convert physical vari-
ables into electronic voltages, a data acquisition and storage system, graphi-
cal display (such as an oscilloscope), and data analysis computer.
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Figure 4-1 Diagram showing components of an experimental system to measure the Poincaré
map of a chaotic physical system.

The techniques that must be mastered for experiments in chaotic vibra-
tions depend to some extent on the goals that one sets up for the
experimental study. These goals could include the following:

1. [Establish existence of chaotic vibration in a particular physical
system.

Determine critical parameters for bifurcations.

Determine criterion for chaos.

Map out chaotic regimes.

Measure qualitative features of chaotic attractor, for example, Poin-
caré maps.
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6. Measure quantitative properties of attractor, for example, Fourier
spectrum, Lyapunov exponent, probability density function, fractal
dimension.

4.2 NONLINEAR ELEMENTS IN DYNAMICAL SYSTEMS

The phenomena of chaotic vibrations cannot occur if the system is linear.
Thus, in performing experiments in chaotic dynamics, one should under-
stand the nature of the nonlinearities in the system. To refresh one’s
memory, a linear system is one in which the principle of superposition is
valid. Thus, if x;(¢) and x,(¢) are each possible motions of a given system,
then the system is linear if the sum ¢;x,(¢) + ¢,x,(¢) is also a possible
motion. Another form of the superposition principle is more easily de-
scribed in mathematical terms. Suppose the dynamics of a given system can
be modeled by a set of differential or integral equations of the form

L[X] = 1(¢) (4-2.1)

and X = (x;, x5,..., X,(?),..., x,) represents a set of independent dy-
namical variables that describe the system. Suppose the system is forced by
two different input functions f,(¢) and f,(z), with outputs X, () and X,(?).
If the system is linear, the effect of two simultaneous inputs can easily be
found:

L{c;X; + ,X,] = o,f, (1) + ¢,f,(2) (4-2.2)

The only way that this property can hold is for the terms in the differential
equation (4-2.1) to be to the first power X, or X;, and so on: hence the term
linear system. Nonlinear systems involve the unknown functions in forms
other than to the first power, that is, x2, x3,sin x, x%,1/(x? + b), or
similar forms for the derivatives or integrals of the function, that is,
%2, [xdr)>

Experimental nonlinearities can be created in many ways, some of them
quite subtle. In mechanical or electromagnetic systems, nonlinearities can
occur in the following forms:

(a) Nonlinear material or constitutive properties (stress versus strain,
voltage versus current)

(b) Nonlinear acceleration or kinematic terms (e.g., centripetal or
Coriolis acceleration terms)

(c) Nonlinear body forces
(d) Geometric nonlinearities
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(a) Material Nonlinearities
Examples of material nonlinearities in mechanical and electrical systems
include the following

Solid Materials. Nonlinear stress versus strain: (1) elastic (e.g., rubber)
and (2) inelastic (e.g., steel beyond the yield point, plasticity, creep).

Magnetic Materials. Nonlinear magnetic field intensity H versus flux
density B

B = f(H)
(e.g., ferromagnetic material iron, nickel, cobalt—hysteretic in nature).
Dielectric Materials. Nonlinear electric displacement D versus electric
field intensity E

D = {(E)

(e.g., ferroelectric materials).

Electric Circuit Elements. Nonlinear voltage versus current

V=f(I)

(e.g., Zener and tunnel diodes, nonlinear resistors, field effect transistors
(FET), metal oxide semiconductors (MOSFET)). Nonlinear voltage versus
charge

V=2g(Q)

(e.g., capacitors). Other material nonlinearities include nonlinear optical
materials (e.g., lasers), heat flux~temperature gradient properties, nonlinear
viscosity properties in fluids, voltage—current relations in electric arcs, and
dry friction.

(b) Kinematic Nonlinearities

This type of nonlinearity occurs in fluid mechanics in the Navier—Stokes
equations where the acceleration term includes a nonlinear velocity oper-
ator

dv
v dx

which represents convective effects.

or v*Vv
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In particle dynamics, one often uses local coordinate systems to describe
motion relative to some inertial reference frame. When the local frame
rotates with angular velocity § relative to the large frame, the absolute
acceleration is given by

A=a+A,+0Xp+@XQAXp+22 XV (4-2.3)

where A is the acceleration of the origin of the small frame relative to the
reference, and p and v are the local position vector and velocity, respec-
tively, of the particle. The last two terms are called the centripetal and
Coriolis acceleration terms. The last three terms are nonlinear in the
variables p, v, Q.

For a rigid body in pure rotation, nonlinear terms appear in Euler’s
equations for the rotation dynamics:

dw,

M =1 i (r,- NLSESN
dw

M, =1, = (I, = L)ws, (4-2.4)
dw,

M, =1,—= - (I, - I,)om,

where (M,, M,, M,) are applied force moments and (/,, I, 1,) are prin-
cipal second moments of mass about the center of mass.

(¢) Nonlinear Body Forces

Electromagnetic forces are represented as follows:
Currents F=all, or BIB
Magnetization F=M-vB
Moving media F =gv X B

(Here I is current, B is the magnetic field, M is the magnetization, ¢
represents charge, and v is the velocity of a moving charge.)



126 Experimental Methods in Chaotic Vibrations

o
e
-

{ ]
o

33
95353

W/ I
Figure 4-2 Examples of mechanical systems with geometric nonlinearities.

W

h 0007

]
b=
<

(d) Geometric Nonlinearities

Geometric nonlinearities in mechanics involve materials with linear
stress—strain behavior but the geometry changes with deformation. One
example is shown in Figure 4-2 where the constraint on the tip displace-
ment of the cantilever depends on the displacement.

Another classic example is the contact of two smooth elastic bodies
(called a Hertz contact). The force-displacement law for curved surfaces
follows a nonlinear power law

F=c8?

where 8 is the relative approach of the two bodies.

Another classic example of a geometric nonlinearity is the elastica shown
in Figure 4-3. In this problem, the material is linearly elastic but the large
deformations produce a nonlinear force-displacement or moment-angle
relation of the form

M = Ax

”

u
[1+ ()]

where M is the bending moment, « is the curvature of the neutral axis of
the beam, and u(x) is the transverse displacement of the beam. This
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Figure 4-3 Examples of geometric nonlinearities in elastic structures.

problem is an interesting one for study of chaotic vibrations since the
elastica can exhibit multiple equilibrium solutions (see Chapter 2). Cylin-
drical and spherical shells also exhibit geometric elastic nonlinearities (e.g.,
see Evensen, 1967).

43 EXPERIMENTAL CONTROLS

First and foremost, the experimenter in chaotic vibrations should have
control over noise, both mechanical and electronic. If one is to establish
chaotic behavior for a deterministic system, the noise inputs to the system
must be minimized.

For example, mechanical experiments such as vibration of structures or
autonomous fluid convection problems should be isolated from external
laboratory or building vibrations. This can be accomplished by using a
large-mass table with low-frequency air bearings. A low-cost solution is to
work at night when building noise is at a minimum.

Second, one should build in the ability to control significant physical
parameters in the experiments, such as forcing amplitude or temperature
gradient. This is especially important if one wishes to observe bifurcation
sequences such as period-doubling phenomena. Where possible, one should
use continuous element controls and avoid devices with incremental or step
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changes in the parameters. In some problems, there is more than one
dynamic motion for the same parameters. Thus, control over the initial
state variables may also be important.

Control of the number of degrees of freedom is another consideration.
For example, if one wishes to observe low-frequency oscillations of a
structure, care should be taken to make sure other vibration modes are not
excited. Other extraneous vibration modes can creep into the experiment
from the boundary conditions that support or clamp the structure. This
may call for securing the structure to a large-mass base.

Another factor is the number of significant figures required for accurate
measurement. For example, to piot Poincaré maps from digitally sampled
data, an 8 bit system may not be sensitive enough and one may have to go
with 12 bit electronics or better. In some of our experiments on Poincaré
maps, we have obtained better results from analog devices, such as a good
analog storage oscilloscope, than an 8 bit digital oscilloscope especially as
regards resolution of fine fractal structure in the maps.

Frequency Bandwidth

Most experiments in fluid, solid, or reacting systems may be viewed as
infinite-dimensional continua. However, one often tries to develop a
mathematical model with a few degrees of freedom to explain the major
features of the chaotic or turbulent motions of the system. This is usually
done by making measurements at a few spatial locations in the continuous
system and by limiting the frequency bandwidth over which one observes
the chaos. This is especially important if velocity measurements for phase
plane plots are to be made from deformation histories. Electronic differenti-
ation will amplify higher-frequency signals, which may not be of interest in
the experiment. Thus, extremely good electronic filters are often required,
especially ones that have little or no phase shift in the frequency band of
interest.

4.4 PHASE SPACE MEASUREMENTS

It was pointed out in Chapter 2 that chaotic dynamics are most easily
unraveled and understood when viewed from a phase space perspective. In
particle dynamics, this means a space with coordinates composed of the
position and velocity for each independent degree of freedom. In forced
problems, time becomes another dimension. Thus, the periodic forcing of a
two-degree-of-freedom oscillator with generalized positions {g;(?), g,(1))
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has a phase space representation with coordinates (q,, 4, 4,, ¢,, wt), where
w is the forcing frequency.

If one measures displacement ¢(t), a differentiation circuit is required. If
velocity is measured, the phase space may be spanned by (v, [vdt), which
calls for an integrator circuit. As noted above, in building integrator or
differentiator circuits, care should be taken that the phase -as well as the
amplitude is not distorted within the frequency band of interest.

In electronic or electrical circuit problems, the current and voltage can
be used as state variables. In fluid convection problems, temperature and
velocity variables are important.

Pseudo-Phase-Space Measurements

In many experiments, one has access to only one measured variable
{x(1,), x(t;), ...} (where ¢, and ¢, are sampling times, not to be confused
with Poincaré maps). When the time increment is uniform, that is, ¢, =
t, + 7 and so on, a pseudo-phase-space plot can be made using x(¢) and its
past (or future) values:

(x(#),x(t— 1)), or (x(t),x(r+ 7)) two-dimensional phase space

(x(2), x(t — 1), x(t — 27)) three-dimensional phase space

One can show that a closed trajectory in a phase space in (x, X) variables
will be closed in the (x(?), x(t — 7)) variables (one must connect the points
when the system is digitally sampled) as shown in Figure 4-4. Likewise,
chaotic trajectories in (x, x) look chaotic in (x(t), x(¢ — 7)) variables. The
plots can be carried out after the experiment by a computer or one may
perform on-line pseudo-phase-plane plots using a sample and hold circuit.

x(t+2T)

x(t+T)

x(t) Figure 4-4 Periodic trajectory of a
Periodic third-order dynamical system using

orbit pseudo-phase-space coordinates.
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The one difficulty with pseudo-phase-space variables is taking a Poincaré
map. For example, when there is a natural time scale, such as in forced
periodic motion of a system with frequency w, the sample time 7 is usually
chosen much smaller than the driving period; thatis, 1 < 27/w=T.If 7
is not an integer fraction of 7, Poincaré maps may lose some of the fine
fractal structure.

4.5 BIFURCATION DIAGRAMS

As discussed in Chapter 2, one of the signs of impending chaotic behavior
in dynamical systems is a series of changes in the nature of the periodic
motions as some parameter is varied. Typically, in a single-degree-of-free-
dom oscillator, as the control parameter approaches a critical value for
chaotic motion, subharmonic oscillations appear. In the now classic “lo-
gistic equation,” a series of period 2 oscillations appear {Eq. (1-3.6)}. The
phenomenon of sudden change in the motion as a parameter is varied is
called a bifurcation. A sample experimental bifurcation diagram is shown in
Figure 4-5. Such diagrams can be obtained experimentally by time sam-
pling the motion as in a Poincaré map and displaying the output on an
oscilloscope as shown in Figure 4-5. Here the value of the control parame-
ter, for example, a forcing amplitude or frequency, is plotted on the
horizontal axis and the time-sampled values of the motion are plotted on
the vertical axis. This diagram actually represents a series of experiments,
where each value of the control parameter is an experiment. When the
control parameter can be varied automatically, such as by a computer and
digital-to-analog device, the diagram can be obtained quite rapidly. Care
must be taken, however, to make sure transients have died out after each
change in the control parameter.

In the bifurcation diagram of Figure 4-5, the continuous horizontal lines
represent periodic motions of various subharmonics. The values in the
dashed line areas represent chaotic regions. The boundary between chaotic
and periodic motions can clearly be seen in this diagram.

When this is automated, one must be careful not to mistake a quasiperi-
odic motion for a chaotic motion. A phase plane Poincaré map is still very
useful for distinguishing between quasiperiodic and chaotic motions.

4.6 EXPERIMENTAL POINCARE MAPS
F 3

Poincaré maps are one of the principal ways of recognizing chaotic vibra-
tions in low-degree-of-freedom problems (see Table 2-2). We recall that
the dynamics of a one-degree-of-freedom forced mechanical oscillator or
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Figure 4-5 Experimental bifurcation diagram for the vibration of a buckled beam: Poincaré
map samples of bending displacement versus amplitude of forcing vibration.

L-R-C circuit may be described in a three-dimensional phase space. Thus,
if x(¢) is the displacement, (x, X, wt) represents a point in a cylindrical
phase space where ¢ = wr represents the phase of the periodic forcing
function. A Poincaré map for this problem consists of digitally sampled
points in this three-dimensional space, for example, (x(z,), X(t,), wt, =
2mn). As discussed in Chapter 2, this map can be thought of as slicing a
torus (see Figure 4-6).

