	PROVA DI FISICA – 23/3/2005 - Corso di Laurea: ☐ STPA ☐ TACREC – a.a. 2004/05	
Nome e cognome: Matricola:		
	Problemi iportate le risposte negli spazi appositi e allegate le brutte copie o altri appunti che ritenete necessari per capire le motivazioni delle vostre risposte; indicate sia la risposta "letterale" che, se richiesto, quella "numerica"; quesiti, fate una crocetta nel riquadro vicino alla risposta che ritenete giusta e, se richiesto, aggiungete una breve spiegazione, per esempio citando la legge o il principio fisico che credete opportuno)	
1) a)	Nel vecchio West una diligenza passa all'istante $t=0$ di fronte all'ufficio dello sceriffo, muovendosi di moto rettilineo uniforme alla velocità $v=18$ Km/h. Lo sceriffo decide di inseguirla e, dopo un tempo $\Delta t=10$ si necessario per scolare la sua bottiglia di whiskey, monta sul cavallo e parte da di fronte il suo ufficio movendos nella stessa direzione e verso della diligenza. Supponete che il moto dello sceriffo avvenga con un'accelerazione uniforme e costante, che vale $a=6.0$ m/s² e considerate gli oggetti come masse puntiformi. Detto X un sistema di riferimento disposto lungo la traiettoria di diligenza e sceriffo e con l'origine coincidente con l'ufficio dello sceriffo, scrivete le equazioni del moto $X_D(t)$ ed $X_S(t)$ per diligenza e sceriffo. [Solo risposta letterale, ed usando i dati letterali del problema!!!] $X_D(t) = \dots$	
b)	Come si esprime, in termini matematici, il raggiungimento della diligenza da parte dello sceriffo? [Scrivete una condizione sfruttando la risposta al punto precedente!!!]	
c)	A quale istante <i>t</i> ' lo sceriffo raggiungerà la diligenza? $t' = \dots = \dots$ s	
d)	Quanto vale la velocità v ' dello sceriffo quando questo raggiunge la diligenza? v ' = m/s	
e)	Immaginate ora che lo sceriffo balzi al volo sulla diligenza, supponendo che la velocità con cui si muove sia esattamente la v ' appena determinata. Sapendo che la massa dello sceriffo è $m = 100$ Kg e quella della diligenza è $M = 900$ Kg, quanto vale la velocità V della diligenza subito dopo che lo sceriffo vi è balzato sopra? [Supponete che il processo assomigli ad un urto anelastico]	
2)	$V = \dots = $	
a)	Il riscaldatore elettrico viene acceso per un intervallo di tempo $\Delta t = 10$ s. Supponendo che tutta la sua potenza venga trasferita al solo gas (cioè che non ci siano dispersioni di calore), quanto vale il calore Q assorbito da gas? [Specificate anche il segno!] $Q = \dots \qquad \qquad$	
b)	Sapendo che alla fine del riscaldamento il gas si viene a trovare alla temperatura $T_I = 500$ K, quanto vale la sua capacità termica C ? $C = \dots J/K$	
c)	Supponendo che il gas si comporti da gas perfetto, quanto vale la pressione P_I al termine del riscaldamento? $P_I = \dots P_1$	

Quesiti

a.	trova su un piano verticale e compie delle piccole oscillazioni attorno alla posizione di equilibrio. Trascurando gli attriti si può affermare che si conserva:
~	□ la quantità di moto della massa m □ la somma di energia cinetica e potenziale della massa m □ l'energia potenziale della massa m □ l'energia cinetica della massa m
Sp	iegazione sintetica della risposta:
	La luna compie un moto quasi circolare ed uniforme attorno alla terra. Sapendo che il raggio dell'orbita è $R \sim 4 \times 10^5$ Km e che la luna compie una rotazione completa in un periodo $T \sim 28$ giorni $\sim 2.1 \times 10^6$ s, quanto vale approssimativamente il modulo della sua accelerazione centripeta a ? $\Box 3.6 \times 10^{-6} \text{ m/s}^2$
Sp	iegazione sintetica della risposta:
c.	Due cariche elettriche uguali ed opposte di segno, q e $-q$, sono attratte tra loro da una forza reciproca che vale $F = 2.0$ N. Quanto sarebbe la forza F ' se le cariche raddoppiassero il loro valore, cioè se fossero q ' e $-q$ ', con q ' = $2q$?
	$\Box F' = F \text{ (inalterato)} \qquad \Box F' = 2F \qquad \Box F' = 4F \qquad \Box F' = F/4$
Sp	iegazione sintetica della risposta:
Spi	condizioni di flusso stazionario non turbolento, la portata del condotto è: □ direttamente proporzionale alla differenza di pressione ai capi del condotto □ inversamente proporzionale alla differenza di pressione ai capi del condotto □ indipendente dalla differenza di pressione ai capi del condotto itegazione sintetica della risposta:
e.	Un condensatore elettrico accumula sulle sue armature una carica $q = 10^{-10}$ Coulomb quando è sottoposto ad una differenza di potenziale costante $V = 10$ V. Quanto vale la capacità C del condensatore?: $ \Box 10^{-10} \mathrm{F} \qquad \Box 10 \mathrm{pF} \qquad \Box 10 \mathrm{rF} $
Sp	iegazione sintetica della risposta:
Qι	uesiti per studenti immatricolati nel 2004 che <u>non</u> hanno superato il test del 25/11/2004 o in data successiva
1)	Il modulo del vettore spostamento nel piano le cui componenti sono $x = 3$ m ed $y = 4$ m vale:
2)	□ 5 m □ (3, 4) m □ - 5m □ 12 m Un cubo di un certo materiale, di spigolo 10 cm, ha massa 1 Kg. La densità di massa del materiale vale: □ 1 Kg/m³ □ 10^3 Kg/m³ □ 10^{13} Kg/m³ □ 10^{13} Kg/m³ □ 10^{13} Kg/m³
2)	□ 1 Kg/m ³ □ 10 ³ Kg/m ³ □ □ 10 ⁻³ Kg/m ³ □ 10 Kg/m ³
3)	Perché un dondolo per bambini si trovi in equilibrio basta che: □ sia nulla la somma vettoriale delle forze applicate
	□ sia nulla la somma vettoriale dei momenti delle forze applicate rispetto all'asse di rotazione
4)	□ siano nulle tutte e due le somme vettoriali (delle forze e dei momenti delle forze) Per definire una grandezza scalare nello spazio a tre dimensioni occorre dare:
7)	□ una sola grandezza □ tre grandezze corrispondenti alle tre direzioni ortogonali dello spazio
~ \	☐ indifferentemente una, due o tre grandezze
5)	Una legge che esprime la velocità v di un corpo in funzione della sua posizione x e del tempo t è del tipo: $v = A x t^2$. Che unità di misura ha la costante A ?:
	\Box m/s \Box m s ² \Box 1/s \Box 1/s
qua	a: acconsento che l'esito della prova venga pubblicato sul sito web del docente, http://www.df.unipi.it/~fuso/dida , impiegando come nominativo le ultime ttro cifre del numero di matricola, oppure il codice: