Corso di Laurea XX - PROVA DI PROVA DI VERIFICA n. 0 - a.a. 2009/10

Nome e cognome: Matricola:								
	Siete invitati a riportare i risultati, sia letterali che numerici, se richiesti, in questo foglio; allegate "brutte copie" o altri documenti che ritenete utili. Le risposte non adeguatamente giustificate non saranno prese in considerazione							
1.	VERSIONE ORIGINALE CONSEGNATA AGLI STUDENTI: Due oggetti puntituun sistema di riferimento cartesiano bidimensionale XY sotto l'effetto di un'acceler $= (0, a)$, con $a = -2.0$ m/s². All'istante $t_0 = 0$ i due oggetti si trovano rispettivam (cioè nell'origine del riferimento) e $\mathbf{r}_{0B} = (x_{0B}, y_{0B})$, con $x_{0B} = y_{0B} = 10$ m. In questo fermo ("parte da fermo") mentre l'oggetto A ha una velocità iniziale di modulo angolo $\theta = \pi/6$ rispetto all'asse X . [Ricordate che $\cos(\pi/6) = 3^{1/2}/2$, con $3^{1/2} \sim 1.7$ e a) Quanto deve valere il modulo della velocità iniziale V di A affinché i due ogget $V = \dots = \dots = m/s$ ATTENZIONE: IN QUESTA VERSIONE, ESSENDO LE ACCELERAZI UGUALI FRA LORO ED ESSENDO ASSEGNATO L'ANGOLO θ , IL PROSOLUZIONE (risposta corretta: "Non ammette soluzione"!)	azione costante e uniforme a nente nelle posizioni $r_{0A} = 0$ o istante, l'oggetto B si trova V (incognita) che forma un $\sin(\pi/6) = \frac{1}{2}$]. tti si incontrino?						
2.	VERSIONE MODIFICATA IL 17/11/09 PER ULTERIORE ESERCIZIO: Due o muovono in un sistema di riferimento cartesiano bidimensionale <i>XY</i> sotto l'effetto e uniforme diversa per i due oggetti: $a_A = (0, a)$, $a_B = (0, 2a)$, con $a = -2.0$ m/s ² . A si trovano rispettivamente nelle posizioni $r_{0A} = 0$ (cioè nell'origine del riferimento $y_{0B} = 10$ m. In questo istante, l'oggetto B si trova fermo ("parte da fermo") mentre iniziale di modulo <i>V</i> (incognita) che forma un angolo $\theta = \pi/6$ rispetto all'asse $X = 3^{1/2}/2$, con $3^{1/2} \sim 1.7$ e $sin(\pi/6) = \frac{1}{2}$. a) Quanto deve valere il modulo della velocità iniziale <i>V</i> di A affinché i due ogge $V = \dots = \infty$ m/s	di un'accelerazione costante di un'accelerazione costante dil'istante $t_0 = 0$ i due oggetti e $r_{0B} = (x_{0B}, y_{0B})$, con $x_{0B} = 0$ l'oggetto A ha una velocità d'. [Ricordate che $cos(\pi/6) = 0$						
	b) Quanto vale la coordinata y' in cui avviene l'incontro tra i due oggetti, suppor V di A sia quella determinata al quesito precedente? y'=	endo che la velocità iniziale						
	c) Quanto vale, in modulo , la velocità v_A ' dell'oggetto A che si misura "un attimo B? [Supponete anche qui che la velocità iniziale di A sia la V determinata al qu v_A '=							
3.	Un oggetto puntiforme di massa $m=200$ g può scivolare con attrito trascurab una guida rigida e indeformabile che ha la forma di un quarto di circonferenza di ra 20 cm e si trova, fissa, su un piano verticale, come rappresentato in figura. Quest reca una carica elettrica $q=5.0 \times 10^{-10}$ C e si sa che, nella regione di spazio di intere problema, insiste un campo elettrico uniforme e costante di modulo E_0 (incogniti orizzontalmente nel verso di figura. La configurazione rappresentata, dove l'angolo $\pi/6$ (misurato rispetto all'orizzontale) è di equilibrio . [Usate il valore $g=9.8$ l'accelerazione di gravità e ricordate che $\cos(\pi/6)=3^{1/2}/2$, con $3^{1/2}\sim 1.7$ e $\sin(\pi/6)$ a) Quanto vale, nelle condizioni specificate, il modulo della forza di reazione vino sull'oggetto? $N=\dots$	aggio $R = 0$ o oggetto esse per il o) diretto o vale $\theta = 0$ m/s ² per $\theta = 0$ θ						
	b) Supponete ora che all'istante t_0 =0 il campo elettrico esterno E_0 venga improvalgono, in modulo, le componenti tangenziale a_T e radiale a_R dell'acce comincia a muoversi? [Queste componenti vanno calcolate immediatamente elettrico, quando l'oggetto è praticamente ancora fermo !] $a_T = \dots $	lerazione con cui l'oggetto						
	c) Quanto valgono le componenti tangenziale e radiale, a_R ' e a_T ', misurate raggiunge la "fine" della guida, cioè il punto A di figura? [Attenzione: per ris							

domanda sull'accelerazione radiale occorre conoscere la definizione di lavoro o il principio di bilancio energetico. Se non è tra gli argomenti del primo compitino, come probabilmente sarà per gli studenti di Ing.