Experimentally this can be done in several ways. If one has a storage
oscilloscope, the Poincaré map is obtained by intensifying the image on the
screen at a certain phase of the forcing voltage (sometimes called z-axis
modulation) (Figure 4-1). In our laboratory, we were able to generate a
5-10 V pulse of 1-2 ps duration when the forcing function reached a
certain phase:

wt, = ¢q + 27n (4-6.1)

This pulse was then used to intensify a phase plane image, (x(¢), X(1)),
using two vertical amplifiers as in Figure 4-7.

One can also use a digital oscilloscope in an external sampling rate mode
with the same narrow pulse signal used for the analog oscilloscope. A
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Figure 4-6 7op: Poincaré map sampling times at constant phase of forcing function. Bottom:
Geometric interpretation of Poincaré sections in the three-dimensional phase space.

e

_ Figure 4-7 Example of an experimental Poincaré map
for periodic forcing of a buckled beam.

similar technique can be employed using an analog-to-digital (A-D) signal
converter by storing the sampled data in a computer for display at a later
time. The important point here is that the sampling trigger signal must be
exactly synchronous with the forcing function.

Poincaré Maps— Change of Phase. As noted in Chapter 2, chaotic phase
plane trajectories can often be unraveled using the Poincaré map by taking

Experimental Poincaré Maps 133

Figure 4-8 Poincaré maps of a chaotic attractor for a buckled beam for different phases of
the forcing function.

a set of pictures for different phases ¢, in Eq. (4-6.1) (see Figure A-mv. This
is tantamount to sweeping the Poincaré plane in Figure 4-6. While one
Poincaré map can be used to expose the fractal nature of the attractor, a
complete set of maps varying ¢, from 0 to 27 is 8805:8.:&&.& to
obtain a complete picture of the attractor on which the motion is umwnm..

A series of pictures of various cross sections of a chaotic torus motion in
a three-dimensional phase space is shown in Figure 4-8. Note the symmetry
in the @ = 0° and 180° maps for the special case of the buckled beam
(Figure 4-5).
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Figure 4-12  Sketch of experimental setup for a position triggered Poincaré section.

Strain gage
for Poincaré map

An example of the experimental technique to obtain a (v,, ¢,) Poincaré
map is shown in Figure 4-12. When the mass hits the position constraint, a
sharp signal is obtained from a strain gauge or accelerometer. This sharp
signal can be used to trigger a data storage device (such as a storage
or digital oscilloscope) to store the value of the velocity of the particle.
(In the case shown in Figure 4-12, a linear variable differential transformer
—LVDT—is used to measure position, and this signal is electronically
differentiated to get the velocity.) To obtain the phase ¢, modulo 27, we
generate a periodic ramp signal in phase with the driving signal where the
minimum value of zero corresponds to ¢ = 0, and the maximum voltage of
the ramp corresponds to the phase ¢ = 2#. The impact-generated sharp
spike voltage is used to trigger the data storage device and store the value of
the ramp voltage along with the velocity signal before or after impact. A
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Figure 4-13 Position triggered Poincaré map for an oscillating mass with impact constraints
(Figure 4-12).

Poincaré map for a mass bouncing between two elastic walls using this
(v,, ¢,) technique is shown in Figure 4-13.

Another example of this kind of Poincaré map is shown in Figure 4-14
for the chaotic vibrations of a motor. In this problem, the motor has a
nonlinear torque—angle relation created by a dc current in one of the stator
poles, and the permanent magnet rotor is driven by a sinusoidal torque
created by an ac current in an adjacent coil. The equation of motion for this
problem is

J6 + y8 + x sin@ = Fycos 6 cos wt (4-6.4)

To obtain a Poincaré map, we choose a plane in the three-dimensional
space (8, 4, wr), where 8 = 0 (Figure 4-14). This is done experimentally by
using a slit in a thin disk attached to the rotor and using a light-emitting
diode and detector to generate a voltage pulse every time the rotor passes
through 6 = 0 (see Figure 4-14). This pulse is then used to sample the
velocity and measure the time. The data can be displayed directly on a




R A

138 Experimental Methods in Chaotic Vibrations

Digital
oscilloscope

Trigger

I

Tt

Ampilifier

Ramp Slit in plate

generator

=

t

Stepper
t motor with
, four field coils
Sine
oscillator

Figure A..—A. Diagram of experimental apparatus to obtain position triggered Poincaré maps
for a periodically forced rotor with a nonlinear torque-angle relation.

storage oscilloscope or, using a computer, can be replotted in polar coordi-
nates as shown in Figure 4-15.

Another variation of the method of Poincaré sections is to sample data
when some variable attains a peak value. This has been used by Bryant
and Jeffries (1984b) of the University of California—Berkeley. They examine
the aijn:.om of a circuit with a nonlinear hysteretic iron core inductor
shown in Figure 4-16. (The nonlinear properties are related to the ferro-
magnetic material in the inductor.) They sample the current in the inductor
I,(t) as well as the driving voltage V,(¢), when V; = 0. This is tantamount
to measuring the peak value of the flux in the inductor ¢. This is because
V. = —¢, where ¢ is the magnetic flux in the inductor, and ¢ = §([), so
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Figure 4-15 Position triggered Poincaré map for chaos in a nonlinear rotor (see Figure 4-14).

that when ¢ = 0, the flux is at a maximum or minimum. The Poincaré map
is then a collection of pairs of points (¥,,, I, ,) which can be displayed on a
storage or digital oscilloscope.

Construction of One-Dimensional Maps from
' Multidimensional Attractors

There are a number of physical and numerical examples where the attract-
ing set appears to have a sheetlike behavior in some three-dimensional
phase space as illustrated in Figure 4-17. [The Lorenz equations (1-3.9) are
such an example.] This often means that a Poincaré section, obtained by
measuring the sequence of points that pierce a plane transverse to the
attractor, will appear as a set of points along some one-dimensional line.
This suggests that if one could parameterize these points along the line by a
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Figure 4-17 Construction of a one-dimensional return map in a three-dimensional phase
space.

variable x, it would be possible that a function exists that relates x,,; and
x

ne

Xns1 = .\.Akav

The function (called a return map) may be found by simply plotting x,,,,
versus x,. One example is the experiments of Shaw (1984) on the dripping
faucet shown in Figure 3-39 or the nonlinear circuit in Figure 3-32. (See
also Simoyi et al., 1982). The existence of such a function f(x) implies that
the mathematical results for one-dimensional maps, such as period dou-
bling and Feigenbaum scaling, may be applicable to the more complex
physical problem in explaining, predicting, or organizing experimental
observations.

For some problems, the function f(x), when it exists, appears to cross
itself or is tangled. This may suggest that the mapping function can be
untangled by plotting the dynamics in a higher dimensional embedding
space using three successive values of the Poincaré sampled data [x(t,),
x(t,.1), and x(¢,,,)]. The three-dimensional nature of the relationship can
sometimes be perceived by changing the projection of the three-dimensional
curve onto the plane of a graphics computer monitor. This may suggest a
special two-dimensional map of the form

Xpni2 = .\.AR=+- H:v
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T

.x:+~ "\.Akx. .%:v
Yn+1 = .A.N:

This form is similar to the Henon map (1-3.8). This method has been
sed successfully by Van Buskirk and Jeffries (1985) in their study of
ircuits with p-n junctions and by Brorson et al. (1983) who studied a
inusoidally driven resistor-inductor circuit with a varactor diode.

Double Poincaré Maps

0 far we have only talked of Poincaré maps for third-order systems, such
s a single degree of freedom with external forcing. But what about
ligher-order systems with motion in a four- or five-dimensional phase
pace? For example, a two-degree-of-freedom autonomous aeroelastic prob-
em would have motion in a four-dimensional phase space (x,, v,, x5, v,),
r if x; = x, (x(t), x(t — 7), x(t = 27), x(¢ — 37)). A Poincaré map
riggered on one of the state variables would result in a set of points in a
hree-dimensional space. The fractal nature of this map, if it exists, might
0t be evident in three dimensions and certainly not if one projects this
hree-dimensional map onto a plane in two of the remaining variables.

A technique to observe the fractal nature of a three-dimensional Poin-
aré map of a fourth-order system has been developed in our laboratory
vhich we call a double Poincaré section (see Figure 4-18). This technique
nables one to slice a finite-width section of the three-dimensional map in
rder to uncover fractal properties of the attractor and hence determine if it
s “strange.” (See Moon and Holmes, 1985.)

We illustrate this technique with an example derived from the forced
notion of a buckled beam. In this case, we examine a system with two

ncommensurate driving frequencies. The mathematical model' has the
orm

X=y

w@ = —yy + F(x) + ficos 8, + f,cos(8, — .vcv ?-m.uv
QH = €~

Q.N = EN

In multidimensional dynamical systems, such as fluid-thermal problems, one important route
o chaos is the occurrence of two limit cycle oscillations (Hopf bifurcations) resulting in
juasiperiodic motion. This route to chaos was discussed in Chapter 2. The dynamics of this
notion have been modeled by flow on a torus and the resulting Poincaré sections become
losed circular arcs. Despite the importance of quasiperiodic oscillation to chaotic dynamics,
ery little has been done in other systems aside from fluids. Thus, we decided to explore
Juasiperiodic oscillations in a nonlinear structure such as a buckled beam.
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Figure 4-18 Top: Single Poincaré map dynamical system; finite width .4.&8 of .mnooua
Poincaré section. Bottom: Poincaré sampling voltages for a second-order oscillator with two
harmonic driving functions.

The experimental apparatus for a double Poincaré moonou. is shown in
Figure 4-19. The driving signals were produced by identical signal genera-
tors and were added electronically. The resulting quasiperiodic signal was
then sent to a power amplifier which drove the electromagnetic shaker.

The first Poincaré map was generated by a 1 ps trigger pulse synchro-
nous with one of the harmonic signals. The Poincaré map (x,, v,) using one
trigger results in a fuzzy picture with no structure, as shown in Figure
4-20a. To obtain the second Poincaré section, we trigger on the second
phase of the driving signal. However, if the pulse width is too narrow, the
probability of finding points coincident with the first trigger is very small.
Thus, we set the second pulse width 1000 times the first, at 1 ms. The
second pulse width represents less than 1% of the second frequency phase
of 2. The (x, v) points were only stored when the first pulse was coincident
with the second, as shown in Figure 4-18. This was accomplished using a
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Figure 4-19 Sketch of experimental apparatus to obtain Poincaré map for an oscillator with
two driving frequencies [from Moon and Holmes (1985) with permission of Elsevier Science
Publishers, copyright 1985]. Note: Strain gauges—1; steel beam—2.

digital circuit with a logical NAND gate. Because of the infrequency of the
simultaneity of both events, a map of 4000 points took more than 10 h
compared to 8-10 min to obtain a conventional Poincaré map for driving
frequencies less than 10 Hz.

The experimental results using this technique are shown in Figure 4-20
which compares a single with a double Poincaré map for the two-frequency
forced problem. The single map is fuzzy while the double section reveals a
fractal-like structure characteristic of a strange attractor.

One can of course generalize this technique to five- or higher-dimen-
sional phase space problems. However, the probability of three or more
simultaneous events will be very small unless the frequency is order of
magnitudes higher than 1-10 Hz. Such higher-dimensional maps may be
useful in nonlinear circuit problems.

This technique can be used in numerical simulation and has been
employed by Lorenz (1984) to examine a strange attractor in a fourth-order
system of ordinary differential equations. Kostelich and Yorke (1985) have
also employed this method to study the dynamics of a kicked or pulsed
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Figure 4-20 (a) Single Poincaré map of a nonlinear oscillator with two driving frequencies.
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Figure 4-20 (b) Double Poincaré map showing fractal structure characteristic of a strange
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double rotor. They call the method “Lorenz cross sections” (see also
Kostelich et al., 1987).

47 QUANTITATIVE MEASURES OF CHAOTIC
VIBRATIONS

Poincaré maps and phase plane portraits, when they can be obtained, can
often provide graphic evidence for chaotic behavior and the fractal proper-
ties of strange attractors. However, quantitative measures of chaotic dy-
namics are also important and in many cases are the only hard evidence for
chaos. The latter is especially true for systems with extreme frequencies
10%-10° (as in laser systems) in which Poincaré maps may be difficult or
impossible to capture. In addition, there are systems with many degrees of
freedom where the Poincaré map will not reveal the fractal structure of the
attractor section on double or multiple Poincaré maps) or the damping is so
low that the Poincaré map shows no structure but looks like a cloud of
points.

At this time in the development of the field there are three principal
measures of chaos and another of emerging importance:

(a) Fourier distribution of frequency spectra

(b) Fractal dimension of chaotic attractor

(c) Lyapunov exponents

(d) Invariant probability distribution of attractor

It should be pointed out that while phase plane pictures and Poincaré
maps can be obtained directly from electronic laboratory equipment, the
above measures of chaos require a computer to analyze the data, with the
possible exception of the frequency spectrum measurement. Electronic
spectrum analyzers can be obtained but they are often expensive, and one
might be better off investing in a laboratory micro or minicomputer that
has the capability to perform other data analyses besides Fourier transforms.

If one is to analyze the data from chaotic motions digitally, then usually
an analog-to-digital converter will be required as well as some means of
storing the data. For example, the digitized data can be stored in a buffer in
the electronic A-D device and then transmitted directly or over phone lines
to a computer. Another option is a digital oscilloscope which performs the
A-D conversion, displays the data graphically on the oscilloscope, and
stores the data on a floppy disk. The latter method is often limited to eight
4000 bit records.
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Finally, if one has the funds, one can store the output from the A-D
converter directly onto a hard disk for direct transfer to a laboratory
computer.

