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7.1 HISTORICAL BACKGROUND

limit, the degrees of freedom, or modes, are treated as a continuum with a
continuous label x rather than a discrete index i=1,...,N. Thus the
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7.1.a Russell’s Observations

The story begins over 150 years ago with the now famous observations
made by the Scottish engineer John Scott Russell while riding (on horse-
back) near the Union Canal outside Edinburgh. His report (Russell, 1844)
reads as follows:

I'was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped—not so the mass
of the water in the channel which it had put in motion; it accumulated round
the prow of the vessel in a state of violent agitation, then suddenly leaving it
behind, rolled forward with great velocity, assuming the form of a large
solitary elevation, a rounded, smooth and well-defined heap of water, which

Russell carried out many experiments on solitary waves and concluded
that the persistence of their form Was genuine and that the speed of
propagation in a channel of uniform depth was

c=Vgh+n) (7.1.1)

where 7 is the amplitude of the wave, h is the depth of the (undisturbed)
channel, and g is the gravitational constant.

Russell’s results were controversial since it was not believed at that time
that such a wave could be stable. The Astronomer Royal, Sir John Her-
schel, dismissed it as “merely half of a common wave that has been cut off.”
There was also a dispute with Airy, who had developed a shallow-water
wave theory in which such waves were not stable. The controversy was
resolved in 1895 by Korteweg and de Vries (1895), who derived an
equation governing weakly nonlinear shallow-water waves of the form

m:u MA mswm:_ %:v
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“in which o = h’[3 — Th/gp, where T is the surface tension of the liquid of

density p. This equation was found to have solitary wave solutions of
permanent form. After Korteweg and de Vries’s work, the problem disap-
peared and it was not until the early 1960s that Eq. (7.1.2) reappeared in
certain plasma physics problems.
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At this stage we note that introduction of the scaled variables the variables ¢ = wt, @ =vk/m, and x' = x/h (where x = ih), they showed
— , that by expanding the y,., in Taylor series to fourth order in h, (7.1.4)
gl /\lm' i, x=—2 = 1 n— 1 o becomes (dropping primes)
2 Vho Vo 27 3
2
reduces (7.1.2) to the form Vi = Yex + €iyie +.H.~M Yexse + O(eh?, %) (7.1.5)
U~ 6Uly + Uy, =0 (7.1.3)
where € =2ah. The next stage is to look for an asymptotic solution of the
7.1.b The FUP Experiment form
A motivation for studying the Korteweg-de Vries equation (hereafter
referred to as the KdV equation) was provided by the work of Fermi, Ulam, y~é(x, T)
and Pasta (FUP) in 1955 (Fermi et al., 1955). Recall (from Chapter 3) that
here the physical question was one of energy distribution in a chain of where T =et/2 and X = x—¢, that is, a right moving wave. Noting that
nonlinear A.umom:.m”oa. The mmomc_m:..oJ was that as the ::chn. of .omom:.w:o_,m Y. = —¢x +edr, one obtains
tended to infinity (the “statistical limit”), the energy would distribute itself
uniformly among all the modes, implying ergodicity on the energy shell. 2 _
Their model consisted of a one-dimensional nonlinear chain, of equal brx + dxbxx + 2 Pxxxx =0 (7.1.6)
masses, with nearest neighbors connected by a force law of the form ) ) ) )
F(A) = k(A+ aA®). This gave the following system of coupled nonlinear : where &= h?/12. Finally, setting u = ¢x yields
o.d.e.’s:
ur + uux + %NIXXX =0 - ] A.N.Hﬂv

my; = k(Yir1+ yiy —2y:) + kol (yir1 = y)*— (y: — yi-1)*] (7.1.4)

which is, within trivial scalings, just the reduced form of the KdV equation
(7.1.3)

Zabusky and Kruskal (1965) studied the KdV equation (7.1.7) numeric-
ally, imposing the periodic boundary conditions u(L, H=u(0, 9, u(L, )=
u.(0, 1), and u,, (L, 1) = u,,(0, t). (We immediately comment that this choice

. of periodic boundary conditions was for numerical convenience and does
not affect the fundamental result.) Working with an initial condition of the
form u(x, 0) = cos2mx/L), 0< x < L, they found that the solution broke up
into a train of (eight) solitary waves of successively larger amplitude. The

. larger waves traveled faster than the smaller ones, and, remarkably, the
7.1.c Discovery of the Soliton . former traveled “through” the latter and emerged from the “collisions”
apparently unscathed! This behavior is akin to the superposition principle
for linear waves, although in this case the waves are highly nonlinear. The
term soliton was introduced by Zabusky and Kruskal (1965) to describe
these remarkably stable nonlinear solutions. Their numerical results were
followed by the development of a remarkable new solution technique by
Kruskal and co-workers (Miura et al., 1968) which led to the development

where y; =y, (1) (i=1,2,..., N— 1) and y, =y, = 0. Initial conditions were
typically chosen to be y;(0) = sin(im/N), y,(0) = 0. Working with N = 64 the
system of equations (7.1.4) was integrated numerically on the Los Alamos
MANIAC computer. (It is worth noting that this was one of the first
peacetime uses of the computer for scientific research.t) Their results
showed that the bulk of the energy tended to cycle periodically through the
initially populated modes and that there was little energy sharing—an
unexpected result at the time.

The scene now changes to Princeton, 1965, for the work of Kruskal and
Zabusky. They were interested in the continuum limit of the Fermi-Ulam—
Pasta chain, which they derived in the following way (Zabusky and Kruskal
(1965)). Setting the distance between the springs to be h and introducing

tIn 1977, at the First International Conference on Stochastic Behavior in Classical and : : H :
’ of a whole new area of mathematical hysics—which might loosely be
Quantum Systems held in Como, Italy, Dr. Pasta reminisced about those computations. The Py 5 y

program was, of course, punched on cards. A “DO” loop was executed by the operator feeding termed soliton mathematics. To com.-: with, :..o:m? Sa. first Investigate
in the deck of cards over and over again until the loop was completed! some of the more elementary properties of the KdV equation.
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7.2 BASIC PROPERTIES OF THE KdV EQUATION

There are two basic forces at work in the KdV equation—which from now
on we consider in the form (7.1.3). These are (1) the nonlinearity, that is,
the term uu,, which tends to “sharpen” the wave up, and (2) the dispersion,
due to the term u,,,, which tends to “spread” the wave out.

7.2.a Effects of Nonlinearity and Dispersion

For a smooth initial condition, such as the one considered by Zabusky and
Kruskal (1965), the term Uy 1S relatively small compared to the nonlinear
term and one can consider the initial evolution to be governed by

u—6uu, =0 (7.2.1)
This is a standard, quasi-linear, first-order p.d.e which is capable of

developing shock solutions. Briefly, this can be seen as follows.t Consider
the solution to (7.2.1) to be of the form

u(s) = u(x(s), «(s)) (7.2.2)

where s parameterizes certain paths, termed characteristics, in the (x, 0)-
plane. Then, from the differential equation

du dx dt
== u,+— 2.
ds ds ™ das™ (7.2.3)
we deduce
dt
—= 7.2.4
s 1 (7.2.4a)
dx =—6u (7.2.4b)
ds
du
—_— Q. 0
i (7.2.4¢)

The set of equations (7.2.4) are easily integrated (ignoring constants of

TA fuller discussion can be found in any standard text on partial differential equations, such as
Carrier and Pearson (1976).
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Figure 7.1 (a) Straight-line characteristics associated with Eq. (7.2.1) for smooth
initial condition ue(x) (dotted line). (b) Sequence showing sharpening of u(x, t)
as solution evolves toward crossing characteristics.
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integration) to give

tHs)=s (7.2.5a)
x(s) = — 6sup(x) (7.2.5b)
u(s) = uo(x) (7.2.5¢)

where uo(x) = u(x, 0) is the initial condition for (7.2.1). Thus along the
characteristics defined by (7.2.5a) and (7.2.5b), the solution u(s) is constant,
that is, maintaining the initial amplitude given at s=0. However, the
characteristics—which are straight line paths—have a slope proportional to
uo(x), and, depending on the precise shape of this initial data, the charac-
teristics can cross. It is not difficult to see (see Figure 7.1) that this will lead
to a steepening of the wave and hence to a wave-breaking-like
phenomenon known as shock formation.

As the wave steepens, the term u,,, in (7.1.3) will become significant and
we must now consider how the evolution of the wave will be affected by the
linear part of the equation

Ut Uy, =0 (7.2.6)

Such an equation always admits a solution of the form
u(x, 1) = e'*=9 (7.2.7)
and, by direct substitution into (7.2.6), one obtains the “dispersion relation”
.EE =—k3 (7.2.8)

Thus longer wavenumbers travel with faster phase velocities, given by
¢ = w(k) k =—k? and the wave (7.2.7) will spread out as it evolves. Thus,
in some sense, this dispersive effect will balance the nonlinear effects and
lead to the formation of the stable solitary waves.

7.2.b A Traveling Wave Solution

A simple form of solitary wave solution can be obtained as follows. One
assumes a right traveling wave solution of the form

u(x, t) = f(x—ct) = f(z) (7.2.9)

where z =x—ct, and, by direct substitution into (7.1.3), one obtains the
ordinary differential equation (prime denotes differentiation with respect
to 2) .

\S;I@\.\u:l 0%; =0 AQNHOV
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A first integration with respect to z yields
[ =3f*+cf+d (7.2.11)

where d is a constant of integration, which is the o.d.e. for Weierstrass
elliptic functions described in Chapter 1. A second integration yields

GfY=f>+icfP+dfte (7.2.12)

where e is a second constant of integration. Equation (7.2.12) can now be
integrated by quadratures to yield the elliptic integral

df
V2(f>+3cf*+ df +e)

zZ—2zp= (7.2.13)

If (7.1.3) is defined on the infinite domain and one takes the boundary
conditions f, f', f’—>0 as z— oo, it is easy to deduce from (7.2.11) and-
(7.2.12) that both the constants of integration d and e are zero. In this case
the quadrature (7.2.13) reduces to

:ull&l._ ,
zZ—2zp .“\)\wﬂ (7.2.14)

which is easily integrated and inverted to yield
f(2) = —3c sech’(3ve(z — 20)) (7.2.15)

Owing to the minus sign, the solution is of the form of a negative amplitude
traveling wave (the sign would be positive if (7.1.3) were u, + 6uu, + u,,, =
0), with the amplitude proportional to wave speed; that is, larger waves
travel faster. The sech’ form of (7.2.15) gives the wave its localized
“lump”-like structure as first seen by Russell (1844). In the numerical
experiments of Zabusky and Kruskal (1965), each member of the family of
traveling waves was also observed to have a sech®-like shape. However, the
reason for the appearance of such a family and their stability cannot be
explained by a simple traveling wave analysis. A much deeper theory is
required.

7.2.c Similarity Solutions

Another type of solution to (7.1.3) can also be found by what is termed a
similarity transformation. If the variables x, ¢, u are scaled according to
x— k*x, t— kPt, u— k"u, direct substitution into the KdV equation shows
that it is invariant to these scalings if 8 =3a and y = —2e. Any choice of «



286 | NONLINEAR EVOLUTION EQUATIONS AND SOLITONS

may be made, for example, a = 1. Thus (7.1.3) is invariant to the scalings
x— kx, | t— k31, u—>k 2y

Furthermore, the combinations of variables

\«\u_\u ut?3
,

are also scale invariant. These results suggest a change of variable, namely,

z=x/(30" (7.2.16a)
u(x, ) = —(31yf(z) (7.2.16b)

where the factor 3 in the scalings has been chosen for convenience. Noting
that

and

d 0Jz @ 1 9

the KdV equation transforms to

.\.\:.*uﬁmx..le.\.\lN\”O A\\NﬂQv

Another type of similarity reduction is obtained by setting

=x+37£ (7.2.18a)
and

u(x, )= t+f(z) (7.2.18b)

This leads (after one ::mmam:.o:v, to
\.:”w\.N|n+ﬁ AQM~OV

where ¢ is a constant of integration. This equation is a special ordinary
differential equation known as the first Painlevé transcendent. Equation
(7.2.17) is related to another of these special equations, namely, the second
Painlevé wranscendent. The significance of the appearance of these special
ordinary differential €quations on making similarity reductions of the KdV
equation will be discussed in Chapter 8.
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7.2.d Conservation Laws

If we think of a p.d.e., such as the KdV equation, to be a dynamical system
with an infinite number of degrees of freedom, it is natural to ask, in
keeping with our preceding discussions, if the equations have any integrals
of motion. For p.d.e.’s the notion of integrals of motion is replaced by the
notion of conservation laws. These are relations of the form

T+X,=0 (7.2.20)

where T and X are certain functions of the solution to the p.d.e., u, and its
derivatives. T is termed the density, and — X is called the flux. It T and
X are connected by a gradient relationship (i.e., T = F,) and hence from
(7.2.20), x = — F,, the conservation law is trivial since

Amy + Al.mu..avq =0 AQNNHV
If, for systems defined on the infinite interval (—o<x=wo), the flux X

decays to zero as x— o, integrating both sides of (7.2.20) with respect to x
yields

mlm« Tdx=| X,dx= _ X_ =0 . (7.2.22)
This has the consequence that
T dx = constant (7.2.23)

—~o0

Thus we can think of these quantities as the p.d.e. analogues to the integrals
of motion for o.d.e.’s.

For the KdV equation (7.1.3) the equation itself is in conservation law
form, that is,

A§v~ + Alw=w+ =kxvh =0

From this conservation law we see that

.‘ u dx = constant (7.2.24)

—co

which represents the conservation of mass. Multiplying the KdV equation
through by u, it is not difficult to obtain the second conservation law

AENV» + Alwgwlwgw + ==xavk =0
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In this case we see that
_. u? dx = constant (7.2.25)

which represents the conservation of momentum. A certain amount of
experimentation yields a third conservation law of the form

(u +3ud), = Gu® —3ul Uy + 6 UUE — Uglgyx + 3 USx (7.2.26)

and hence

._. (u® +3u?) dx = constant (7.2.27)

Later on we shall describe how the integral (7.2.27) actually represents the
Hamiltonian for the KdV equation.

Having found three conservation laws, one naturally asks if there are any
more and, indeed, if there could be an infinite number corresponding to the
infinite number of degrees of freedom? This latter result would imply, in
some sense, a type of complete “integrability.” Kruskal and co-workers
(Miura et al., 1968) found, at first, by little more than brute-force pencil-
and-paper computations, nine conservation laws. A heroic effort by Miura
(1968) produced a tenth, which, at that time, strongly suggested that there
were indeed an infinite number of conserved quantities.

7.2.¢ The Miura Transformation

An important part of Miura’s investigation of conservation laws for the
KdV equation was the simultaneous study of a closely related equation,
called the modified KdV (mKdV) equation, which takes the form

U+ 66Uty Uy, =0 , (7.2.28)

This equation can be derived, in a similar manner to the KdV equation,
from the Fermi-Ulam-Pasta lattice if the nonlinearity is taken to be cubic
rather than quadratic. Miura found a set of conservation laws for the mKdV
equation parallel to the set for the KdV equation. His crucial observation
was that the two sets of conservation laws were connected by the “Miura
transformation”

u=n,+0’ (7.2.29)

where u and v denote solutions to the KdV and mKdV equations, respec-
tively. Furthermore, if we make the notation

P(u) = u,— 6 utt, + lyey =0 (7.2.30a)
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and
K(0) = 0, + 6070, + 0 = 0 (7.2.30b)

then one finds, using (7.2.29), that
P(u) = A? +%mv K(v) (71.231)

These results subsequently motivated Miura et al. (1968) to introduce a
slightly different transformation of the form

u=w+ew,+ew? (7.2.32)

where € is some (small) parameter. With this transformation, one finds that

P(u)= AH +e€ %m+wmniv Q(w) (7.2.33)

where
Q(w) = w, — 6(w + W)Wy + Wery =0 C(7.2.34)

is known as the Gardner equation. Note that Q(w) can also be written in
conservation law form, that is,

(W) +(—3w? —2€w’ + W), =0 (7.2.35)

The idea is to expand w in a small e power series, that is,
w= Y, elw; (7.2.36)

=0 .

The individual w; are easily found by solving (7.2.32) recursively, giving

Wo=U (7.2.372)
Wy =" Uy (7.2.37b)
Wa = gy — U (7.2.37¢)

and so on. The conservation laws are found by substituting (7.2.36) into
(7.2.35) and equating powers of €. This result follows from the fact that




290 | NONLINEAR EVOLUTION EQUATIONS AND SOLITONS

(7.2.36) is itself in conservation form. The first few laws are

O(€%):  (wo).=(Bwh—wo_ )« (7.2.38a)
O(e"): (w1 = (6wows — w1 )x (7.2.38b)
O(€?):  (wa), = Bwi+6wows+2w5— wz ), (7.2.38¢)

The reader will be able to verify that (7.2.38a) and (7.2.38c¢) correspond to
the conservation laws (7.2.24) and (7.2.25), respectively. (Derivation of the
latter requires use of (7.2.38a) to rearrange the left-hand side of (7.2.38c).)
The law found at O(e') is just the differential of the law found at O(e°).
This is a general result: The conservation laws found at the odd powers of €
are just derivatives of those found at the preceding even powers.

7.2.f Galilean Invariance

Gardner’s transformation provides an algorithm to compute an infinity of
conserved densities for the KdV equation. As discussed in Chapter 2 the
existence of an integral-—here a conserved density—implies the existence of
some special symmetry or invariance. That the KdV equation should
possess an infinity of such symmetries suggests that it must have some very
special properties.

One basic invariance possessed by the KdV equation is Galilean (or
translation) invariance. If one makes the change of variables, namely,

t=t, x'=x—ct, w(x', )= ulx, ) +ic

which corresponds to transforming to a frame of reference moving to the
right, the KdV equation becomes

uy—6u'uly+uo =0

that is, it is invariant to such a transformation. By contrast, the mKdV
equation is easily seen not to be Galilean invariant. However, if the above
change of variables is applied to the Miura transformation (7.2.29), one
obtains the Gardner transformation (7.2.32) on setting ¢ =3¢,

7.3 THE INVERSE SCATTERING TRANSFORM:
BASIC PRINCIPLES

So far the basic facts we have learned about the KdV equation are: (1) it
exhibits (numerically) solitons, (2) it possesses a variety of special solutions,
(3) it is Galilean invariant, and (4) it possesses an infinite number of

THE INVERSE SCATTERING TRANSFORM: BASIC PRINCIPLES | 291

conservation laws which are connected to those of the mKdV equation
through the Miura transformation .

v, +vi=u (7.3.1)

This was, approximately, the information at the disposal of Gardner,
Greene, Kruskal, and Miura (GGKM) in 1967 (Gardner et al., 1967). Their
observation was that (7.3.1) is a Riccati equation for » which can be
linearized (see Chapter 1) by making the substitution

v H(.“Ia (7.3.2)

to yield

Pox = ulx, Y (7.3.3)

Furthermore, since the KdV equation is Galilean invariant, u can be
replaced by u — A, where A is any (at this stage) constant. On making this
shift, (7.3.3) becomes

Yux — (u(x, ~v|>v.\\“0 - (7.3.4)

which is just the one-dimensional time-independent Schrodinger equation
for a “potential” u(x, 1) with eigenvalues A.

7.3.a The Connection with Quantum Mechanics

GGKM then made a remarkable intuitive leap by proposing that the time
evolution of u(x, f), according to the KdV equation, could be studied
through the properties of the quantum mechanical problem (7.3.4). Their
idea was as follows. Given an initial condition u = u(x, 0), solve the “direct
scattering” problem, that is, treat u(x,0) as a potential in the Schrodinger
equation (7.3.4) and find all the associated eigenvalues and eigenfunctions.
As u evolves, or deforms as a function of ¢, these associated quantum
mechanical properties—termed the scattering data—will also evolve. At this
point it is most important to emphasize that the variable ¢ in u(x, ) should
be thought of as some deformation parameter in the KdV equation and
should in no way be confused with the time variable that apppears in the
traditional time-dependent Schrodinger equation. The idea of GGKM was
that the evolution of the scattering data, initially obtained from u(x, 0),
might somehow be obtained without having to solve the KdV equation
directly. If this could be achieved, the scattering data, thereby obtained at
some later value of ¢, could be used to “reconstruct” the “potential” u(x, f).
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This latter step involves solving the quantum mechanical inverse scattering
problem, that is, going from the scattering data to the potential, in contrast
to the direct scattering problem of going from the potential to the scattering
data. This indirect route to solving the KdV equation is sketched below:

Scattering data Scattering data
at t=0 at ¢
Evolution of scattering data
Direct Inverse
scattering scattering
problem problem
Initial u{x, 0)- u(x, t)
potential u—6un +u,, =0

7.3.b Analogy with Fourier Transforms

Such a scheme is not as far fetched as it might at first sound and is, in fact,
closely analogous to the use of Fourier transforms in solving linear evolu-
tion equations. Consider such an equation, on the interval —o < x <o, of
the form ’

m

u=2()u (73.5)
ax

where £(3/dx) is a polynomial in §/dx, that is, a linear operator. A simple

example would be £=4°/ax”, in which case (7.3.5) is just the standard

diffusion equation. Now define the Fourier transform of u(x, 1):

o

ik, on% u(x, tye™™ dx (7.3.6)

—o0

Also define the “inverse” Fourier transform:

1 i
ulx, ;nwﬂﬁ ik, e dk (7.3.7)

Fourier transforming the p.d.e. (7.3.5) gives the evolution equation for
i(k, 1), that is,

dii N
MI a&?kv:

This linear equation has the simple solution

a(k, 6) = a(k, Q)e =) (7.3.8)
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where the initial Fourier transform data i(k,0) is determined from the
given initial data u(x, 0), that is,

o

ii(k, 0) = % u(x, 0)e™ dy (1.3.9)

The evolution of the “Fourier data” i(k, 1) is governed by the trivial
relation (7.3.8) and can be inverted at any subsequent value of ¢ to give the
desired u(x, ), namely,

1 [~ N .
u(x, ) =5- ‘ fi(k, 0) e L6 g-iks g (7.3.10)

Thus the solution route is analogous to that proposed by GGKM, that is,

Fourier data a(k, 0) Fourier data
att=0 at ¢, ik, 1)
Evolution of
Fourier data

Fourier

Inverse
transform Fourier
transform
Initial .
data u(x, 0) : ->u(x, t)

u, = L8/, )u

Of course the GGKM method is more complicated since the evolution is
nonlinear. To understand how it works, we must first discuss in more detail
the quantum mechanical direct and inverse scattering problems.

7.3.c The Direct Scattering Problem

Depending on its precise shape, a given potential uo(x) = u(x, 0) can
support bound states. The Schrédinger equation (7.3.4) will then admit a
corresponding set of discrete eigenvalues, A, =—k2 (n=1,... , N) cor-
responding to “negative energy” bound states with associated eigen-
functions ,(x), that is,

Un,xx = (Uo(x) + kZ)h, = 0 (7.3.11)

Bound-state eigenfunctions are required to be square integrable and nor-
malized to unity, that is,

h [ (X)) dx =1 _ (7.3.12)
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The normalizing constant, c,, that ensures (7.3.12) is defined by

lim e**y,(x) = c, (7.3.13)
This follows from the assumption that ue(x) decays to zero sufficiently
rapidly as x-— %% such that (7.3.11) reduces to ¢, . — k%, =0. One may
also define, equivalently, the ¢, by

Cn = :.\M | ()] &kH_L\N (7.3.14)

The set of eigenvalues A, (n=1,..., N) is -termed the bound-state spec-
trum.

At positive energy the Schrodinger equation for uo(x) exhibits a con-
tinuous spectrum and we set A =k’ As is well known, quantal wave-
functions can exhibit reflection above a potential barrier. Thus the asymp-
totic form of ¥(x) in the limit x —> ' is

lim ¢(x) = e ™ + b(k)e*™* (7.3.15)

where the first term on the right-hand side represents an incoming wave and
the second term represents the reflected wave with reflection coefficient b(k).
In the limit x — —o, we have

lim ¢(x) = a(k)e ™ (7.3.16)

X —00

which represents the transmitted wave with transmission coefficient a(k).

7.3.d The Inverse Scattering Problem

The term scattering data is used to mean, for a given potential, the set of all
bound-state eigenvalues, A,, normalizing constants, ¢,, and the continuum
functions a(k) and b(k). A remarkable result of Gelfand, Levitan, and
Marchenko in the 1950s (quite independent of anything to do with solitons!)
was to show how the scattering data could be used to uniquely find the
associated potential function ue(x) (Gelfand and Levitan, 1955; Mar-
chenko, 1955). Assuming that uo(x) satisfies the boundedness condition

[ arbblucol as <e» (7.3.17)

one defines the following quantity

N 1 (= .
BQ)= 3, chemt+— — b(k)e™ di (7.3.18)
n=1

—c0
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which can be thought of as a sort of Fourier transform of the scattering
data. The next step is to solve the following linear integral equation

K(x, 5+w?+s+—s B(x+2)K(z,y)dz=0 (7.3.19)

for the function K(x, y). If K(x, y) can be found, then it is possible to show
that the potential uo(x) giving rise to the scattering data used in (7.3.18) is
given by

uo(x) = —2(d/dx)K(x, x) (7.3.20)

A truly remarkable result!
In order to use all this to solve the KdV equation, we have to:

(i) find out how the scattering data “evolves” as uo(x) is “deformed”
into u(x, ) and

(ii) be able to solve the Gelfand-Levitan-Marchenko equation (Eq.
(7.3.19)).

As it turns out, (i) can be solved relatively easily. The problem, in keeping
with the conservation of difficulty principle, is (ii). Unfortunately, (7.3.19)
can only be solved exactly for rather special cases, but these include the
case required to explain the appearance of solitons. These results are
discussed in the next section.

7.4 THE INVERSE SCATTERING TRANSFORM:
THE KdV EQUATION

To begin with, we again emphasize that the variable ¢ appearing in the KdV
equation
w— 6ut, + Uy =0 (7.4.1)

should not be thought of as “real” time but rather as a deformation
parameter. Thus in the Schrodinger equation we can assign a t dependence
to the eigenvalue A without confusion, that is,

e — (u(x, ) = M) =0 (74.2)
where ¢ = ¢(x, 1).
7.4.a The Isospectral Deformation

Using (7.4.2) to express u as a function of ¢, that is,

u=—+A (7.4.3)
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it follows that

=Y Bxtipy, (7.4.4)

with analogous expressions obtainable for uw, and u,.. For these latter
terms it is convenient to eliminate third and higher derivatives (with respect
to x) of ¢ by repeated use of (7.4.2). In this manner the KdV equation
(7.4.1) can be reexpressed as

>~$m + (M, — M), =0 (7.4.5)
where
M= —2(u+2A) g + u (7.4.6)

For bound-state eigenfunctions the ¢ are square integrable, so integrat-
ing both sides of (7.4.5) from —o to + yields

A .—.s Yrdx= I_.s (M, — Y M), dx
=—|¢M, — M|
=0 (7.4.7)
Since §%. ¢* dx is just a nonzero constant, (7.4.7) implies that
=0 (7.4.8)

This is an immensely significant result since it tells us that for a potential
u(x, t), deformed according to the KdV equation, the bound-state eigen-
values A.(f) (n=1,..., N) remain unchanged! This is an example of what
is termed an isospectral deformation. In the continuum (i.e., A > 0), there is a
solution to the Schrddinger equation for every value of A. Thus we can
simply argue that at every positive energy, A is fixed and hence A,=0.
Either way, (7.4.5) gives

gnx.\\ - g.\\nu =0 AQA.OV

and by using (7.4.2) for ¢, we write this as a second-order differential
equation for M, that is,

My —(u—AM=0 (7.4.10)

The general solution to (7.4.10) is of the standard form

THE INVERSE SCATTERING TRANSFORM: THE KdV EQUATION | 297
M= Ay + Be (7.4.11)

where ¢ and o are the two linearly independent solutions. Obviously one of
these solutions is just the eigenfunction ¢ (just compare (7.4.2) and
(7.4.10)). Tt is a standard result to show that the second solution ¢ can be
computed from

x& \
o=y .q 1.\W GA.SV

which is easily verified by checking that the Wronskian ¢, — ¢ = 1.
However, it is not difficult to show from the asymptotic properties of
(7.4.10) that B=0 for both the bound states and the continuum. (In the
limit x — 4o, (7.4.10) becomes M, +AM =0; and using the asymptotic
forms of ¢ in (7.4.11), this can only be satisfied for nontrivial ¢ if B=0.)
Thus, overall, we have

M=y —2(u+2A ) + wp = A (7.4.13)

For bound states, we can go further and also show that A = 0. Multiply
both sides of (7.4.13) by ¢ to obtain

= 2+ 2P+ ud? = AP . (7.4.14)
and rewrite this as

LA, + (ug? — 292 — 4r7), = AP (7.4.15)

For square integrable bound-state eigenfunctions, we can now integrate
over x to obtain

SAREON

The second term on the left-hand side of (7.4.16) is zero—as is the first term
by the constancy of the normalization integral. Thus A =0 and we have

:efzw:tis u>—s Wdx  (1.4.16)

P, —2(u+ 20 ¢+ uh =0 (7.4.17)

7.4.b Evolution of the Scattering Data

Equation (7.4.17) can now be used to derive the “evolution” equation for
the normalization constants ¢,(f). In the limit x — o, for suitably decaying u
and u,, (7.4.17) reduces to .

Y+ 4k =0 (7.4.18)
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where we have set A = — kZ for the eigenfunction y,. By definition,

lim ¢, (x, 1) = c,(f)e *= (7.4.19)

s0 by direct substitution of (7.4.19) into (7.4.18) we obtain the first-order
ordinary differential equation for c,, namely,

dc,
dt

=4klc, (7.4.20)

This has the simple solution
en(t) = ¢, (0)ekar (7.4.21)

where the initial value ¢n(0) is the bound-state normalization constant for
the nth eigenfunction of uo(x) = u(x, 0).

In the case of the continuum, we still have to work with (7.4.13), but
setting A = k2 and again taking the limit x—>, (7.4.13) reduces to

U — 4k, = Ay (7.4.22)
Recalling the asymptotic form

lim y(x, £) = e*= ¢ p(k, e (7.4.23)

direct substitution into (7.4.22) and the choice A = 4ik? yields the evolution
equation for b(k, 1), namely,

le = 8ik’b (7.4.24)

This has the solution
b(k, t) = b(k, 0) 8 (7.4.25)

where b(k,0) is the reflection coefficient for uo(x). Using the same
arguments for the limit x — —oo, it js €asy to show that

M'w =0 (7.4.26)

and hence

a(k, 1) = a(k, 0) (7.4.27)
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The reader will now see that the desired miracle has occurred—namely,
that under deformation according to the KdV equation the scattering data
A4(0), ¢.(0), a(k, 0), b(k,0), associated with the initial potential “up(x),
evolve according to simple linear equations. Since the deformation is
isospectral, we have An(1) = A,(0). Using (7.4.21) and (7.4.25), we can
construct the corresponding quantity

B(&; =3 &_SﬂfﬁF% b(k, t)e™ dk (7.4.28)

n=j 2@

and, on solving (if we are lucky!) the - Gelfand-Levitan-Marchenko equation
for K(x, y; 1), we obtain u(x, t) from

u(x, t) = ~2(d/dx)K(x, x; 1) (7.4.29)

This whole procedure, called the inperse Scattering transform, or IST, is, in
effect, an indirect linearization of the KdV equation with a strikingly close
analogy to the Fourier transform method. Indeed, IST is often referred to as
a nonlinear Fourier transformation.

As was hinted earlier on, the real problem lies with solving the integral
€quation for K(x, y; 1. It turns out, to date, that it can only be solved in
closed form for those scattering problems which are reflectionless, that is,
those for which bk, t) = b(k,0)=0. .

7.4.c A Two-Soliton Solution

A standard illustration of the IST for the KdV €quation is provided by the
study of potentials of the form uy(x) = — V sech? x, where V is a constant.
Here we work with the particular case

u(x,0) = -6 sech? x (7.4.30)
The associated Schrddinger equation
Yo +(6 mnor~k+>v$H 0 (7.4.31)

can be solved exactly. (Details are given in the excellent account by Drazin
(1983)). There are just two bound-state eigenfunctions:

¥ =}sech?(x),

=1 tanh(x) sech(x),

with Ay =—k?=—4 and c}0)=12
With A, =~ k3= —1 and c3(0) = 6

Fortunately, all sech? potentials and reflectionless, so b(k)=0. Thus
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(7.4.32)

For reflectionless potentials the Gelfand-Levitan-Marchenko equation can
be solved by assuming the kernel to be of the form

N
K(x, y; 0=} palx, e " (7.4.33)
n=1
Using this separation for the problem at hand, one may show that
|WANQqu+k1Nv~ + N&umnlklww _ &m@-lwk!w + wlwf.fuklwv
;= 7.4.34
K(x, ;0 (3 cosh(x — 28) + cosh(3x — 36¢)) ( )
Then, using (7.4.29), the solution can (eventually) be expressed as
12(3+4 cosh(2x — 8¢) + - 64
w(xf) = — ( cosh(2x — 8¢) + cosh(4x — 64¢)) (7.435)

(3 cosh(x —287) + cosh(3x — 361))?

Note that u(x, 0) = —6sech’ x. To understand the properties of this solu-
tion we follow the analysis given by Drazin (1983). This involves introduc-
ing the variables x;=x-4k}t=x—16¢t and x,=x —4k3t=x—4¢.
Expressing the arguments of the cosh terms in (7.4.35) in terms of X3 we
obtain

12(3 +4 cosh(2x, +241) + cosh(4x,))

~ =
ulx, (3 cosh(x; — 121} + cosh(3x, + 121))2

(7.4.36)

Now, for fixed x;, take the limit t—« and discard the exponentially
decaying portions of the cosh terms, that is,

—06 g 2x1+248
W~I—H~e Eﬁkw & PlAw&lx_+_u.+ Nux~+HN~vm
_ —-32
(INB)e™ e 2ny2
-32

- Awma_{_?\u + a{wa_iz,\wvw

= —8sech?(2x, + §) (7.4.37)
where 8 = Inv/3. Similarly, by expressing (7.4.35) in terms of x,, we obtain
—12(3 +4 cosh(2 x,) + cosh(4 x, — 48¢))

(3 cosh(x, —241) + cosh(3x, — 241))?

u(x, t) =
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Figure 7.2 Sketch of evolution of two-soliton solution (7.4.35) for (a) t= —0.75, (b) t=—0.4, (c) t=—-0.15, (d) t=—0.1, (e) t =0.0, (f) t

0.1, (g)

t=0.15, (h) t=0.4, and (/) t=0.75 showing the two separate solitons of depths 8 and 2, respectively, merging at t = 0 to give the initial potential

u(x, t) dx is conserved

w
—co

—6sech? x and then separating again with the deeper wave overtaking the smaller one. The “mass’ |

throughout. (Computation by Mr. E. Dresselhaus (private communication).)

u(x,0)

g
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and, on taking the limit ¢— o, we have

fN#&IAxn.Emn
(Be =¥ Y g 3n, 2an
_ -8
 Bem+ (13 e)
=—2sech?(x,+ §) (7.4.38)

lim u(x, t) =

00

In the same spirit, one can, in fact, show that in the limit f—> 40 for either
fixed x; or x,, u(x, 1) behaves as

lm u(x, £) = ~2 sech?(x, + §)— 8 sech?(2x, ¥ §) (7.4.39)

t—>o0

From the above analysis we can now understand the behavior observed
by Zabusky and Kruskal (1965). The solution represents the interaction of
two solitary traveling waves (cf discussion of traveling wave solutions in the
previous section). At t = —w the deeper wave lies to left of the shallow one
(see Figure 7.2). As t— 0, the deeper wave catches up with the shallower
one and at ¢ = 0 they merge into the original potential u(x, 0) = —6 sech? x.
Remarkably, as t— o they separate again, with the deeper wave moving
ahead of the shallower one. At = +oo the solution is again just the sum of
two separate solitary waves, with the only consequence of the collision
being the small phase shift §.

7.4.d More General Solutions

The result obtained for this “two-soliton” potential is fairly easily general-
ized to any potential of the form u(x, 0) =~ V sech? x. For such a potential
supporting N bound states with eigenvalues A, =—k2 (n=1,. .. , N), the
asymptotic form of solution is

N

im u(x, = 3. — 2% sech?(k,(x — 4k2¢ - 5,)) (7.4.40)

t—+o n=1

where the phase shift 8, is given by

1 cX(0) N3t [ ky — K\ 2
@:”ll— —_—
2k, i 2%, 1L A»..;sv v (7.4.41)

Such a solution is called an N-soliton solution. As t—> = the initial condition
takes up into a train of solitary traveling waves, with the deepest at the front
and the shallowest at the rear. As ¢ goes from —o to 4o, the only effect of
the interactions is just the phase shift §,.
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Our identification of the solitons has come about through considering the
limit — +o0, In fact, it is possible to show that the N-soliton solutions can
be represented exactly in the general form

u(x, )= W — 4k p2x, 1) (7.4.42)

where the ¢, are the bound-state eigenfunctions with eigenvalues A, = — k2.

For potentials which are not reflectionless, the continuum portion of the
quantal spectrum renders the Gelfand-Levitan-Marchenko equation in-
tractable to exact solution. However, the same basic picture holds, and in
the limit t— o the initial condition separates into a procession of isolated
traveling waves. The continuum has the effect of introducing an oscillatory
portion to the solution which dies out dispersively as t-—o. This
phenomenon is sometimes termed radiation. Little is known about the exact
nature of this part of the solution, although some asymptotic estimates are
available. A discussion of some of these results can be found, for example,
in Ablowitz and Segur (1981) or Drazin (1983). (The latter also gives a
simple example.)

7.4.e. The Lax Pair*

The reader will have noticed that the quantum mechanical problem boils
down (for the bound state spectrum) to the pair of linear equations

—\\xk = At - >v.\\ AQAA.&NV
and
U= 2(u+20) g ~ u (7.4.43b)

In order for these equations to be consistent with each other, they must
satisfy the “integrability condition”

Yexs = P (7.4.44)
Differentiating (7.4.43a) with respect to ¢ and using (7.4.43b) yields
Y = (U — it + Atte = A )+ 2(u + 20)(u — A) oy, (7.4.45)

where, for now, we are not assuming A, = 0. Similarly, differentiating
(7.4.43b) with respect to x finally gives

Yox = Sttty + Aty — we )+ 2(u + 2A) (1 — Ay, (7.4.46)
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In order to satisfy condition (7.4.44), we mBan_.mHo_v\ see that the following
two conditions must pe imposed, namely,

and

The pair of equations (7.4.43) is termed a Lax pair after Lax, who showed
(immediately following GGKM) that the KdV equation and other closely
related nonlinear evolution equations are equivalent to the isospectral
integrability condition for pairs of linear operators.

7.5 OTHER SOLITON SYSTEMS

dependent Schréodinger equation any more and a different, but related,
eigenvalue problem has to be solved. Here we just introduce a few of these
equations and some of their simple solutions and briefly describe the basic
IST procedure. Fuller accounts can be found in the cited texts,

7.5.a The Modified Kdv Equation

An evolution €quation that we have already mentioned is the mKdv
equation, namely,

u+6v’o, +o,, =0 (7.5.1)
The first step is to look for traveling wave solutions of the form
o(x, 1) = f(z2) (7.5.2)

where z = x— ;. Direct substitution into Q.w.wv followed by two in-
tegrations, yields the quadrature

= df
22—z ‘wl/\m’gl.*./w&a (7.5.3)

where d and e are the first two integration constants, The general solution
to this problem is in terms of Jacobj elliptic functions, but for the choice of
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boundary conditions [, f'=0as z5 1+ the quadrature reduces to

,,& _
N Ncl._‘\,\nl!\& (7.5.4)

This is easily integrated and inverted to give the solitary wave solution
f(2)=~Vesech(Ve(z - 20)) (7.5.5)
Note that the solution is a sech rather than the analogously obtained sech?
solution (7.2.15) for the KdV equation.
Another simple solution can be obtained by a similarlity transformation.
Following the arguments given in Section 7.2, it is not difficult to show that

(7.5.1) is invariant to the scalings x — kx, t— k*t, y—s g1y, This suggests
the change of variables,

z=x/t'B3, u(x, 1) = 1531 (z) (7.5.6)
which gives
R T (7.5.7)
This can be integrated once to yield
f"+2f*—32f+c=0 (7.5.8)

which is the special ordinary differential equation known as the second
Painlevé transcendent.

7.5.b The Sine-Gordon Equation
A very important nonlinear p.d.e. is the Sine~-Gordon equation
Uy — Uy +SiINu=0 (7.5.9)
This equation, as well as various solution techniques, was already used in
the last century, where it appeared in various problems of differential
geometry. A more contemporary use for it is in relativistic field theory. It js
often convenient to study (7.5.9) in the variables
§=2(x—1), m=kx+y (7.5.10)

which transforms it to

Ue, =Sin u (7.5.11)
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The periodicity of the sine introduces some interesting properties. If (7.5.9)
is linearized (i.e., expanded to first order) about the solution Y =0, one

obtains ’

Uy~ Uy tu=0 (7.5.12)

for which the dispersion relations are easily seen to be

o=vk*+1 (7.5.13)

This is real for all real k, implying that ¢ = 0 is a stable equilibrium point.
This should hardly be too surprising since if the space-dependent part of
(7.5.9) is dropped, one is just left with the simple pendulum equation
Uy +sin u = 0. On the other hand, if (7.5.9) is expanded about the solution
u = r, the result is

==|=kx|:”0 AQMHA‘V

which has the dispersion relations
o=vk*-1 (7.5.15)

This demonstrates that the solution u = = is unstable for 0 < k < 1. This is
again consistent with the properties of the space-independent problem.

A traveling wave analysis (i.e., setting u(x, ) = f(2)), yields after one
integration the quadrature

____d (7.5.16)
2(d — 2 sin*(zf))

z—2zo=(c%~ C.:N—

where d is the first constant of integration. For the particular choice d =0,
(7.5.16) is easily solved to give

NINoHHﬁI%EAHS:@bv (7.5.17)
and hence
f(z) = £4 tan™ " (e*=7V1=7) (7.5.18)

This solution takes on different shapes, depending on the choice of signs.
For the case of both signs being positive, f(2) rises, from left to right, from
zero to a height of 21 (see Figure 7.3). Such a solution is called a kink. The
solutions whose amplitude decays from 27 down to zero are termed
antikinks. Although, at first sight, these solutions look quite different from
solitons, their derivative has the characteristic sech shape, that is,
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Figure 7.3 (a) Kink solution f(z) =4 tan"[exp(z)] and (b) anti-kink solution
f(z) = 4 tan""[~exp(2)].

2
V1-¢2

Kinks (and antikinks) show all the collisional properties of solitons; that
is, they emerge unscathed from collision, suffering only a phase shift. A
two-kink solution that demonstrates this property was derived, using stan-
dard separation of variables techniques, by Perring and Skyrme (1962).
(This predates the work of Kruskal and co-workers, but at that time the full
significance of their result was not appreciated.) The solution (see Drazin
(1983) for details) takes the form

u(x, )= f'(z2) = sech((z — zo)/v1 - ¢?) (7.5.19)

u(x, 1) =4 tan (7.5.20)

~1[ ¢ sinh(x/V1— nan_
cosh(ct/V1— ¢2)
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The limits t— =+ o yield Another special solution to the Sine-Gordon equation can be obtained
: — by a similarity transformation. Working with (7.5.11), one notes that it is
lim wu(x, f) = 4 tan [eGHemIVImE — pmmarANIZET] - (7.5.21) invariant to the scalings £— k& and m— n/k. Making the substitution

t—>—o0

u(¢, m) = f(z), where z = &, yields
and

zf"+ f' = sin(f) (7.5.24)

lim u(x, ) =4 tan™ [ HertOVImE 4 pxmamdNI=T] - (7.5.27)
PR The change of variable g= e then gives
where we have introduced the phase shift \
1 mf@u g —g+1) _
8=vJ1-¢* _:AMV (7.5.23) g 2z

which is a special case of the third Painlevé transcendent.

0 (7.5.25)

The behavior of this solution is sketched in Figure 7.4.

A 7.5.c The NLS Equation

‘ Another significant nonlinear p.d.e. is the nonlinear Schrodinger equation
—~— (NLS), which takes the form

it = Uy + 2ulul? (7.5.26)

— where u represents the amplitude of an almost monochromatic wave train.
—2r |- Note that this is a complex equation. Thus |u|* gives the (real) amplitude of
the wavetrain envelope, which is also found to be of sech” form.

7.5.d A General IST Scheme*

As was mentioned at the beginning of the section, the IST for the above
o x | equations is different from that used for the KdV equation. The relevant
schemes were developed by Zakharov and Shabat (1979) and Ablowitz et
al. (1974). Here the associated eigenvalue problem is the two-component
- 2 ” system of equations

(©) ; V1, = — ilvy + quy (7.5.27a)

J Vg = i{02+ V) (7.5.27b)
N -

" where g = q(x, ) and r = r(x, t) are the potentials and { is the eigenvalue.
Note that if r=—1, (7.5.27) reduces to the Schrdodinger equation v, +
(g + ¢»)v =0. The associated time-dependent part of the problem takes the
general form

~2r |- 01, = Av, + Bo, (7.5.28a)

{c)
vy, = Cv, — Av, (7.5.28b)
Figure 7.4 Evolution of Perring-Skyrme solution (7.5.20) for (a) t <0, (b) t=0,

and (¢) t>0. where A, B, and C are various functions of g and r and the spectral
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parameter {. The derivation of the precise forms of A, B, and C for the
particular equations considered here is not, in fact, all that difficult.
However, we omit the details and refer the reader to the account given in
Ablowitz and Segur (1981).