	$a'_T = \dots = m/s^2$ $a'_R = \dots = m/s^2$											
4.	Una piccola cassa di massa $m=5.0$ kg è vincolata a una fune inestensibile e di massa trascurabile. La fune, dopo essere passata per la gola di una puleggia di massa trascurabile che può ruotare con attrito trascurabile attorno al suo asse ed è vincolata a un solaio rigido attraverso un opportuno giogo, è annodata all'estremo di una molla di massa trascurabile, costante elastica $k=20$ N/m e lunghezza di riposo $L_0=50$ cm, il cui altro estremo è vincolato a una parete fissa e rigida. La configurazione geometrica del sistema è quella rappresentata in figura: asse della molla e fune (nel tratto di collegamento tra puleggia e molla) formano un angolo $\theta=\pi/6$ rispetto all'orizzontale. Inoltre la cassa, nel suo eventuale movimento, si trova a spostarsi lungo la direzione verticale. [Usate il valore $g=9.8$ m/s² per l'accelerazione di gravità e ricordate che $cos(\pi/6)=3^{1/2}/2$, con $3^{1/2}\sim 1.7$ e $sin(\pi/6)=\frac{1}{2}$; trascurate ogni forma di attrito] a) Quanto vale, in condizioni di equilibrio , l'allungamento Δ della molla rispetto alla propria lunghezza di riposo ? $\Delta=\dots$ m											
	b) Fate ora riferimento all'asse <i>Y</i> di figura, che supporrete centrato con la sua origine in corrispondenza della											
	posizione di equilibrio della cassa (puntiforme!) e orientato verso il basso. Come si scrive l'equazione del moto della cassa, $a(y)$, rispetto a questo asse? [In questa risposta non dovete usare valori numerici, limitandovi a esprimere i dati noti del problema in forma "letterale"; fate del vostro meglio per scrivere una funzione della coordinata y che sia coerente con i dati del problema, in particolare con la scelta dell'origine del riferimento. Giustificate per benino, in brutta, tutte le ragioni che stanno dietro alla vostra risposta!] $a(y) = \dots$											
	c) Immaginate ora che una forza esterna agisca sulla cassa spostandola verso il basso di una quantità $L=0.50$ m rispetto alla posizione di equilibrio. All'istante $t_0=0$ la forza esterna viene rimossa improvvisamente e la cassa si trova libera di muoversi avendo velocità iniziale nulla. Quanto vale, in modulo, la tensione T_0 della fune misurata nell'istante immediatamente successivo al rilascio della cassa? [Notate che, all'istante considerato, la cassa si trova ancora, praticamente, nella posizione $y=L!$] $T_0=\ldots$ N											
	d) Dopo aver lasciato andare la cassa, si osserva che essa risale e, a un dato istante <i>t</i> ', passa (per la prima volta) per la posizione di equilibrio determinata sopra. Quanto vale l'istante <i>t</i> '? <i>t</i> ' =											
5.	Una piccola cassa di massa $m=5.0$ kg si trova su una superficie orizzontale scabra, che presenta coefficiente di attrito statico $\mu_S=0.40$ e coefficiente di attrito dinamico $\mu_D=0.20$. Sulla cassa agisce una forza esterna di modulo F , orientata come in figura (l'angolo θ misurato rispetto alla verticale vale $\theta=\pi/6$). [Usate il valore $g=9.8$ m/s² per l'accelerazione di gravità e ricordate che $\cos(\pi/6)=3^{1/2}/2$, con $3^{1/2}\sim 1.7$ e $\sin(\pi/6)=\frac{1}{2}$] a) Qual è il valore massimo che può assumere il modulo della forza F se si vuole che la cassa resti in equilibrio? [Vi si chiede il valore F_{MAX} tale che, se $F>F_{MAX}$, allora la cassa si mette in movimento] $F_{MAX}=\dots$ N											
	b) Supponete ora che il modulo della forza esterna diventi, a partire dall'istante $t_0 = 0$, $F = 2F_{MAX}$ (con F_{MAX} determinato nella risposta precedente). Si osserva che in queste condizioni la cassa si mette in movimento lungo la superficie scabra. Come si scrive l'equazione del moto a ? [Non dovete usare valori numerici per questa risposta, ma dovete invece usare le espressioni "letterali" dei dati noti del problema] $a = \dots$											
	c) Supponendo che il modulo della forza esterna resti sempre pari a $F=2F_{MAX}$, quanto vale la velocità v della cassa dopo che essa ha percorso un tratto $D=2.0$ m sulla superficie scabra? E quanto vale la velocità $media < v >$ assunta dalla cassa nell'intervallo di tempo necessario a realizzare lo spostamento D ? $v = \dots \qquad m/s$ $< v > = \dots \qquad m/s$											

E-A, provate a dare una risposta, ma lasciate perdere, se non ci riuscite – a patto di capire perché non ci

riuscite!]

Nota:	acconsento	che	l'esito	della	prova	venga	pubblicato	sul	sito	web	del	docente,	, http://www.df.unipi.it/~fus	o/dida,	impiegando	come
nominativo le ultime quattro cifre del numero di matricola, oppure il codice: (4 caratteri alfanumerici).																
Pisa, .														Firm	a: MISTER X	