(a) Frequency Spectra—FFT

This is by far the most popular measure because the idea of decomposing a
nonperiodic signal into a set of sinusoidal or harmonic signals is widely
known among scientists and engineers. The assumption made in this
method is that the periodic or nonperiodic signal can be represented as a
synthesis of sine or cosine signals

f(1) = Mla \ﬁ F(w)e™ do (4-1.1)

where '“’ = cos wt + i sin wt.

Since F(w) is often complex, the absolute value |F(w)| is used in
graphical displays. In practice, one uses an electronic device or computer to
calculate |F(w)| from input data from the experiment while varying some
parameter in the experiment (see Chapter 2, Routes to Chaos). When the
motion is periodic or quasiperiodic, |F(w)| shows a set of narrow spikes or
lines indicating that the signal can be represented by a discrete set of
harmonic functions {e */“+'}, where k = 1,2,... . Near the onset of chaos,
however, a continuous distribution of frequency appears, as shown in
Figure 4-21a, and in the fully chaotic regime, the continuous spectrum may
dominate the discrete spikes.

In general, the function F(w) is a complex function of w and to
represent certain classes of signals f(¢), the integration (4-7.1) must be
carried out along a path I' in the complex w plane. Numerical calculation
of F(w), given f(t), can often be very time consuming even on a fast
computer. However, most modern spectrum analyzers use a discrete version
of (4-7.1) along with an efficient algorithm called the fast Fourier transform
(FFT). Given a set of data sampled at discrete even time intervals { f(z,) =
for fvo faseoos fio-- -5 [ ), the discrete time FFT is defined by the formula

N
T(J)= X f(I)e mU=bJ-1/N (4-7.2)
I=1

where I and J are integers.
Several points should be made here which may appear obvious. First, the
signal f(t) is time sampled at a fixed time interval 7,; thus, information is
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Figure 4-21 (a) Fourier spectrum of a chaotic signal. () Autocorrelation function of a
chaotic signal.

lost for frequencies above 1/27,. Second, only a finite set of points are used
in the calculation, usually N = 2", and some built-in FFT electronics only
do N =512 or 1028 points. Thus, information is lost about very low
frequencies below 1/N7,. Finally, the representation (4-7.2) having no
information about F(¢) before ¢ = ¢, or after ¢ = t,, essentially treats f(r)
as a periodic function. In general, this is not the case and since f(z,) # f(#y),
the Fourier representation treats this as a discontinuity which adds spurious
information into F(w). This is called aliasing error and methods exist to
minimize its effect in F(w). The reader using the FFT should be aware of
this, however, when interpreting Fourier spectra about nonperiodic signals
and should consult a signal processing reference for more information
about FFTs.

Autocorrelation Function. Another signal processing tool that is related to
the Fourier transform is the autocorrelation function given by

A7) = \os%rcfv&

.
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/hen a signal is chaotic, information about its past origins is lost. This
ieans that A(t) — 0 as 7 — oo, or the signal is only correlated with its
scent past. This is illustrated in Figure 4-215b for the chaotic vibrations of
buckled beam. The Fourier spectrum shows a broad band of frequencies,
hile the autocorrelation function has a peak at the origin = = 0, and drops
ff rapidly with time.

(b) Fractal Dimension

will not go into too many technical details about fractal dimensions since
hapter 6 is devoted entirely to this topic. However, the basic idea is to
haracterize the “strangeness” of the chaotic attractor. If one looks at a
oincaré map of a typical low-dimensional strange attractor, as in Figure
-8, one sees sets of points arranged along parallel lines. This structure
ersists when one enlarges a small region of the attractor. As noted in
hapter 2, this structure of the strange attractor differs from periodic
hotions (just a finite set of Poincaré points) or quasiperiodic motion which
1 the Poincaré map becomes a closed curve. In the Poincaré map, one can
ay that the dimension of the periodic map is zero and the dimension of the
uasiperiodic map is one. The idea of the fractal dimension calculation is to
ttach a measure of dimension to the Cantor-like set of points in the
trange attractor. If the points uniformly covered some area on the plane,
ve might say its dimension was close to two. Because the chaotic map in
igure 4-8 has an infinite set of gaps, its dimension is between one and two
—thus the word fractal dimension.

In general, the set of Poincaré points in a strange attractor does not
over an integer-dimensional subspace (in Figure 4-8 this subspace is a
lane).

Another use for the fractal dimension calculation is to determine the
owest order phase space for which the motion can be described. For
xample, in the case of some preturbulent convective flows in a
layleigh—~Benard cell (see Figure 3-1), the fractal dimension of the chaotic
ttractor can be calculated from some measure of the motion {x(¢,) = x,)}
see Malraison et al., 1983). From {x,}, pseudo-phase-spaces of different
limension can be constructed (see Section 4.4). Using a computer al-
jorithm, the fractal dimension d was found to reach an asymptotic d = 3.5
vhen the dimension of the pseudo-phase-space was four or larger. This
uggests that a low-order approximation of the Navier-Stokes equation
nay be used to model this motion.

The reader is referred to Chapter 6 for further details. Although there are
Juestions about the ability to calculate fractal dimensions for attractors of
limensions greater than four or five, this technique has gained increasing
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acceptance among experimentalists especially for low-dimensional chaotic
attractors. If this trend continues, in the future, it is likely that electronic
computing instruments will be available commercially that automatically
calculate fractal dimension in the same way as FFTs are done at present.

(c) Lyapunov Exponents

Chaos in dynamics implies a sensitivity of the outcome of a dynamical
process to changes in initial conditions. If one imagines a set of initial
conditions within a sphere or radius € in phase space, then for chaotic
motions trajectories originating in the sphere will map the sphere into an
ellipsoid whose major axis grows as d = ee?’, where A > 0 is known as a
Lyapunov exponent. (Lyapunov was a great Russian mathematician and
mechanician 1857-1918.)

A number of experimenters in chaotic dynamics have developed al-
gorithms to calculate the Lyapunov exponent u. For regular motions A < 0,
but for chaotic motion A > 0. Thus, the sign of X is a criterion for chaos.
The measurement involves the use of a computer to process the data.
Algorithms have been developed to calculate A from the measurement of a
single dynamical variable x(¢) by constructing a pseudo-phase-space (e.g.,
see Wolf, 1984).

A more precise definition of Lyapunov exponents and techniques for
measuring them is given in Chapter 5.

(d) Probability or Invariant Distributions

If a nonlinear dynamical system is in a chaotic state, precise prediction of
the time history of the motion is impossible because small uncertainties in
the initial conditions lead to divergent orbits in the phase space. If damping
is present, we know that the chaotic orbit lies somewhere on the strange
attractor. Failing specific knowledge about the whereabouts of the orbit,
there is increasing interest in knowing the probability of finding the orbit
somewhere on the attractor. One suggestion is to find a probability density
in phase space to provide a statistical measure of the chaotic dynamics.
There is some mathematical and experimental evidence that such a distribu-
tion does exist and that it does not vary with time.

To measure this distribution function, one time samples the motion at a
number of points large enough to believe that the chaotic trajectory has
visited most regions of the attractor. This minimum number can be de-
termined by observing a Poincaré map to see when the attractor takes shape
and when the Poincaré points fill in the different sections of the map. The
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phase space is then partitioned into cells and the number of time-sampled
points in each cell is counted using a computer.

An example of a probability density distribution for chaotic vibrations of
the buckled beam problem is shown in Figure 4-22. Here we have projected
the distribution onto the position axis and the velocity axis.

The distribution of velocities shows a shape similar to a classic Gaussian
bell shaped curve (Figure 4-224). The distribution of displacements on the
other hand shows two peaks near the two potential wells (Figure 4-22b).
This distribution is similar to that of a randomly excited two-well potential
oscillator (Soong, 1973). It suggests that it might be possible to calculate
probability density functions for deterministic chaotic systems using tech-
niques from random vibration theory.

The usefulness of probability distribution for chaotic vibrations is similar
to that for random vibrations (e.g., see Soong, 1973, or Lin, 1976). If the
probability distribution can be determined for a chaotic system, one can
calculate the mean square amplitude, mean zero crossing times, and prob-
abilities of displacements, voltages, or stresses exceeding some critical value.
However, much remains to be done on this subject both at the mathemati-
cal and experimental levels.

The use of probabilistic methods of analysis in chaotic vibrations has
been developed by C. S. Hsu and coworkers at the University of California
at Berkeley (Hsu, 1981, 1987; Hsu and Kim, 1985; Kreuzer, 1985 [now at
Stuttgart]). This method, which divides the phase space into many cells,
uses ideas from the theory of Markov processes. The method seems suited
for the coming age of supercomputers and may become more widely known
if it can be implemented in a parallel processing mode.

RN,

ettt



Criteria for Chaotic
Vibrations

But you will ask, how could a uniform chaos coagulate at
first irregularly in heterogeneous veins or masses to cause
hills— Tell me the cause of this, and the answer will
perhaps serve for the chaos.

Isaac Newton, On Creation—from a letter circa 1681

5.1 INTRODUCTION

In this chapter, we study how the parameters of a dynamical system
determine whether the motion will be chaotic or regular. This is analogous
to finding the critical velocity in viscous flow of fluids above which steady
flow becomes turbulent. This velocity, when normalized by multiplying by a
characteristic length and dividing by the kinematic viscosity of the fluid, is
known as the critical Reynolds number, Re. A reliable theoretical value for
the critical Re has eluded engineers and physicists for over a century and
for most fluid problems experimental determination of (Re) orit 1S Decessary.
In like manner, the determination of criteria for chaos in mechanical or
electrical systems in most cases must be found by experiment or computer
simulation. For such systems the search for critical parameters for de-
terministic chaos is a ripe subject for experimentalists and theoreticians
alike.

Despite the paucity of experimentally verified theories for the onset of
chaotic vibrations, there are some notable theoretical successes and some
general theoretical guidelines.

We distinguish between two kinds of criteria for chaos in physical
systems: a predictive rule and a diagnostic tool. A predictive rule for
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chaotic vibrations is one that determines the set of input or control
parameters that will lead to chaos. The ability to predict chaos in a physical
system implies either that one has some approximate mathematical model
of the system from which a criterion may be derived or that one has some
empirical data based on many tests.

A diagnostic criterion for chaotic vibrations is a test that reveals if a
particular system was or is in fact in a state of chaotic dynamics based on
measurements or signal processing of data from the time history of the
system.

We begin with a review of empirically determined criteria for specific
physical systems and mathematical models which exhibit chaotic oscilla-
tions (Section 5.2). These criteria were determined by both physical and
numerical experiments. We examine such cases for two reasons. First, it is
of value for the novice in this field to explore a few particular chaotic
systems in detail and to become familiar with the conditions under which
chaos occurs. Such cases may give clues to when chaos occurs in more
complex systems. Second, in the development of theoretical criteria, it is
important to have some test case with which to compare theory with
experiment.

In Section 5.3 we present a review of the principal, predictive models for
determining when chaos occurs. These include the period-doubling crite-
rion, homoclinic orbit criterion, and the overlap criterion of Chirikov for
conservative chaos, as well as intermittency and transient chaos. We also
review several ad hoc criteria that have been developed for specific classes
of problems.

Finally, in Section 5.4 we discuss an important diagnostic tool, namely,
the Lyapunov exponent. Another diagnostic concept, the fractal dimension,
is described in Chapter 6.

5.2 EMPIRICAL CRITERIA FOR CHAOS

In the many introductory lectures the author has given on chaos, the
following question has surfaced time and time again: Are chaotic motions
singular cases in real physical problems or do they occur for a wide range of
parameters? For engineers this question is very important. To design, one
needs to predict system behavior. If the engineer chooses parameters that
produce chaotic output, then he or she loses predictability. In the past,
many designs in structural engineering, electrical circuits, and control
systems were kept within the realm of linear system dynamics. However, the
needs of modern technology have pushed devices into nonlinear regimes
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(e.g., large deformations and deflections in structural mechanics) that
increase the possibility of encountering chaotic dynamic phenomena.

To address the opening question, are chaotic dynamics singular events in
real systems, we examine the range of parameters for which chaos occurs in
seven different problems. A cursory scan of the figures accompanying each
discussion will lead one to the conclusion that chaotic dynamics is not a
singular class of motions and that chaotic oscillations occur in many nonlin-
ear systems for a wide range of parameter values.

We examine the critical parameters for chaos in the following problems:

(a) Circuit with nonlinear inductor: Duffing’s equation
(b) Particle in a two-well potential or buckling of an elastic beam:
Duffing’s equation

(¢) Low-dimensional model for convection turbulence: Lorenz equa-
tions

(d) Vibrations of nonlinear coupled oscillators
(e) Rotating magnetic dipole: pendulum equation
(f) Circuit with nonlinear capacitance

(g) Surface waves on a fluid

(a) Forced Oscillations of a Nonlinear Inductor: Duffing’s Equation

In Chapter 3 (Figure 3-13), we examined the chaotic dynamics of a circuit
with a nonlinear inductor. Extensive analog and digital simulation for this
system was performed by Y. Ueda (1979, 1980) of Kyoto University. The

nondimensional equation, where x represents the flux in the inductor, takes
the form

%+ kx + x> = Bcost (5-2.1)

The time has been nondimensionalized by the forcing frequency so that the
entire dynamics is determined by the two parameters k and B and the
initial conditions (x(0), X(0)). Here k is a measure of the resistance of the
circuit, while B is a measure of the driving voltage. Ueda found that by
varying these two parameters one could obtain a wide variety of periodic,
subharmonic, ultrasubharmonic as well as chaotic motions. The regions of
chaotic behavior in the (k, B) plane are plotted in Figure 5-1. The regions
of subharmonic and harmonic motions are quite complex and only a few
are shown for illustration. The two different hatched areas indicate either
regions of only chaos, or regions with both chaotic as well as periodic
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Figure 5-1 Chaos diagram showing regions of chaotic and periodic motions for a nonlinear
circuit as functions of nondimensionalized damping and forcing amplitude [from Ueda (1980)].

motion depending on initial conditions. A theoretical criterion for this
relatively simple equation has not been found to date.

(b) Forced Oscillations of a Particle in a Two-Well Potential:
Duffing’s Equation

This example was discussed in great detail in Chapters 2 and 3. It was first
studied by Holmes (1979) and later in a series of papers by the author and
coworkers. The mathematical equation describes the forced motion of a
particle between two states of equilibrium, which can be described by a
two-well potential

¥4 8% —1x(1 - x?) =fcoswt (5-2.2)

This equation can represent a particle in a plasma, a defect in a solid,
and, on a larger scale, the dynamics of a buckled elastic beam (see Chapter
3). The dynamics are controlled by three nondimensional groups (8, f, w),
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Figure 5-2 Experimental chaos diagram for vibrations of a buckled beam for different values
of forcing frequency and amplitude {[from Moon (1980b); reprinted with permission from New
Approaches to Nonli Problems in Dy ics, ed. by P. S. Holmes; copyright 1980 by SIAM].

where & represents nondimensional damping and w is the driving frequency
nondimensionalized by the small amplitude natural frequency of the system
in one of the potential wells.

Regions of chaos from two studies are shown in Figures 5-2 and 5-3. The
first represents experimental data for a buckled cantilevered beam (see
Chapter 2). The ragged boundary is the experimental data, while the
smooth curve represents a theoretical criterion (see Section 5.3). Recently,
an upper boundary has been measured beyond which the motion again
becomes periodic. The experimental criterion was determined by looking at
Poincaré maps of the motion (see Chapters 2 and 4).

Results from numerical simulation of Eq. (5-2.2) are shown in Figure
5-3. The diagnostic tool used to determine if chaos were present was the
Lyapunov exponent using a computer algorithm developed by Wolf et al.
(1985) (see Section 5.4). This diagram shows that there are complex regions
of chaotic vibrations in the plane ( f, w) for fixed damping 8. For very large
forcing f>> 1, one expects the behavior to emulate the previous problem
studied by Ueda.

The theoretical boundary found by Holmes (1979) is discussed in the
next section. It has special significance since below this boundary periodic
motions are predictable, while above this boundary one loses the ability to
exactly predict to which of the many periodic or chaotic modes the motion
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will be attracted. Above the theoretical criteria (based on homoclinic
orbits), the motion is very sensitive to initial conditions, even when it is
periodic.

(¢) Rayleigh—Benard Convection: Lorenz Equations

Aside from the logistic equation, the Lorenz model for convection turbu-
lence (see Chapters 1 and 3) is perhaps the most studied system of
equations that admit chaotic solutions. Yet most mathematicians have
focused on a few sets of parameters. These equations take the form

x=0(y~-x)
y=rx—y—xz (5-2.3)
i=xy— bz

Sparrow (1982) in his book on the Lorenz attractor concentrates his
analysis on the parameter values o = 10, b = , r > 14. However, he does
speculate on the range of values for which stable chaotic motions might
exist as reproduced in Figure 5-2. The vertical hatched region in Figure 5-4
represents a region of steady chaotic motion, while the horizontally hatched
region represents a preturbulent region in which there may be chaotic
transients. This region is bounded below by a criterion based on the
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Figure 5-4 Chaos diagram for Lorenz’s equations (5-2.3) for thermal convection dynamics.

existence of homoclinic orbits (see next section). A period-doubling region
is also shown in the dotted region.

(d) Forced Vibrations of a Two-Degree-of-Freedom Oscillator in a
Two-Well Potential

As extension of the one-degree-of-freedom particle in a two-well potential
rmm. been studied by the author for the experiment shown in Figure 5-5.
This problem can be modeled by two coupled nonlinear oscillators (3-3.7),

av
X+yx+—=0
dx
(5-2.4)
. v
Jy+yy+ — =fcoswt
dy

where V(x, y) represents the potential for the magnets and the elastic
stiffness. The chaotic regime for the forcing amplitude and frequency are
shown in Figure 5-5. Comparing this regime to that in either Figure 5-2 or
5-3, we see that the addition of the extra degree of freedom seems to have
reduced the extent of the chaos region at least in the vicinity of the natural
frequency of the mass in one of the potential wells.
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Figure 5-5 Regions of chaotic and periodic motions for two-dimensional motion of a mass in
a double-well potential in the forcing amplitude-frequency plane [from Moon (1980b);
reprinted with permission from New Approaches to Nonlinear Problems in Dynamics, ed. by
P. S. Holmes; copyright 1980 by SIAM].

() Forced Motions of a Rotating Dipole in Magnetic Fields:
The Pendulum Equation

In this experiment, a permanent magnet rotor is excited by crossed steady
and time harmonic magnetic fields (see Moon et al., 1987), as shown in
Figure 3-18. The nondimensionalized equation of motion for the rotation
angle 0 resembles that for the pendulum in a gravitational potential:

6 + yf + sin@ = fcos 8 cos wt (5-2.5)

The regions of chaotic rotation in the f-w plare, for fixed damping, are
shown in Figure 5-6. This is one of the few published examples where both
experimental and numerical simulation data are compared with a theoreti-
cal criterion for chaos. The theory is based on the homoclinic orbit criterion
and is discussed in Section 5.4. As in the case of the two-well potential,
chaotic motions are to be found in the vicinity of the natural frequency for
small oscillations (@ = 1.0 in Figure 5-6).
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Figure 5-6 Experimental chaos diagram for forced motions of a rotor with nonlinear
torque—angle property. Comparison with homoclinic orbit criterion calculated using the
Melnikov method (Section 5.3) [From Moon et al. (1987) with permission of North-Holland
Publishing Co., copyright 1987].

(f) Forced Oscillations of a Nonlinear RLC Circuit

There have been a number of experimental studies of chaotic oscillations in
nonlinear circuits (e.g., see Chapter 3). One example is a RLC circuit with a
diode. Shown in Figure 5-7 are the subharmonic and chaotic regimes in the
driving voltage—frequency plane (Klinker et al., 1984). In this example,
regions of period doubling are shown as precursors to the chaotic motions.
However, in the midst of the hatched chaotic regime, a period 5 sub-
harmonic was observed. Periodic islands in the center of chaotic domains
are common observations in experiments on chaotic oscillations. (See a
similar study by Bucko et al., 1984. See also Figure 3-33.).

() Harmonically Driven Surface Waves in a Fluid Cylinder

As a final example, we present experimentally determined harmonic and
chaotic regions of the amplitude—frequency parameter space for surface
waves in a cylinder filled with water from a paper by Cilberto and Gollub
(1985). A 12.7 cm diameter cylinder with 1 cm deep water was harmonically
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Figure 5-7 Experimentally determined chaos diagram for a driven RLC circuit with a
varactor diode that acts as a nonlinear capacitor. The hatched regions are chaotic motions
while the numbers indicate the order of the subharmonic. Dashed lines indicate a hysteretic
transition {from Klinker et al. (1984) with permission of North-Holland Publishing Co.,
copyright 1984].

vibrated in a speaker cone (Figure 5-8). The amplitude of the transverse
vibration above the flat surface of the fluid can be written in terms of Bessel
functions where the linear mode shapes are given by

U,

nm

=J (k,,r)sin(n8 + d, )

Figure 5-8 shows the driving amplitude-frequency plane in a region where
two modes can interact—(n, m) = (4,3) and (7,2). Below the lower
boundary, the surface remains flat. A small region of chaotic regimes
intersect. Presumably, other chaotic regimes exist where other modes (n, m)
interact.

In summary, these examples show that, given periodic forcing input to a
physical system, large regions of periodic or subharmonic motions do exist
and presumably are predictable using classical methods of nonlinear analy-
sis. However, these examples also show that chaos is not a singular happen-
ing; that is, it can exist for wide ranges in the parameters of the problem.
Also, and perhaps this is most important, there are regions where both
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periodic and chaotic motions can exist and the precise motion that will
result may be unpredictable.

5.3 THEORETICAL PREDICTIVE CRITERIA

The search for theoretical criteria to determine under what set of conditions
a given dynamical system will become chaotic has tended to be ad hoc. The
strategy thus far has been for theorists to find criteria for specific mathe-
matical models and then use these models as analogs or paradigms to infer
when more general or complex physical systems will become unpredictable.
An example is the period-doubling bifurcation sequence discussed by May
(1976) and Feigenbaum (1978) for the quadratic map (e.g., see Chapter 1).
Although these results were generalized for a wider class of one-dimen-
sional maps using a technique called renormalization theory, the period-
doubling criterion is not always observed for higher-dimensional maps. In
mechanical and electrical vibrations, a Poincaré section of the solution in
phase space often leads to maps of two or higher dimensions. Nonetheless,

i
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the period-doubling scenario is one possible route to chaos. In more
complicated physical systems, an understanding of the May-Feigenbaum
model can be very useful in determining when and why chaotic motions
occur.

In this section, we briefly review a few of the principal theories of chaos
and explore how they lead to criteria that may be used to predict or
diagnose chaotic behavior in real systems. These theories include the
following:

(a) Period doubling

(b) Homoclinic orbits and horseshoe maps

(c) Intermittency and transient chaos

(d) Overlap criteria for conservative chaos

(e) Ad hoc theories for multiwell potential problems

(a) Period-Doubling Criterion

This criterion is applicable to dynamical systems whose behavior can be
described exactly or approximately by a first-order difference equation,
known in the new jargon as a one-dimensional map:

Xn+1 = V.H:AH - .K:v AM|va

The dynamics of this equation were studied by May (1976), Feigenbaum
(1978, 1980), and others. They discovered solutions whose period doubles as
the parameter A is varied (the period in this case is the number of integers
p for x,, , to return to the value x,). One of the important properties of
Eq. (5-3.1) that Feigenbaum discovered was that the sequence of critical
parameters {A, } at which the period of the orbit doubles satisfies the
relation

>S+~ - VS

1
lim T e 5= 46692 (5-3.2)

\!l.vgy 'yl
m m-—1

This important discovery gave experimenters a specific criterion to
determine if a system was about to become chaotic by simply observing the
prechaotic periodic behavior. It has been applied to physical systems
involving fluid, electrical, and laser experiments. Although these problems
are often modeled mathematically by continuous differential equations, the
Poincaré map can reduce the dynamics to a set of difference equations. For
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Xn X,

Figure 5-9 One hump noninvertible difference equations (maps) which exhibit period dou-
bling.

many physical problems, the essential dynamics can be modeled further as
a one-dimensional map.

Xper = f(x,) (5-33)

The importance of Feigenbaum’s work is that he showed how period-
doubling behavior was typical of one-dimensional maps that have a hump
or zero tangent as shown in Figure 5-9 [i.e., the map is noninvertible or there
exists two values of x, which when put into f(x,) give the same value of
x, +1]- He also demonstrated that if the mapping function depends on some
parameter A, that is, f(x,; A), then the sequence of critical values of this
parameter at which the orbit’s period doubles {A,,} satisfies the same
relation (5-3.2) as that for the quadratic map. Thus, the period-doubling
phenomenon has been called universal and & has been called a universal
constant (now known quite naturally as the Feigenbaum number).
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The author must raise a flag of caution here. The term “universal” is
used in the context of one-dimensional maps (5-3.3). There are many
chaotic phenomena which are described by two- or higher-dimensional
maps (e.g., see the buckled beam problem in Chapter 2). In these cases,
period doubling may indeed be one route to chaos, but there are many
other bifurcation sequences that result in chaos beside period doubling (see
Holmes, 1984).

The reader wishing a very detailed mathematical discussion of the
quadratic map and period doubling should see either Lichtenberg and
Lieberman (1983) or Guckenheimer and Holmes (1983). For the reader who
desires a taste of the mathematics of period doubling, a distilled version of
the treatment by Lichtenberg and Lieberman, especially as it pertains to the
critical parameter A at which the motion becomes chaotic, is presented
next.

Renormalization and the Period-Doubling Criterion. There are two ideas
that are important in understanding the period-doubling phenomenon. The
first is the concept of bifurcation of solutions, and the second is the idea of
renormalization. The concept of bifurcation is illustrated in Figure 5-10. The
term bifurcate is used to denote the case where the qualitative behavior of
the system suddenly changes as some parameter is varied. For example, in
Figure 5-12 a steady periodic solution x, becomes unstable at a parameter
value of A, and the amplitude now oscillates between two values x; and
x5 , completing a cycle in twice the time of the previous solution. Further
changes in A make x; and x; unstable and the solution branches to a new
cycle with period 4. In the case of the quadratic map (5-3.1), these solution
bifurcations continue ad infinitum as A is increased (or decreased). How-
ever, the critical values of A approach an accumulation value, that is,
lim,_, .|A;| = |A,| < oo, beyond which the system can exhibit a chaotic,
nonperiodic solution. Thus, if A is some nondimensional function of
physical variables (e.g., a Reynolds number in fluid mechanics), A = A
becomes a useful criterion to predict when chaos is likely to occur.