For the Sine~Gordon equation, one sets g = —r = —u,/2 and obtains the
scattering problem

T i 1 .
Tm . r:w N__m:ﬁ (7.5.29)
and
[ ¢ i .
_,,e@ _ moom u NmmE u T; 0530
vt 1l Gnu —-Lcosu |t o
! 4¢

The reader may easily verify that these equations are the Lax pair for the
Sine-Gordon equation since the “integrability condition”

[L-Lal. @531

will only be satisfied if (i} £ = 0 (i.e., the deformation is isospectral) and (ii)
Uy = Sin U.
For the NLS equation the scattering problem is found to be

E (o M:S (7.5.32)

where the asterisk denotes complex conjugate, and

Me;‘H TRNHE:* N=w+_.=x~ﬂc; (7.5.33)

V2 Fure+ it -2 F iuu*]| v,
The integrability condition for this system is
i = uy, £ 2uu* (7.5.34)
It turns out that the case with the minus sign cannot exhibit soliton

solutions, whereas the positive-sign case can.
For the mKdV equation the scattering problem is

W N
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and

T__ _ ﬁlﬁmrﬂ 2itu? Aul?+2ilu, — Uy HNJT_
t

v, FAul? + 2ilu, + uy, +2u’ 43 F 2ifu® _ (7.5.30)

1%
for which the integrability condition is
Uy OU U+ U =0 (7.5.37)

In this case, soliton solutions can be found for either sign.

A version of the Gelfand-Levitan-Marchenko equation for these systems
has been derived, although its solution is highly nontrivial. In addition, the
basic eigenvalue problem (7.5.27) can, unlike the Schrodinger equation
(7.4.2), have solutions whose eigenvalues form complex conjugate pairs.
This leads to an oscillatory type of soliton solution known as breathers or
bions.

7.6 HAMILTONIAN STRUCTURE OF INTEGRABLE SYSTEMS

One of the most important properties of soliton equations is that they arc
integrable Hamiltonian systems. Here we give a simple account of thiy
which, in turn, provides a link between the properties of the finite-degrec-
of-freedom integrable systems described in Chapters 2 and 3 and their
continuum counterparts discussed here.

7.6.a The Functional Derivative

An important mathematical technique that we require is the variational or
functional derivative. This is easily understood by recalling the variational
principle used in Chapter 2. Consider some functional, denoted by F[u], of
the form

*2

Flu]= ._‘ f(x, u, u,) dx (7.6.1)

x1

in which f is some function of x, u, and w, with u = u(x) and u, = du/d
An obvious example of (7.6.1) is the action integral where f is the
Lagrangian and where u(x) is interpreted as g(f). An ordinary derivativé
(of, for example, g(x)) is evaluated by determining the effect of adding a
small deviation to the argument of the function, that is, g(x+ Ax); the
functional derivative is evaluated by determining the effect of a snumll
deviation to the function u(x), that is, u(x) + du(x) in f(x, u, u,). In this way
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we can evaluate the first variation of F [u] in the usual way, that is,
8F[u]l= .—‘ f(x, u+8u, (u+du),) dx I\— ’ fx, u, u) dx (7.6.2)

where the variation du(x) is assumed to vanish at the end points x; and x.
Expanding the first integrand to first order in 8u, one obtains

SF[u] = .— N mm su+A a:L dx (7.6.3)

xq mw:x

where (8u), = d(6u)/dx. Evaluating the second term by parts (assuming that
Su(x;) = du(x,) = 0) gives the standard result

%En — %Amml mm A%mlvv % s.iv

The integrand is termed the variational derivative and we denote it by
8F/8u, that is,

W;nmlxlh&
Su du &nAmSv (7.6.5)

Now consider the more general case in which f is a function of any number
of derivatives of u, that is,

Flu]= % £k, s U, ey -+ » tns) dX (7.6.6)

x1

where u,, = d"u/dx". In this case the variational derivative is easily found
to be

ﬁlats.ﬁ.l@l
m:l!Mqu ) &stmF.:v (7.6.7)

where the alternating signs have come from repeated integrations by parts
to bring (8u)n, down to du. Some simple examples are as follows: For

Flu] = ._.|s Gu?) dx (7.6.8)

we obtain

R
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and for
Flu]= ﬁ Gu?) dx (7.6.9)
we obtain

o
Su >

A less trivial example is the conserved density in the KdV equation
(7.2.27), that is,

Flu] n— (u® +3ud) dx (7.6.10)
for which

5F
Mﬂuw:wl:: (7.6.11)

Thus the KdV equation can be expressed as

e () 612
‘ 9x \du (7.6.

where F is the functional given in (7.6.10).

Functional derivatives can also be defined in the following way. Consider
the functional (7.6.1) in which u is also a function of some parameter «
(i.e., u = u(x; a)), so that

X2

Flu(x, a)] u_, f(x, u(x, @), w(x, o)) dx (7.6.13)

Xt
The derivative of F with respect to «, using the chain rule, is

&uu_sA&ﬂ du  of msv &

da duda  du, da

(7.6.14)

X1

where du./da = d(du/da)/dx. Again integrating by parts (and assuming
vanishing end-point contributions) gives

mmu _;N@.AMIMAWNVV % Q.m.g
da J,, 3a\du dx\du
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This can be written as

dF _.:.:. OF ix (7.6.16)

Xt

and can be taken as the definition of 8F/8u. (This is obviously generalizable

to (7.6.6).)

7.6.b Hamiltonian Structure of the KdV Equation

The Hamiltonian nature of (7.6.12) was first demonstrated by Gardner

(1971), whose approach we follow here. In. his derivation the solution
u = u(x, t) to the KdV equation is assumed to be periodic in the interval
(0, 2-m). In this case, u can be represented by the Fourier series

ulx, )= W ue’™ (7.6.17)

k=—o0

where . = (1) are a set of complex coefficients. Thinking of the function
e sct of “parameters” u, We can

F[u] given in (7.6.10) as a function of th
use (7.6.16) to write

oF .ﬂa SF du
= o dx
O Uy [} Su duy
2w @Nﬂ )
= h — e** dx (7.6.18)

o ou

where we have used (7.6.17). From this relation we obtain the Fourier
representation of 6F/8u, that is,

8F 1 & oF
—_— @-—Cn

FoRE v (7.6.19)

Using (7.6.12), the equations of motion for the individual u are just

&:& ik oF
— = 7.6.20
dt  2mwou— ( )
By defining, for k> 0, the variables

He H=-—F (7.6.21)

= — = U_k,
gk Fu 143 k Nﬂ.

(7.6.20) is exactly in the form of the Hamiltonian system
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dp __2H

da. _OH -
dt mﬁww dt 3Gk

(7 623

Using the above definitions, one can then go on to define the Poisv

bracket of two functionals, F and G, as

L § (235G _AF i)

F, Gl=— —
L 1 27 = \9qr 8pr 9Pk 3Gk
L F (G I
2 k=1 AUy dU—k Ou_y U
i < aF oG
= k— 7.6.213
Nd.wM\S duly OU_x A ’ v

Using (7.6.19), one can then show that (7.6.23) can be re-expressed as

27 8F 9 (8G
= ——\{—)d 7.6.
F, G] ‘—o Su mxAmzv x (

which can be taken as the definition of the Poisson bracket [F, G]. Such &

bracket can be shown to satisfy the Jacobi indentity.
We recall from Section 7.2 that the KdV equation has an infinite numbet

of conserved densities of the form

F,[u]l= ‘ T, dx (7.6.2%)

where the range of integration is (0, 2) for periodic systems Or (—00, ) fuf
systems on the infinite domain. Since the F, are conserved Gi.e., ar
constants of motion), their Poisson bracket with the Hamiltonian H (define

by (7.6.21) and (7.6.10)) must vanish, that is,

dF, _ [8F, 0 (SH\ , _
IS,E-_ A%v& 0

—t— 7.6
dt Su 9x (7.0.20)

One can further go on to show that all the F, commute with each other,

that is,

[F,, F.]=0 (7.6.21
for all n and m. This is the continuum analogue of the property @510
finite-degree-of-freedom integrable Hamiltonians. Thus the KdV equati
can be thought of as a completely integrable, infinite-degree-of-frecdom
Hamiltonian system. Continuing the analogy with finite systems, the resull
(7.6.27) furthermore suggests that the KdV flow must, it some sensc, W
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confined to an infinite-dimensional torus. Further, remarkable work by
Zakharov and Faddeev (1971) identified the canonical transformation of H
to action-angle variables in which these variables are expressible in terms of
the IST scattering data.

