Corso di Laurea CIA - PROVA DI VERIFICA n. 2 - 26/03/2010

Siete invitati a riportare i risultati, sia letterali che numerici, se richiesti, in questo foglio; allegate "brutte copie" o altri

documenti che ritenete utili. Le risposte non adeguatamente giustificate non saranno prese in considerazione

1. Un blocco di materiale di massa M = 2.0 kg è scavato in forma di quarto di circonferenza di

Matricola:

Nome e cognome:

	raggio $R = 10$ cm, come rappresentato in figura (la figura riporta una vista laterale). Il blocco è munito di ruotine che ne rendono possibile il movimento, con attrito trascurabile , lungo la direzione orizzontale (denominata X). Una pallina (puntiforme!) di massa $m = M/4 = 0.50$ kg viene lanciata contro il blocco in modo da imboccare l'"ingresso inferiore" della guida, come mostrato in figura. Al momento dell'arrivo della pallina sulla guida, il blocco è fermo , mentre la pallina ha velocità di modulo $v_0 = 10$ m/s diretta lungo l'asse X (cioè orizzontalmente). Si osserva che la pallina risale lungo la guida, muovendosi con attrito trascurabile , finché, a un dato momento, passa per l'"uscita" (il punto più alto). Nel frattempo si osserva ovviamente che anche il blocco si mette in movimento . [Usate $g = 9.8$ m/s² per il modulo dell'accelerazione di gravità, diretta come in figura] a) Discutete per benino, in brutta, quali grandezze del sistema si conservano nel processo (risalita della pallina lungo la guida) e perché. Discussione:
	 b) Nell'istante in cui la pallina passa per l'"uscita" della guida, che relazione deve sussistere tra velocità della pallina e velocità del blocco (espresse entrambe rispetto all'asse <i>X</i> "fisso" nel laboratorio)? Discutete per benino in brutta. Discussione:
	 V' = m/s d) E quanto vale, in modulo, la velocità v' della pallina nello stesso istante? [Ricordate che la velocità è un vettore!]
2.	(un tondino) disposta in direzione orizzontale. Inizialmente il manicotto si muove con velocità v_1 diretta nel verso positivo dell'asse X (parallelo alla guida) e di modulo $v_1 = 0.80$ m/s. Ad un dato istante nel manicotto si conficca un proiettile di massa $m_2 = m/5$ che impatta sul manicotto avendo, subito prima dell'urto, la velocità v_2 diretta come in figura (il proiettile proviene "da sinistra" e l'angolo indicato, misurato rispetto all'orizzontale, vale $\theta = \pi/3$) e di modulo $v_2 = 5v_1$. [Ricordate che $cos(\pi/3) = \frac{1}{2}$ e $sin(\pi/3) = \frac{3^{1/2}}{2}$, con $\frac{3^{1/2}}{2}$ -1.7] a) Quanto vale la velocità v ' con cui il sistema manicotto+proiettile (conficcato) si muove subito dopo l'urto? $v' = \dots m/s$
	 b) Dimostrate per benino in brutta, usando argomenti quantitativi, che, nell'urto considerato, non si conserva l'energia cinetica complessiva del sistema. Discussione:
3.	Una sottile sbarra omogenea di lunghezza $L=1.0$ m e massa $M=2.0$ kg è imperniata in modo da poter ruotare con attrito trascurabile su un piano verticale attorno al perno O che la attraversa a tre quarti della sua lunghezza: facendo riferimento alla figura, questo significa che le lunghezze dei segmenti indicati sono $OA = L/4$ e $OB = 3L/4$. All'estremo B della sbarra è legata una fune inestensibile di massa trascurabile che è inchiodata a una parete rigida verticale. Tutto il sistema è in equilibrio con gli angoli rappresentati in figura che valgono $\theta = \pi/3$ e $\phi = \pi/2$. [Usate $g=9.8$ m/s² per il modulo dell'accelerazione di gravità e ricordate che $cos(\pi/3) = \frac{1}{2}$ e $sin(\pi/3) = \frac{3^{1/2}}{2}$, $con 3^{1/2} \sim 1.7$] a) Quanto valgono, in modulo , la tensione T della fune e la forza F che il perno esercita sull'asta nel punto O ? $T = \dots = \dots N$ $F = \dots N$
	b) Supponete ora che la fune venga improvvisamente tagliata; subito dopo il taglio si osserva che la sbarra comincia a

ruotare con velocità iniziale nulla attorno all'asse passante per il perno. Nella sua rotazione la sbarra assume ad un dato istante una direzione verticale (cioè l'angolo θ di figura diventa $\pi/2$). Quanto vale la velocità angolare ω della

	$\omega = \dots rad/s$
c)	Quanto vale l'accelerazione angolare α dell'asta quando essa si trova nella posizione di cui al quesito precedente? $\alpha = \dots = rad/s^2$
d)	Supponete ora che, quando l'asta si trova a passare per la posizione di cui al quesito precedente, il suo estremo urt anelasticamente con un oggetto puntiforme di massa $m = M/9$ (il carattere anelastico dell'urto significa che, in seguito alla collisione, l'oggetto rimane conficcato nell'asta), che inizialmente si trovava fermo nella posizione indicata in figura, poggiato su un piano. Quanto vale la velocità angolare ω ' dell'asta subito dopo l'urto? [State attenti a valutare bene cosa si conserva] ω ' =
e)	Come cambierebbe la soluzione del problema supponendo un urto completamente elastico tra estremità dell'asta e oggetto puntiforme? [Limitatevi a scrivere le equazioni rilevanti, discutendole per bene in brutta] Discussione:

sbarra in tale istante? [**Trascurate ogni forma di attrito**; per la risposta può farvi comodo ricordare il teorema degli assi paralleli, $I = I_{CM} + Md^2$, con d distanza tra il polo considerato nel calcolo di I e il centro di massa, e I_{CM} momento

di inerzia per rotazione attorno a un asse passante per il centro di massa]

Nota: acconsento che l'esito della prova venga pubblicato sul sito web del docente, http://www.df.unipi.it/~fuso/dida, impiegando come nominativo le ultime quattro cifre del numero di matricola, oppure il codice: | | | | | (4 caratteri alfanumerici).

Pisa, 26/03/2010

Firma:

Pag. 2 di 2