A readable description of renormalization as it applies to period dou-
bling may be found in Feigenbaum (1980). The technique recognizes the
fact that a cascade of bifurcations exists and that it might be possible to
map each bifurcation into the previous one by a change in scale of the
physical variable x and a transformation of the control parameter. To
illustrate this technique, we outline an approximate scheme for the quadratic
map (see also Lichtenberg and Lieberman, 1983).

One form of the quadratic map is given by

Xnse1 = .\.Akav

where f(x) = Ax(1 — x). Period 1 cycles are just constant values of x given

(X|
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30 A 4.0

Figure 5-10 Bifurcation diagram for the quadratic map (5-3.3). Steady-state behavior as a
function of the control parameter showing period-doubling phenomenon.

by fixed points of the mapping, that is, x, = f(x,), or
Xg = VROAH - .NOV AMlWAv

ir.mov gives x5 =0, xo = (A — 1)/A. Now a fixed point, or equilibrium
point can be stable or unstable. That is, iteration of x can move toward or

away from x,. The stability of the map depends on the slope of f(x) at Xq;
that is,

df(x ov
1 impk -
By <1 implies stability
(5-3.5)
df(x,) T 1
Iﬂl > 1 implies instability
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4
Stable \

ftf(x))

x

Figure 5-11 First and second iteration functions for the quadratic map (5-3.3) [see also Eq.
(5-3.6)).

Since the slope f’ = A(1 — 2x) depends on A, x, becomes unstable at
A; = 11/]1 — 2x,|. Beyond this value, the stable periodic motion has
period 2. The fixed points of the period 2 motion are given by

x3=f(f(x2)) or x,= Nx, (1 ~ xNvT —Axy(1 = x;)] (5-3.6)

The function f(f(x)) is shown in Figure 5-11.

Again there are stable and unstable solutions. Suppose the x4 solution
bifurcates and the solution alternates between x* and x~ as shown in
Figure 5-12. We then have

x"=Ax"(1-x7) and x~=Ax*(1 - x*) (5-3.7)

To determine the next critical value A = X\, at which a period 4 orbit
emerges, we change coordinates by writing

x,=x*+nq, (5-3.8)

Putting Eq. (5-3.8) into (5-3.7), we get
arr = A, [(1 = 2x7) = m,]

(5-3.9)
Mns2 = 7d=+»MAH - Nklv - d=+L
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Figure 5-12 Diagram showing two branches
of a bifurcation diagram near a period-dou-
bling point.

We next solve for 7,,, in terms of 7,, keeping only terms to order 72
(this is obviously an approximation), to obtain

Nos2 = N'1,[4 - Bn,] (5-3.10)

where 4 and B depend on x*, x~, and A. Next, we rescale  and define a
new parameter A using

an, A=MN4, a=B/A

X
.wm:+m = M.M:AH - .wmav

This has the same form as our original equation (5-3.2). Thus, when the

solution bifurcates to period 4 at A = A,, the critical value of A = A;. We
therefore obtain an equation

A = A3A4(A,) (5-3.11)

Starting from the point x, = 0, there is a bifurcation sequence for A < 0.
For this case Lichtenberg and Lieberman show that (5-3.11) is given by

A=A+ 2),+4 (5-3.12)
It can be shown that A, = —1, so that A, = (1 — V6) = —1.4494. If one is

bold enough to propose that the recurrence relation (5-3.12) holds at
higher-order bifurcations, then

A= —N

K K

at2A,,+4 (5-3.13)

At the critical value for chaos,

A -2, +20, +4

o0

(1-V17)/2 = —-1.562 (5-3.14)
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One can also show that another bifurcation sequence occurs for A > 0
(Figure 5-10) where the critical value is given by,

A=A_=2-A_=356 (5-3.15)

The exact value is close to A, = 3.56994. Thus, the rescaling approxima-
tion scheme is not too bad.
This line of analysis also leads to the relation

A, =X, +ad* (5-3.16)

which results in the scaling law (5-3.2). Thus, knowing that two successive
bifurcation values can give one an estimate of the chaos criterion A, we
obtain

1
A = ﬂ??: - A (5-3.17)

A final word before we leave this section: The fact that A may exceed the
critical value (JA| > |A_]) does not imply that chaotic solutions will occur.
They certainly are possible. But there are also many periodic windows in the
range of parameters greater than the critical value in which periodic
motions as well as chaotic solutions can occur.

We do not have space to do complete justice to the rich complexities in
the dynamics of the quadratic map. It is certainly one of the major
paradigms for understanding chaos and the interested reader is encouraged
to study this problem in the aforementioned references. (See also Appendix
B for computer experiments.)

(b) Homoclinic Orbits and Horseshoe Maps

One theoretical technique that has led to specific criteria for chaotic
vibrations is a method based on the search for horseshoe maps and
homoclinic orbits in mathematical models of dynamical systems. This
strategy and a mathematical technique, called the Melnikov method, has led
to Reynolds-numberlike criteria for chaos relating the parameters in the
system. In two cases, these criteria have been verified by numerical and
physical experiments. Keeping with the tenor of this book, we do not derive
or go into too much of the mathematical theory of this method, but we do
try to convey the rationale behind it and guide the reader to the literature
for a more detailed discussion of the method. We illustrate the Melnikov
method with two applications: the vibrations of a buckled beam and the
rotary dynamics of a magnetic dipole motor.
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Figure 5-13 Evolution of an initial condition sphere.

The homoclinic orbit criterion is a mathematical technique for obtaining
a predictive relation between the nondimensional groups in the physical
system. It gives one a necessary but not sufficient condition for chaos. It
may also give a necessary and sufficient condition for predictability in a
dynamical system (see Chapter 6, Section 6.5, Fractal Basin Boundaries).
Stripped of its complex, somewhat arcane mathematical infrastructure, it is
essentially a method to prove whether a model in the form of partial or
ordinary differential equations has the properties of a horseshoe or a
baker’s-type map.

The horseshoe map view of chaos (see also Chapter 1) looks at a
collection of initial condition orbits in some ball in phase space. If a system
has a horseshoe map behavior, this initial volume of phase space is mapped
under the dynamics of the system onto a new shape in which the original
ball is stretched and folded (Figure 5-13). After many iterations, this
folding and stretching produces a fractal-like structure and the precise
information as to which orbit originated where is lost. More and more
precision is required to relate an initial condition to the state of the system
at a later time. For a finite precision problem (as most numerical or
laboratory experiments are), predictability is not possible.

One path to an understanding of the homoclinic orbit criterion (see the
flow chart in Figure 5-14) is to go through the following questions:

1. What are homoclinic orbits?

2. How do homoclinic orbits arise in mathematical models of physical
systems?

3. How are they related to horseshoe maps?
4. Finally, how does the Melnikov method lead to a criterion for chaos?
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Poincare
map

Homoclinic
orbit?

Regular
motion

Figure 514 Diagram showing the rela-
tion between homoclinic orbits, horse-
shoes, and chaos in physical systems.

Homoclinic Orbits. A good discussion of homoclinic orbits may be found
in the books by Lichtenberg and Lieberman (1983) and Guckenheimer and
Holmes (1983). We have learned earlier that although many dynamics
problems can be viewed as a continuous curve in some phase space (x
Versus v = x) or solution space (x versus t), the mysteries of nonlinear
dynamics and chaos are often deciphered by looking at a digital sampling
of the motion such as a Poincaré map. We have also seen that the Poincaré
map, although a sequence of points in some n-dimensional space, can lie
along certain continuous curves. These curves are called manifolds. A
discussion of homoclinic orbits refers to a sequence of points. This sequence
of points is called an orbit. For example, for a period 3 orbit, the sequence
of points will sequentially visit three states in the phase plane as in Figure
5-15a. On the other hand, a quasiperiodic orbir will involve a sequence of
points that move on some closed curve, as in Figure 5-15b. Quasiperiodic
vibrations are common in the motion of two coupled oscillators with two
incommensurate frequencies.

In the dynamics of mappings, one can have critical points at which orbits
move away from or toward. One example is a saddle point at which there
are two manifold curves on which orbits approach the point and two curves
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4e1

Figure 5-15 (a) Periodic orbit in a Poincaré map. (b)
Quasiperiodic orbit. (¢) Homoclinic orbit.

on which the sequence of Poincaré points move away from the voEr as
illustrated in Figure 5-15. Such a point is similar to a saddle point in
nonlinear differential equations.

To illustrate a homoclinic orbit, we consider the dynamics of the forced
damped pendulum. First, recall that for the unforced damped voma:_.ca,
the unstable branches of the saddle point swirl around the an.E:c.D:B
point in a vortexlike motion in the -6 phase plane as shown in Figure

-16. .
’ Although it is not obvious, the Poincaré map synchronized with the
forcing frequency also has a saddle point in the neighborhood of § = +nx
(n odd), as shown in Figure 5-17 for the case of the forced pendulum. For
small forcing, the stable and unstable branches of the saddle a.o not mo:nr
each other. However, as the force is increased, these two manifolds inter-
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Figure 5-16 Stable and unstable manifolds for the motion of an unforced, damped pendulum.

sect. It can be shown that if they intersect once, they will intersect an infinite
number of times. The points of intersection of stable and unstable manifolds
are called homoclinic points. A Poincaré point near one of these points will
be mapped into all the rest of the intersection points. This is called a
homoclinic orbit (Figure 5-15¢). Now why are these orbits important for
chaos?

EE

-3
B

Figure 5-17 Sketch of stable and unstable manifolds of the Poincaré map for the harmoni-
cally forced, damped pendulum.
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Figure 5-18 The development of a folded horseshoe-type map for points in the vicinity of a
homoclinic orbit.

The intersection of the stable and unstable manifolds of the Poincaré
map leads to a horseshoe-type map in the vicinity of each homoclinic point.
As we saw in Chapter 1, horseshoe-type maps lead to unpredictability and
unpredictability or sensitivity to initial conditions is a hallmark of chaos.

To see why homoclinic orbits lead to horseshoe maps, we recall that for a
dissipative system areas get mapped into smaller areas. However, near the
unstable manifold, the areas are also stretched. Since the total area must
decrease, the area must also contract more than it stretches. Areas near the
homoclinic points also get folded, as shown in Figure 5-18.

A dynamic process can be thought of as a transformation of phase
space; that is, a volume of points representing different possible initial
conditions is transformed into a distorted volume at a later time. Regular
flow results when the transformed volume has a conventional shaped
volume. Chaotic flows result when the volume is stretched, contracted, and
folded as in the baker’s transformation or horseshoe map.

The Melnikov Method. The Melnikov function is used to measure the
distance between unstable and stable manifolds when that distance is small
[see Guckenheimer and Holmes (1983) for a mathematical discussion of the
Melnikov method]. It has been applied to problems where the dissipation is
small and the equations for the manifolds of the zero dissipation problem
are known. For example, suppose we consider the forced motion of a
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nonlinear oscillator where (g, p) are the generalized coordinate and
momentum variables. We assume that both the damping and forcing are
small and that we can write the equations of motion in the form

. OH
q= mﬁ: +eg,
(5-3.18)

where g = g(p, ¢, 1) = (g, g;), € is a small parameter, and H(gq, p) is the
Hamiltonian for the undamped, unforced problems (¢ = 0). We also as-
sume that g(¢) is periodic so that

g(t+T)=g(r) (5-3.19)

and that the motion takes place in a three-dimensional phase space
(g, p, wt), where wt is the phase of the periodic force and is modulo the
period T.

In many nonlinear problems a saddle point exists in the unperturbed
Hamiltonian problem [e = 0 in Eq. (5-3.18)], such as for the pendulum or
the double-well potential Duffing’s equation, (5.22). When ¢ + 0, one can
take a Poincaré section of the three-dimensional torus flow synchronized
with the phase wt. It has been shown (see Guckenheimer and Holmes,
1983) that the Poincaré map also has a saddle point with stable and
unstable manifolds, W* and W*, shown in Figure 5-19.

The Melnikov function provides a measure of the separation between W*
and W* as a function of the phase of the Poincaré map wr. This function is
given by the integral

M(t)) = [~ g* - vH(g*, p*) ds (5-3.20)

where g* = g(g*, p*,t + t,) and ¢*(¢) and p*(¢) are the solutions for
the unperturbed homoclinic orbit originating at the saddle point of the
Hamiltonian problem. The variable ¢, is a measure of the distance along
the original unperturbed homoclinic trajectory in the phase plane. We
consider two examples.

Magnetic Pendulum. A convenient experimental model of a pendulum
may be found in the rotary dynamics of a magnetic dipole in crossed steady
and time periodic magnetic fields as shown in Figure 3-18 (See also Moon
et al,, 1987).
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Figure 5-19 Saddle point of a Poincaré map and its associated stable and unstable manifolds
before a homoclinic orbit develops.