7.6.c Hamiltonian Structure of the NLS Equation

All the soliton equations discussed in this chapter can be shown to be
Hamiltonian systems with an associated Poisson bracket (the original re-
striction of (0, 2#) is not required). To conclude we just mention the case
of the NLS equation (7.5.26), which we write in the form

iu, = w, +2u’0 (7.6.28a)
— v, = v +20%u (7.6.28b)

where v = u*. In this case the Hamiltonian is
H=-—i _. (u?v* — u,v,) dx (7.6.29)

and Egs. (7.6.28) are immediately given by the canonical relations

8H _8H

W=7 =
v’ Su

(7.6.30)

7.7 DYNAMICS OF NONINTEGRABLE
EVOLUTION EQUATIONS

Integrable partial differential equations exhibiting soliton solutions arise
surprisingly often in the derivation of realistic physical models of various
wave phenomena occurring in one dimension. (For an introductory review
see the article by Gibbon (1985).) Equally important are the host of closely
related nonlinear evolution equations which are not integrable and have no
IST solution. These equations can exhibit behavior ranging from finite time
singularities (“blowup”) to spatial chaos. It seems likely that an improved
understanding of spatiotemporal chaos (and perhaps even fluid dynamical
turbulence) will be provided by the study of some of these model equations.
This is an enormous topic, but to complete our picture of chaos and
integrability (in a sense, these two opposing concepts are brought together
in this context) in dynamical systems we briefly mention some of the
“canonical” models and their associated behaviors.
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7.7.a Self-Focusing Singularities

The nonlinear Schrodinger equation in two dimensions, namely,
i, +Au+uluf> =0 (7.7.1)

where A denotes the two-dimensional Laplacian, is not soluble by IST and,
furthermore, its solutions can exhibit a finite time blowup or a “self-
focusing” singularity. This singularity is usually studied with (7.7.1) cast in
radially symmetric coordinates, that is,

Hmmt
ju,+—— | r— )+ ulu* = .
iu, :ﬁAﬁ m«v u|u| Q.ﬂwv

with u = u(r, 1). That a singularity is possible can be seen from quite simple
mechanical principles (see, for example, the paper by Berkshire and Gibbon
(1983)). For Eq. (7.7.2), one can write down integrals corresponding to
conservation of mass and energy, respectively, namely,

o

Enmﬁ‘_. lulrdr (7.7.3)

0

and

ou

“1/1
mlwa..-‘c MAN ar

The moment of inertia can also be defined, that is,

2 1
lM_=_av:_~ (1.7.4)

I= Nﬂ‘_‘ {ul?r® dr (7.7.5)
0

which, in turn, can be shown to be related to the energy integral through

1

PYe 4E (7.7.6)
For suitable choice of initial conditions u(r, 0), one can have E <0 with the
consequence that I <0. This leads to a vanishing moment of inertia in finite
time, that is, collapse (blowup).

The precise nature of the singularity is difficult to determine and has
stimulated a lot of theoretical work—much of it initiated by Zakharov and
co-workers (see, for example, Zakharov and Synakh (1976)). This earlier
work suggested that the singularity (in time) was algebraic; that is, the
solution behaved like (fr— t«)¥3 as it approached the blowup time tx.
Subsequent work suggests that the singularity has a much more complicated
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logarithmic structure (see, for oxmn:u_,n. the paper by McLaughlin et al.
(1986)). Singularities in the NLS equation are not confined to the two-
dimensjonal case. Indeed they can occur for the general equation

i+ Agu+ ulul =0 (7.7.7)

where A, is the d-dimensional Laplacian and o is the order of the
nonlinearity. For each dimension d there will be a o for which a self-
focusing singularity can be found. For example, in one dimension, the
quartic NLS equation

i+ u + uul*=0 (7.7.8)

exhibits blowup. Early work by Zakharov and Synakh (1976) suggested an
algebraic blowup going as (£ — tx)*’—but again it seems that the singularity
is more complicated than this.

7.7.b The Zakharov Equations

In many physical contexts, one is interested in modeling the interaction of
long waves with short waves. For example, in the theory of Langmuir waves
in plasma physics the interaction between a rapidly oscillating electric field
(denoted by u) and a slowly varying ion density (denoted by v) takes the
form

i+ u, +uv=0 (7.7.9a)

. _
i B(uP)xx (7.7.9b)

These are known as the one-dimensional Zakharov equations. Equations
such as (7.7.9) also arise in models of excitations in idealized DNA chains
proposed by Davydov (1979). An important feature of Eqs. (7.7.9) is the
limit of large C in (7.7.9b). In this case, one has v, = — B(|u[*),; in other
words, v is directly proportional to u and (7.7.9a) reduces to the integrable,
soliton-bearing, NLS equation. However, the full equations are not in-
tegrable and cannot be solved by IST. Numerical studies show them to be
capable of very complicated behavior. By contrast, if Eqs. (7.7.9) are
reduced to a “ome-wave” form by factorizing the operator (3%/9x*—
(1/C*(9*/31%) into (3/ax + (1/C)(8/a1)) (3/ax — (1/C)(3/07)), one obtains

i+ u,+uv=>0 (7.7.10a)

1
b+ 0= = B(up), (7.710b)

which are integrable and have an IST solution. Particularly important is the
physically more realistic, two-dimensional version of (7.7.9), namely,

i +Aut+uv=0 (7.7.11a)
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Dellﬁw vy = — BA(lu|) (7.7.11b)

In this case the large C limit reduces (7.7.11a) to the 2-D NLS equation
which can display blowup. Numerical simulations of (7.7.11) display a rich
behavior including near blowup followed by “burnout.” (A good review of
these phenomena, in the plasma context, is given by Goldman (1984).)

7.7.c Coherence and Chaos

“An important model system for the study of spatiotemporal chaos is the

damped and driven one-dimensional Sine-Gordon equation, namely,
U — Uy +sin u =T cos(wt) — au, (7.7.12)

This equation is typically studied with periodic boundary conditions, that is,
u(x+ L, t) = u(x, 1). Detailed numerical studies of (7.7.12) have been car-
ried out by Bishop et al. (1983) and others. A rich range of behaviors is
found as the driving and damping parameters, I’ and a, respectively, are
varied. Typically, though, the spatial structure of the solutions tends to be
quite coherent; that is, they just exhibit a few well-defined spatial modes.
What is especially striking is that this spatial coherence can be maintained
even when the temporal evolution becomes chaotic. Tt seems clear that the
soliton structure of the unperturbed (I' = a = 0) system can be quite robust.

In a variety of problems in statistical mechanics and fluid dynamics, two
equations frequently occur—these are the Ginzburg-Landau and closely
related Newell-Whitehead equations, respectively. A typical form for these
equations (in one dimension) is

U = au, + Bu— ylul*u (7.7.13)

where u usually represents the (complex) amplitude of some unstable mode
and a, B, y are adjustable parameters that can be complex. This equation,
which can be generalized to higher dimensions, can exhibit an enormous
variety of behaviors, ranging from the coherent to the chaotic, depending
on the choice of parameter values. The properties of such equations are a
most active area of research. -
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