The equation of motion when normalized is given by

6 + v + sin8 = f,cos 8 cos wt + f, (5-3.21)

The sin 8 term is produced by the steady magnetic field, and the f, term is
produced by the dynamic field. We have also included linear damping and a
constant torque f;. Keeping with the assumptions of the theory, we assume
that one can write y = €¥, f, = €f;, and f; = ¢f;, where 0 < e <1 and ¥,

f» and \._ are of order one.
The Hamiltonian for the undamped, unforced problem is given by

H=1p+ (1 - cos8)

where ¢ =0 and p = v = 6. The energy H is constant (H = 2) on the
homoclinic orbit emanating from the saddle point (§ = v = 0). The unper-
turbed homoclinic orbit is given by

6* = 2tan"(sinh ¢) (5:3.22)

v* = 2secht

In Eq. (5-3.18), g, = 0 and g, = f; + f,cos 8 cos wt. The resulting integral
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can be carried out exactly using contour integration (e.g., see Guckenheimer
and Holmes for a similar example). The result gives

W

M(1,) = -8y + 2nf, + Na\._ewgimlvoow wty  (5-3.23)

The two perturbed manifolds will touch transversely when M(z,) has a
simple zero, or when

4y

B, cosh( 7w /2)
7

— (5-3.24)

[

hH>

where we have canceled the € factors. When f, = 0, the critical value of the
forcing torque is given by

4y W
fic = InoomrA |v (5-3.25)

Tw 2

This function is plotted in Figure 5-6 along with experimental and
numerical simulation data. The criterion (5-3.25) gives a remarkably good
lower bound on the regions of chaos in the forcing amplitude—frequency
plane.

Two-Well Potential Problem. Forced motion of a particle in a two-well
potential has numerous applications such as postbuckling behavior of a
buckled elastic beam (Moon and Holmes, 1979) or certain plasma dynamics
(Mahaffey, 1976). Damped periodically forced oscillations can be described
by a Duffing-type equation

E+yx—x+x>=fcoswt (5-3.26)
The Hamiltonian for the unperturbed problem is
H(x,v) = WAcN - x?+ ix*)
For H = 0, there are two homoclinic orbits originating and terminating at
the saddle point at the origin. The variables x* and v* take on values

along the right half plane curve given by

x*=y2sechr and v* = —y2sechttanht

In this problem, g, = 0 and g, = fcos wt — v, where y = €y and f=¢f
as in the previous example. The Melnikov function (5-3.20) then takes the
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form

M(1,) = I&M\\‘S sech ¢ tanh tcos w(t + t,) dt — ~<.\.8 sech?t tanh?¢ dt
- -

which can be integrated exactly using methods of contour integration. The
solution was originally found by Holmes (1979) but an error crept into his
paper. The correct analysis is in Guckenheimer and Holmes (1983):

4y

ECovn! 3" \M\ae mo&A

W

> T_. wtg (5-3.27)

For a simple zero we require

4y cosh(mw/2)
v — ——
3 V27w

This lower bound on the chaotic region in (f, w,y) space has been
verified in experiments by Moon (1980a) (see also Figures 5-2, 5-3).

(5-3.28)

(c) Intermittent and Transient Chaos

Thus far we have discussed what one might call “steady-state” chaotic
vibration. Two other forms of unpredictable, irregular motions are intermit-
tency and transient chaos. In the former, bursts of chaotic or noisy motion
occur between periods of regular motion (see Figure 5-20). Such behavior
was even observed by Reynolds in pipe flow preturbulence experiments in
1883 (see Sreenivasan, 1986). Transient chaos is also observed in some
systems as a precursor to steady-state chaos. For certain initial conditions,
the system may behave in a randomlike way, with the trajectory moving in
phase space as if it were on a strange attractor. However, after some time,

N LTI .

>>>>>:3>
VVV V] Z_\<<<<E =<,4_a¢

Chaotic bursts

Figure 5-20 Sketch of intermittent chaotic motion.
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the motion settles onto a regular attractor such as a periodic vibration.
Scaling properties of nonlinear motion can sometimes be used to determine
experimentally a critical parameter for these two types of chaotic motion.
In the case of intermittency, where the dynamic system is close to a periodic
motion but experiences short bursts of chaotic transients, an explanation of
this behavior has been posited by Manneville and Pomeau (1980) in terms
of one-dimensional maps or difference equations.

From numerical experiments on maps, the mean time duration of the
periodic motion between chaotic bursts () has been found to be

1
(r) ~ ey ‘ (5-3.29)

where A is a control parameter (e.g., fluid velocity, forcing amplitude, or
voltage) and A_ is the value at which a chaotic motion occurs. As A — A,
increases, the chaotic time interval increases and the periodic interval
decreases. Thus, one might call this creeping chaos.

To measure A experimentally, one must measure two average times (7),
and (7), at corresponding values of the control parameter, that is, A, and
A,. This should determine the proportionality constant in Eq. (5-3.29) as
well as A . Having obtained a candidate value for A, however, one should
then measure other values of ((7),A) to validate the scaling relation
(5-3.29).

The case of transient chaos has been studied by Grebogi et al. (1983a, b,
1985b) of the University of Maryland in a series of papers describing
numerical experiments on two-dimensional maps. In one study (1983), they
investigate a two-dimensional extension of the one-dimensional quadratic
difference equation called the Henon map (see also Section 1.3):

it

2
Xppp=1—ax;+y,

.%=+~ = —Jx

n

J is the determinant of the Jacobian matrix which controls the amount of
area contraction of the map. In the Maryland group’s research on transient
chaos, the case of J = —0.3 with the parameter a varied was investigated.
For example, for a > a, = 1.062371838, a period-6 orbit gave birth to a
six-piece strange attractor that exists in the region

ay < a < a, = 1.080744879

For a > a, the orbit under the iteration of the Henon map was found to
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wander around the ghost of the strange attractor in the x-y plane,
sometimes for over 103 iterations, before settling onto a period-4 motion.

They also discovered that the average time for the transient chaos (7)
followed a scaling law

(ry ~ (a—a)7"? (5-3.30)

The average was found by choosing 107 initial conditions for each choice of
a. The initial conditions were chosen in the original basin of attraction of
the defunct strange attractor. These transients can be very long. For
example, in the case of the Henon map, Grebogi and coworkers found
(7) = 10% for « —a, =5 x 107" and () = 10° for a — a, = 107>, .
This same research group has also found maps that exhibit supertransient
chaos in which the transient lifetime scales as (see Grebogi et al., 1985b)

(7 > kexp|ky(a - a) ] (5-3.31)

These results suggest that some transients could live beyond the vnwomo.&
life of any experiment. The mathematics relating to these studies again
involves homoclinic intersections of stable and unstable manifolds in maps.
The Maryland group refers to such homoclinic tangencies as crises. A full
discussion of the mathematics concerning transient chaos is beyond the
scope of this book and the reader is referred to the original work of the
Maryland group cited above.

Unfortunately, few if any physical examples or experiments have been
associated with the study of transient chaos thus far. But it would appear to
be a fertile subject for further study.

(d) Chirikov’s Overlap Criterion for Conservative Chaos

The study of chaotic motions in conservative systems (no damping) pre-
dates the current interest in chaotic dissipative systems. Since the practical
application of conservative dynamical systems is limited to areas mc.ov as
planetary mechanics, plasma physics, and accelerator physics, engineers
have not followed this field as closely as other advances in nonlinear
dynamics.

In this section, we focus on the bouncing ball chaos described in Chapter
3 (Figure 3-5). However, the resulting difference equations are relevant to
the behavior of coupled nonlinear oscillators (e.g., see Lichtenberg and
Lieberman, 1983) as well as the behavior of electrons in electromagnetic
fields. The equations for the impact of a mass, under gravity, on a vibrating
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(a)
Figure 5-21 (a) Poincaré map for elastic motion of a ball on a vibrating table (standard map)
for the parameter K = 0.6 in Eq. (5-3.32) showing periodic and quasiperiodic orbits.

table are given by (3-2.9) with a change of variables these become

V41 =0,+ Ksing,

(5-3.32)
Pn+1 = Pn + Unt1

where v, is the velocity before impact and ¢, is the time of impact
normalized by the frequency of the table (i.e., ¢ = wt modulo 2#). K is
proportional to the amplitude of the vibrating table in Figure 3-5. These
equations differ from those in (3-2.9) by the assumption that there is no
energy loss on impact. This implies that regions of initial conditions in the
phase space (v, @) preserve their areas under multiple iteration of the map
(5-3.32).

Orbits in the (v, ¢) plane for different initial conditions are shown in
Figure 5-21 for two different values of X.

Consider the case of K = 0.6. The dots at v =0, 27 correspond to
period 1 orbits; that is,

v, =0; + Ksing,

=@ tu

(%)
Figure 5-21 (b) The case of K = 1.2 showing the appearance of stochastic orbits.

whose solution is given by ¢, = 0, 7, v; = 0 (both mod 2#). The solution
near ¢ = = is stable for |2 — K| < 2. The solution near ¢ = 0,27, however,
can be shown to be unstable for |2 + K| <2 and can represent saddle
points of the map.

Near v = 7 one can see a period 2 orbit given by the solution to

v, =v; + Ksing,, =9, +0,
v, =0, + Ksing,, =9, + U

Again one can show that there are both stable and unstable period 2
points. One can also show that the stable points exists as long as K < 2.

The rest of the continuous looking orbits in Figure 5-21 represent
quasiperiodic solutions where the ball impact frequency is incommensurate
with the driving period. Finally, a third type of motion is present in Figure
5-21 (K = 1.2). Here we see a diffuse set of dots near where saddle points
and the saddle separatrices used to exist. This diffuse set of points repre-
sents conservative chaos. For K < 1, it is localized around the saddle points.
However, for K = 1, this wandering orbit becomes global in nature.

The reader should note that in Figure 5-21 (K = 0.6) one can obtain all
types of motion by simply choosing different initial conditions (since there
is no damping, there are no attractors).

A criterion for global chaos in this system was proposed by the Soviet
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Figure 5-22 Sketch of period-l and
period-2 orbits and concomitant quasiperi-
odic orbits for the standard map used in the
derivation of Chirikov’s criterion.
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physicist Chirikov (1979). He observed that as K is increased, the vertical
distance between the separatrices associated with both period-1 and period-2
motion decreased. If chaos did not intervene, these separatrices would
overlap (Figure 5-22)—thus the name overlap criterion.

If one performs a small-K analysis of the standard map (5-3.32) near one

of these periodic resonances, the size of each separatrix region is found to
be

Aok (5-3.33)
N =

Each analysis ignores the effect of the other resonance. The condition for
overlap is that A, + A, = 27, or

4KV + K, =2n (5-3.34)

The solution to this equation is K, = 1.46. This value overestimates the
critical value of K = K_ for global chaos which is found numerically to be
around K_= 1.0. The reader is referred to Lichtenberg and Lieberman
(1983) for further details concerning the overlap criterion.

The more practical minded reader might ask: What happens when we
have a small amount of damping present? For that case, some of the
multiperiod subharmonics become attractors and the ellipses surrounding
these attractors become spirals that limit the periodic motions. What of the
conservative chaos? Initial conditions in regions where there was conserva-
tive chaos become long chaotic transients which wander around phase
space before settling into a periodic motion. And what about real chaotic
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motions? When damping is present, one needs a much larger force, K > 6,
for which a fractal-like strange attractor appears (see Figure 3-5). Thus, .Eo
overlap criterion discussed above is only useful for strictly conservative,
Hamiltonian systems.

(e) Multiwell Potential Criteria

In this section, we describe an ad hoc criterion for chaotic oscillations in
problems with multiple potential energy wells. Such problems include the
buckled beam (Chapter 2) and a magnetic dipole motor with multiple poles.
In solid-state physics, interstitial atoms in a regular lattice can have more
than one equilibrium position. Often the forces that create such problems
can be derived from a potential. Let {g;} be a set of generalized coordi-
nates and V(q,) be the potential associated with the conservative part of the
force such that — 3V /dq, is the generalized force associated with the g,
degree of freedom. For one degree of freedom, a special case might have the
following equation of motion:

G+ vg+ @ = fcos wt (5-3.35)

aq

where linear damping and periodic forcing have been added. YGL has as
many local minima as stable equilibrium positions, as shown in Figure 5-23.

A Vig)

(
[ M
\V

Figure 5-23 Muitiwell potential energy function and associated phase plane.
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For small periodic forcing, the system oscillates periodically in one poten-
tial well. But for larger forcing, the motion “spills over” into other wells
and chaos often results. This criterion then seeks to determine what value of
the forcing amplitude will cause the periodic motion in one well to jump into
another well.

To illustrate the method, consider the particle in a two-well symmetric
potential (i.e., the buckled beam problem of Chapter 2):

§+v4-3q(1 - ¢%) = feos wt (5-3.36)

Since we are seeking a criterion that governs the transition from periodic to
chaotic motion, we use standard perturbation theory to find a relation
between the amplitude of forced motion (g2) (where ( ) indicates a time
average) and the parameters vy, f, and w. We then try to find a critical
value of (¢%) = A, independent of the forcing amplitude; that is,

(¢ =g(v,0,f) =4(0) (5-3.37)

The left-hand equality in Eq. (5-3.37) is found using classical perturbation
theory, while the right-hand equality is based on a heuristic postulate.

To carry out this program for the two-well potential, we must write Eq.
(5-3.36) in coordinates centered about one of the equilibrium positions:

n=q-1

To obtain a perturbation parameter, we write 1 = p X, so that the equation
of motion takes the form

X+ yX+X(1+ 2pX + 1p2X?) = mnom?: + ) (5-3.38)

The phase angle ¢, is adjusted so that the first-order motion is proportional
to cos wt. The resulting periodic motion for small f is assumed to take the
form

X = Cyos ot + p(C, + Cycos wt) + p2X,(t) (5-3.39)

Using either Duffing’s method or Lindstedt’s perturbation method (e.g., see
Stoker, 1950), the resulting amplitude force relation can be found to be

(WC){[(1 - 0?) = 3] +y%?) =12 (53.40)
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Based on numerical experiments, we postulate the existence of a critical
velocity. We propose that chaos is imminent when the maximum velocity of
the motion is near the maximum velocity on the separatrix for the phase
plane of the undamped, unforced oscillator. In terms of the original
variables, this criterion becomes (see Figure 5-24)

a
= — 3.4
WGy = o (5-3.41)

where a is close to unity. Substituting Eq. (5-3.41) into (5-3.40), we obtain a
lower bound on the criterion for chaotic oscillations:

1/2
a 3a? |2

=51 w?) - sz |t Yi? (5-3.42)

fe

This expression has been checked against experiments by the author
(Moon, 1980a) and a factor of « = 0.86 seemed to give excellent agreement
with experimental chaos boundaries as shown in an earlier figure (Figure
5-2). For low damping, this criterion gives a much better bound than the
homoclinic orbit criterion using the Melnikov function.

As illustrated in Figure 5-24, this criterion is similar to the Chirikov
overlap criterion—namely, that chaos results when a regular motion be-
comes too large.

The method outlined in this section has also been used on a three-well
potential problem and has been tested successfully in experiments on a
vibrating beam with three equilibria by Li (1985).

Figure 5-24 Overlap criteria for a multiwell
problem using semiclassical analytic meth-
/ ods.
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Velocity

0

Displacement
w=1fy=.197, 4 period.
y=.168
Figure 5-25 Basins of attraction for different initial conditions for the unforced, two-well

potential oscillator {from Dowell and Pezeshki (1986) with permission of the American Society
of Mechanical Engineers, copyright 1985].

Dowell and Pezeshki (1986) have posited another heuristic criterion for
the two-well potential problem (5-3.36). Instead of comparing the size of
periodic orbits with the undamped, unforced problem, they compare the
prechaotic, periodic, subharmonic orbits for the driven oscillator with the
boundary of the basin of attraction for the damped, unforced problem
(Figure 5-25). This boundary represents the set of initial conditions
(A(0), A(0)) for which the orbit goes to the left or right equilibrium point
without crossing 4 = 0. They also observe, through numerical simulation,
that the driven motion becomes chaotic when the force level of fo is larger
than the value for which a periodic orbit touches the basin boundary. (See
Chapter 6 for a discussion of basin boundaries.)

Criteria Derived from Classical Perturbation Analysis. The novitiate to the
field of nonlinear dynamics may be misled by the current interest in chaos
to conclude that the field lay dormant in the prechaos era. However, a large
literature exists describing mathematical perturbation methods for calculat-
ing primary and subharmonic resonances, as well as the stability character-
istics of solutions to nonlinear systems (e.g., see Nehfeh and Mook, 1979).
Thus, it is no surprise that studies are beginning to emerge that attempt to
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use the more classical analyses in the effort to find criteria for chaotic
motion. For example, Nayfeh and Khdeir (1986) use perturbation tech-
niques to predict the occurrence of period-doubling or period-tripling
bifurcations as precursors to chaotic oscillations of ships in regular sea
waves.

In another study Szemplinska-Stupnicka and Bajkowski (1986) have
studied the Duffing oscillator of Ueda (3-2.25). They find subharmonic
solutions using perturbation techniques and link the onset of chaos to the
loss of stability of the subharmonics using classical stability analysis. They
use analog computer experiments to check their results. They conclude Em"
for the Duffing-Ueda attractor (3-2.35), the chaotic motion is a transition
zone between the subharmonic and resonant harmonic solutions.

Although the author believes that the fundamental nature of chaotic
motion is more closely related to such mathematical paradigms as horseshoe
maps, fractals, and homoclinic orbits, the use of semiclassical Bo.ﬁro.am of
perturbation analysis may provide more practical analytic chaos criteria f~-
certain classes of nonlinear svstems
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63 FRACTAL DIMENSION OF STRANGE ATTRACTORS

There are two principal applications of fractal mathematics to nonlinear
dynamics: characterization of strange attractors and measurement of fractal
boundaries in initial condition and parameter space. In this section, we
discuss the use of the fractal dimension in both numerical and experimental
measurements of motions associated with strange attractors.

As yet, there are no instruments, electronic or otherwise, that will
produce an output proportional to the fractal dimension, although electro-
optical methods may achieve this end in the future (see Section 6.5). To
date, in both numerical and experimental measurements, the fractal dimen-
sion and Lyapunov exponents are found by discretizing the signals at
uniform time intervals and processing the data with a computer. There are
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three basic methods:

(a) Time discretization of phase space variables
(b) Calculation of fractal dimension of Poincaré maps

(c¢) Construction of pseudo-phase-space using single variable measure-
ments (sometimes called the embedding space method)

In both the first and third methods, the variables are measured and
stored at uniform time intervals {x(t, + nt)}, where n is a set of integers.
The time interval 7 is chosen to be a fraction of the principal forcing period
or characteristic orbit time. If the Poincaré map in (b) is based on a time
signal, 7 is just the period of the time-based Poincaré map. However, if the
Poincaré map is based on other phase space variables, the data are collected
at variable times depending on the specific type of Poincaré map (see
Chapter 4).

There are three principal definitions of fractal dimension used today:
averaged pointwise dimension, correlation dimension, and Lyapunov di-
mension. In most of the current experience with actual calculation of fractal
dimension, between 2000 and 20,000 points are used, although several
recent papers claim to have reliable algorithms based on as little as 500
points (e.g., see Abraham et al,, 1986). Direct algorithms for calculating
fractal dimension based on N, points generally take N§ operations so that
superminicomputers or mainframe computers are often used. However,
clever use of basic machine operations can reduce the number of operations
to order Nyln N, and significantly speed up calculation (e.g., see¢
Grassberger and Proccacia, 1983).

(a) Discretization of Phase Space Variables

Suppose we know or suspect a chaotic system to have an attractor
in three-dimensional phase space based on the physical variables
{x(2), ¥(1), z(1)}. For example, in the case of the forced motion of a beam
or particle in a two-well potential (see Chapter 2) x = position, v = X is the
velocity, and z = wt is the phase of the periodic driving force. In this
method, time samples of (x(¢), (1), z(t)) are obtained at a rate that is
smaller than the driving force period. To each time interval there corre-
sponds a point x,, = (x(n7), y(nt), z(n1)) in phase space.

To calculate an averaged pointwise dimension, one chooses a number of
random points x,. About each point one calculates the distances from x,, to
the nearest points surrounding x,. (Note that these points are not the
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nearest in time, but in distance.) One does not need to use a Euclidean
measure of distance. For example, the sum of absolute values of the
components of (x, — x,,) could be used, that is,

Som =|x(n1) = x(mr)| +|y(nr) = y(mr)| +|z(n7) — z(mr)] (6-3.1)

Then the number of points within a ball, cube, or other geometric shape of
order e is counted and a probability measure is found as a function of e.

P(0) =+ T H(e-S,,) (6:32)

0 m=1
where N is the total number of sampled points and H is the Heaviside step
function: H(r) =11if r> 0; H(r) =0 if r < 0. The averaged pointwise
dimension, following Eq. (6-2.3), is then

log P (¢
d, = tim ——=* oLe)
«—0 loge

(6-3.3)
1 M

d=— ), d

M :MHW "
where the limit defining 4, exists. For some attractors, the function P,
versus € is not a power law but has steps or abrupt changes in slope. One

can then calculate a modified average pointwise dimension by first averag-
ing P,. For example, let

A 1 M
C(e) = m,_mﬂ?v
. (6-3.4)
log C
d = tim )
«~0 loge

This is similar to the correlation dimension discussed in the previous
section.

The example of the two-well potential (5-2.2) is shown in Figure 6-8a, b
using the correlation dimension. This dimension is computed from numeri-
cally generated data using the equation % =y, y = —sy — ix(1 — x?) +
fcos z, 2 = w for values of 8, f, w in the chaotic regime. Figure 6-8a shows
the logarithm of the correlation function while Figure 6-8b shows the local
slope versus the logarithm of the size of the test volume. The slope for the
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intermediate values of ¢ is around 2.5. This is consistent with the fact that
the attractor lives in a three-dimensional space (x, y, z).

In practice, N, = 3-10% X 10* points and M = 20N,. One should
experiment with the choice of M by starting with a small value and
increasing it until 4 reaches some limit.

The choice of ¢ also requires some judgment. The upper limit of € is
much smaller than the maximum size of the attractor yet large enough to
capture the large-scale structure in the vicinity of the point x,,. The smallest
value of ¢ must be such that the associated sphere or cube contains at least
one sample point. For example, in a three-dimensional phase space, if the
mean global scale of the attractor is L, the average point density is

N6

p= al?

-10.0

U IIPURTIES AT S U WA S S W TS O W WS '

AL I i s o e I B B |
-50 ~40 =30 =20 -1.0 0.0 1.0 2.0 3.0
fa)
Figure 6-8 (a) log C versus log € for chaotic motion in a two-well potential (3-3.6). Data
obtained from numerical integration.
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so that the volume associated with ¢ should be greater than p~! or

L
€> 2N (6-3.5)

>bo~._§. o.oa:mma on the minimum size of ¢ is the “real noise” or
uncertainty in the measurements of the state variables (x, y,2). In an
actual ox.vo_..mBo:r there is a sphere of uncertainty surrounding each mea-
sured point in phase space. When ¢ becomes smaller than the radius of this
mmronn, the theory of fractal dimension discussed above comes Into question
since for smaller ¢ one cannot expect a self-similar structure.

(b) Fractal Dimension of Poincaré Maps

In systems driven by a periodic excitation, as in the D

, uffing-Ueda strange
attractor (3-2.25) or the two-well potential strange attractor (3-3.6), time wn
the phase ¢ = wr becomes a natural phase space variable. In most cases,
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this time variable will lie in the attractor subspace and time can be
considered as one of the contributions to the dimension of the attractor. In
the case of a periodically forced, nonlinear, second-order oscillator, the
Poincaré map based on periodic time samples produces a distribution of
points in the plane. To calculate the fractal dimension of the complete
attractor, it is sometimes convenient to calculate the fractal dimension of
the Poincaré map 0 < D < 2. If D is independent of the phase of the
Poincaré map (remember 0 < w? < 27), the dimension of the complete
attractor is just

d=1+D (6-3.6)

As an example, we present numerical and experimental data for the
two-well potential or Duffing—Holmes strange attractor (Chapter 2):

¥+ yx — 3x(1 - x?) = feos wt (6-3.7)
In this example, we are interested in two questions:

1. Does the fractal dimension of the strange attractor vary with the
phase of the Poincaré map?

2. How does the fractal dimension vary with the damping y?

The fractal dimension was calculated for a set of experimental Poincaré
maps and are listed in Table 6-2. This table shows an almost constant value
around the attractor. Thus, the assumption d =1+ D in Eq. (6-3.6)
appears to be a good one.

TABLE 6-2 Dimension of Experimental Poincaré Map versus Phase

for Vibration of a Bucklied Beanr’
¢ D(1,4)® D(1,7)
0 1.741 1.628
45 1.751 1.627
%0 1.742 1.638
135 1.748 1.637
180 1.730 1.637

“Nondimensional damping, y = 0.013; forcing frequency, 8.5 Hz; natural

frequency about buckled state, 9.3 Hz; from Moon and Li (1985a).
5Based on four smallest log r points in log C versus log r.
“Based on seven smallest log r points in log C versus log r.
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Figure 6-9 Fractal distribution of points from a Poincaré map for the two-well potential
problem (3-2.10), using the same data as in Figure 6-8.
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A numerically generated Poincaré map for the case of a particle in a
two-well potential under periodic excitation is shown in Figure 6-9. The
correlation function (Figure 6-10a C(¢) vs ¢ is shown plotted in a log-log
scale and shows a linear dependence as assumed in the theory.

The data in Figure 6-10 was the same as that used in Figure 6-8. From
Figure 6-10b, D = 1.5 or d = 2.5, which agrees with that calculated directly
from the attractor in the phase space (x, x, wt) as in Figure 6-8.

The effect of damping on the fractal dimension of the two-well potential
strange attractor was determined from Runge-Kutta numerical simulation.
This dependence is shown in Figure 6-11. The data show that low damping
yields an attractor that fills phase space (D =2, d=3) as would a
Hamiltonian (zero damping) system. As damping is increased, however, the
Poincaré map looks one dimensional and the attractor has a dimension
close to d = 2, as in the case of the Lorenz equations.
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Figure 6-10 (a) log C versus log ¢ for the set of points in the Poincaré map in Figure 6-9.

The fractal dimension of a chaotic circuit (diode, inductor, and resistor
in series driven with an oscillator) has been measured by Linsay (1985)
using a Poincaré map. He measures the current at a sampling time equal to
the period of the oscillator and constructs a three-dimensional pseudo-
phase-space using (I(¢), I(t + 1), I(1 + 27)) (see next section). He obtains
a fractal dimension of the Poincaré map of D = 1.58 and infers a dimen-
sion of the attractor of 2.58.

(¢) Dimension Calculation from Single Time Series Measurement

The methods discussed above assume that (1) one knows the dimension of
the phase space wherein the attractor lies and (2) one has the ability to
measure all the state variables. However, in many experiments, the time
history of only one state variable may be available or possible. Also, in
continuous systems involving fluid or solid continua, the number of degrees
of freedom or minimum number of significant modes contributing to the
chaotic dynamics may not be known a priori. In fact, one of the important
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Figure 6-10 (b) Local slope of (a) showing a fractal dimension in the linear region of (a) of
around 1.5.

applications of fractal mathematics is to allow one to determine the
smallest number of first-order differential equations that may capture the
qualitative features of the dynamics of continuous systems. This has already
had some success in thermofluid problems such as Rayleigh—-Benard con-
vection (see Malraison et al., 1983).

In early theories of turbulence (e.g., Landau, 1944), it was thought that
chaotic flow was the result of the interaction of a very large or infinite set of
modes or degrees of freedom in the fluid. At the present time, it is believed
that the chaos associated with the transition to turbulence can be modeled
by a finite set of ordinary differential equations.

Thus, suppose that the number of first-order equations required to
simulate the dynamics of a dissipative system is N. Then the fractal
dimension of the attractor would be d < N. Then if we were to determine d
by some means, we would then determine the minimum N.

Not knowing N, we cannot know how many physical variables
(x(2), y(1), 2(1),...) to measure. Instead, we construct a pseudo-phase-
space, or embedding space, using time-delayed measurements of one physi-
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Figure 6-11 Dependence of fractal dimension on the damping for the two-well potential

oscillator (3-2.10).
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x(t+27)

(x3, x4, x5)

(x1, x2, x3)
x(t+ 1)

x(t)

Figure 6-12 Sketch of an orbit in a three-dimensional pseudo-phase-space constructed from a
single time series measurement.

cal variable, say (x(2), x(t + 1), x(t + 271),...) (see Chapter 4 and also
Packard et al., 1980). For example, three-dimensional pseudo-phase-space
vectors are calculated using three successive components of the digitized
x(t) (Figure 6-12), that is,

X, = {x(tg + n1), x(tg + (n + 1)71), x(to + (n + 2)7)} (6-3.8)

With these position vectors, one can use the correlation function (6-2.6) or
averaged probability function (6-2.3) to calculate a fractal dimension.

To determine the minimum N, one constructs higher-dimensional
pseudo-phase-spaces based on the time-sampled x(¢) measurements until
the value of the fractal dimension reaches an asymptote, say, d = M + p,
where p < 1. Then the minimum phase space dimension for this chaotic
attractoris N =M + 1.

In reconstructing a dynamical attractor from the time history measure-
ments of a single variable, the question arises of how many dimensions are
required in the embedding space in order to capture all the topological
features of the original attractor. A mathematician named Takens has
proved several theorems about this question. If the original phase space
attractor lives in an N = dimensional space, then in general one must
reconstruct an embedding space (our pseudo-phase-space) of 2N + 1 di-
mensions.

To illustrate these ideas we have applied the embedding space method to
find the dimension of the two-welled potential (or buckled beam) attractor
(5-2.2). Earlier we saw that this attractor lives in a three-dimensional phase
space (x, X, wt) and has a fractal dimension of d = 2.5 (Figure 6-8). Using
the same data we also saw that we could calculate d from the Poincaré map
(Figures 6-9, 6-10). Using the same numerical data from a Runge-Kutta
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integration, we reconstructed the motion in a pseudo-phase-space using
digitized values of x(¢) and embedding space dimensions of m = 2 — 8.
The graphs in Figure 6-134, b show the correlation function as well as the
calculated dimension of the attractor in each embedding space.

One can see in Figure 6-13b that the dimension reaches an asymptote of
d = 2.5 after M ~ 4 — 5, which is in agreement with Taken’s theorem.

As an example using experimental data, we describe the work of a group
at the French research laboratory at Saclay (e.g., see Malraison et al., 1983;
Bergé et al., 1985). They measured the fractal dimension of a convective
fluid cell under a thermal gradient (Rayleigh-Benard convection, see
Chapter 3). They calculated the fractal dimension using an averaged
pointwise dimension (6-2.3) for different sizes of pseudo-phase-spaces. As
shown in Figure 6-14, the fractal dimension saturated at a value of 4 = 2.8
when the embedding dimension of the phase space reached 5 or greater.
They used 15,000 points and averaged P,(¢€) over 100 random points.
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Figure 6-13 (a) log C versus log ¢ for the two-well potential problem for different dimension
embedding spaces. Time history data identical to that in Figures 6-8 and 6-10.
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However, they also found regimes of chaoti
108 CLe) varsus b s orond gim aotic flow where no clear slope of

Similar results for the flow between two cylinders (Taylor-Couette flow)
has gou. reported by a group from the Soviet Union (L’vov et al., 1981)
They claim to measure the information dimension. Figure 6-15 mwmém Sn.
value of .E.o slope of log C(¢) versus loge as a function of e. This is
mrﬁwoﬂanm:o. of these measurements. The slope values at small ¢ reflect
:.-m::Bn:S:ou noise, while the values at large € are those for which the
size o.m the covering sphere or hypercube reaches the scale of the attractor.

Using such techniques, one can determine how the fractal dimension
ovmb.mnm as some control parameter in the experiment is varied. For exam-
ple, in the case of Taylor-Couette flow (see Figure 3-37), Swinney and
coworkers have measures the change in d as a function of the Reynolds
number (Figure 6-16; see Swinney, 1985).

In .»boar.o_. fluid experiment, Ciliberto and Gollub (1985) have studied
orm.g_o excitation of surface waves in a fluid. The surface wave chaos was
annoa by a 16 Hz vertical amplitude frequency; 2048 points were sampled
with a sampling time of 1.5 s or around 300 orbits. Using the embedding
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Figure 6-14 Fractal dimension versus dimension of embedding pseudo-phase-space for
measurements of electrohydrodynamic fluid flow, Rayleigh-Benard flow (Chapter 3), and
white noise [From Malraison et al, 1983).

space technique, they measured both the correlation dimension (d, = 2.20
+ 0.04) and the information dimension (d; = 2.22 + 0.04), both of which
reached asymptotic values when the embedding space dimension was 4 or
greater. (See also Figure 5-8.)

Holzfuss and Mayer-Kress (1986) have examined the probable errors in
estimating dimensions from a time series data set. The three methods
studied involved the correlation dimension, averaged pointwise dimension,
and the averaged radius method of Termonia and Alexandrowicz (1983).
They tested each on a set of 20,000 points from a quasiperiodic motion on a
5 torus, which consists of a time history with 5 incommensurate frequen-
cies. Using the pseudo-phase-space method for embedding dimensions of
2-20, they found that the averaged pointwise dimension had the smailest
standard deviation of the three. The average was taken over 20% of the
reference points, and curves that did not show scaling behavior over a
significant portion of the range of r were rejected.

6.4 OPTICAL MEASUREMENT OF FRACTAL DIMENSION
All the methods for calculating the fractal dimension of strange attractors

discussed above require the use of a powerful digital micro or minicom-
puter. From an experimental point of view, however, it is natural to ask
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Elsevier Science Publishers, copyright 1981}.

236

Optical Measurement of Fractal Dimension 237

! | ] |
10 12 14 16 18 20
Re/Regny

Figure 6-16 Dependence of information dimension on the Reynolds number for flow in 2
Taylor-Couette system [from Swinney (1985) with permission of Elsevier Science Publishers,
copyright 1985).

whether the fractal properties in dynamical systems can be measured
directly using analog devices in the same way that other dynamical proper-
ties such as velocity or acceleration are measured. For general, multi-
degree-of-freedom systems, the answer is not known; but for simple nonlin-
ear problems, the fractal dimension of a two-dimensional Poincaré map can
be measured using optical techniques (Lee and Moon, 1986). This method
is based on an optical interpretation of the correlation function (6-2.5).

A diagram illustrating this method is shown in Figure 6-17. We recall
that the correlation function involves counting the number of points in a
cube or ball surrounding each point in the fractal set of points. The optical
method uses a parallel processing feature to perform all the sums at once.
Light coming from one film creates a disk of light on another film. If each
film is an identical copy of the Poincaré map of the strange attractor, the
total light emanating from the second film is proportional to the correlation
function. By changing the distance between the two films in Figure 6-17, the
radius of the small circle changes and one can obtain the correlation sum as
a function of the radius . A plot of log C(r) versus log r then yields the
fractal dimension of the Poincaré map D.

If the map is a time triggered Poincaré map, the dimension of the
attractor is 1 + D.

An Optical Parallel Processor for the Correlation Function

A sketch of the experimental setup is shown in Figure 6-18, displaying the
optical path of light in this method. The method makes use of two
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6 : processing feature of optically measuri
correlation function and fractal dimension of a planar distribution of vwia. Y unne the

properties of classical optics. First, if light is passed through a small
aperture of diameter D in the region of Fraunhofer diffraction (f A is the
.€m<o_m=m9. D > 1), then light will cast a circle of radius 7, with uniform
Intensity, on a plane located at a distance L from the aperture. This radius
1s given by r = 1.22LA/D. In our method, the aperture originates from a
small dot on the negative of a planar Poincaré map and the small circle of
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light falls on an identical copy of this negative located at a distance L
(Figure 6-18). Second, for incoherent light, the amount of light that
emanates from the second negative is proportional to the number of small
dots or circles within the circle of illumination. The total amount of light
passing through both films is thus proportional to the correlation function
C(r). To calculate or vary r, we simply measure or vary L, the distance
between the two negatives.

To make these ideas more concrete, let ®(x, r) be the radiant flux
behind film #2 due to the flux ®,,(x) entering the circular aperture at x on
film #1:

®(x,r) =n(x, kam“% (6-4.1)

where n(x,r) =X H(r—[x — x;) is the number of apertures located
within the circle of light illuminated by the flux in the aperture at x, and A4
is the area of the aperture of a point on film #1. One can see that ®
depends on both » and r explicitly. However, we would like a measure of n
alone. Using the linear relation between r and L, we define an adjusted
radiant flux ®@* = (r/r,)?®, where r is the radius of the illuminated area
when L = L, (L, is a convenient reference distance). Summing over all
points in film #1,

wrg

»M.we*? r) = Amov Yo(x,r) = hmMe;E:S (6-4.2)

When the incident light intensity is uniform over film #1, we find

L\* N N
=] T 0xir) = X a(r) = c(r) (643)
0 k=1 k=1

The maps can be obtained from either numerical solution of a third-order
system of equations or from experimental data. The light passing through
film #2 was focused onto a photocell for the light flux measurement. A
light filter (orange-amber color filter) was used at the light source to
optimize the photocell response around 6328 A. The dot size on the
negatives was less than 0.2 mm so that D/A = 300, which satisfies the
Fraunhofer diffraction criterion.

The output voltage from the photocell contained a lot of noise. To
extract the signal from the noise, a mechanical light chopper and a lock-in
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Figure 6-19 Radiant flux versus distance between two films of Poincaré maps on a log-log
scale for data from the vibration of a buckled beam [from Lee and Moon (1986) with
permission of Elsevier Science Publishers, copyright 1986].

amplifier were used in the signal processing. The chopper was operated at
approximately 100 Hz to avoid power line noise.

The radiant flux behind film #2 was measured at the photocell as a
function of the distance between films, and the adjusted radiant flux (6-4.2)
versus L was plotted on a log—log scale as shown in Figure 6-19. Theoreti-
cally, the slope of this curve should give the fractal dimension (6-2.5).

Calculations of fractal dimensions using the correlation function C(r)
have shown that there is an optimum range of r to measure the slope. For
small r, one encounters the noise error in generating the original map
(increasing slope); for large r, one reaches the size of the attractor itself
which results in a saturation of C(r) (leading to decreasing slope). A plot of
the slope as a function of r is shown in Figure 6-20. One can see that the
slope reaches a plateau for a certain range of r or film distance L. This
plateau value was chosen as the fractal dimension. The data were obtained
from a Runge-Kutta simulation of the forced, two-well potential equation
(6-3.7). The 4000 points were generated by taking a Poincaré map synchro-
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Figure 6-20 Slope versus distance between films L or radius r for data similar to that in
Figure 6-19 [from Lee and Moon (1986) with permission of Elsevier Science Publishers,

copyright 1986].

nous with the driving frequency. The adjusted radiant flux output was
measured at approximately 200 values of L. However, only the linear
section of log C versus log L is plotted in Figure 6-19. The slopes in Figure
6-20 were based in 30 points/local averages of the slope of the log C(r)
curve.

A comparison of the optically measured fractal dimension with those
calculated from the numerical data of Moon and Li (1985a) is shown in
Table 6-3 for several values of the damping. The results, as one can see, are
remarkably good.

A comparison of the optical and numerical methods for experimental
Poincaré maps for the buckled beam is also shown in Table 6-3. In this set
of tests, the phase of the Poincaré map trigger was changed. The optical
measurement of fractal dimension confirms the results of the numerical
method, namely, that the dimension is independent of the phase of the
map. This implies that the dimension of the strange attractor itself is
1 + D, where D is the planar map dimension.
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TABLE 6-3 Optically Measured Fractal Dimension for Computer-Simulated
and Experimental Poincaré Maps

Numerical Poincaré Map [Eq. (6-3.7)]

Damping Calculated” Measured
0.075 1.565° 1.558
0.105 1.393 1.417
0135 1.202 1.162

Experimental Poincaré Map
Phase Angle Calculated” Measured
0° 1.741% 1.628° 1.678
45° 1.751 1.627 1.671
90° 1.742 1.638 1.631
135° 1.748 1.637 1.676
180° 1.730 1.637 1.635

“Moon and Li (1985a).
>Based on four smallest log r points in log C versus log r.
“Based on seven smallest log r points in log C versus log r.
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