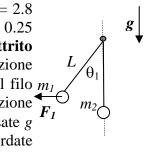
Corso di Laurea Ing. EA – "Compito per casa di Fisica" n. 4 - 15/12/2005

Nome e cognome:	Matricola:
Nome e cognome	Matricola

Istruzioni: riportate i risultati, sia letterali che numerici, se richiesti, in questo foglio; allegate "brutte copie" o altri documenti che ritenete utili. Le risposte non adeguatamente giustificate non saranno prese in considerazione

1. Avete due pendoli costituiti da due aste rigide, di massa trascurabile e lunghezza L=2.8 m e da due sfere di **raggio trascurabile** e massa rispettivamente $m_1=1.0$ Kg e $m_2=0.25$ Kg. Le due aste sono attaccate allo stesso piolo e sono libere di muoversi **senza attrito** sullo stesso piano verticale. La figura rappresenta il sistema nella sua condizione iniziale: la sfera 2 si trova ferma nella sua posizione più bassa (l'angolo θ_2 che il filo m_1 forma rispetto alla vertical vale zero) mentre la sfera 1 si trova **ferma** in una posizione tale che l'angolo che la sua asta forma rispetto alla verticale vale $\theta_1=45$ gradi. [Usate g=9.8 m/s² per il modulo dell'accelerazione di gravità diretta verso il basso e ricordate che $sin(\pi/4)=cos(\pi/4)=0.71$]



a) Sapendo che la sfera 1 è ferma per effetto di una forza F_I di direzione **orizzontale** ad essa applicata, quanto vale il modulo F_I di questa forza? [Occhio a proiettare bene!]

 $F_1 = \dots$ N $T_1 sin\theta_1 = (mg/cos\theta_1) sin\theta_1 = mg = 9.8 N, con <math>T_1$ modulo della forza esercitata dall'asta sulla massa [basta imporre equilibrio delle forze in direzione orizzontale, $F_1 = T_1 sin\theta_1$, e verticale, $mg = T_1 cos\theta_1$; combinando viene il risultato, a cui si può anche arrivare ragionando in termini "geometrici", notando che, se l'angolo è $\theta_1 = 45$ gradi, vuol dire che F_1 ed mg sono i lati di un quadrato nel "piano delle forze"]

b) Ad un certo istante la forza F_I viene "spenta" e la sfera 1 comincia a muoversi finché non urta la sfera 2. Quanto valgono le componenti tangenziali e radiali, rispettivamente v_T e v_R , della velocità della sfera 1 al momento dell'urto? Quanto vale l'accelerazione radiale a_R nello stesso punto? [Date un segno positivo alla velocità tangenziale quando essa è associata ad un moto anitorario e ricordate che il raggio delle sfere è trascurabile!]

 $v_T = \dots m/s \quad (2gL(1-cos\theta_1))^{1/2} \sim 4.0 \text{ m/s}$

 $v_R = \dots = m/s$ [dalla conservazione dell'energia meccanica si nota che l'energia cinetica della sfera, $m_1 v_1^2 / 2$, è pari al valore assoluto della variazione di energia potenziale, $m_1 g L (1 - cos \theta_1)$; inoltre la geometria del problema, cioè la presenza del vincolo costituito dal filo, stabilisce che la velocità è **solo** tangenziale, cioè $v_T = v_I$, da cui la risposta]

 $a_R = \dots m/s - v_T^2/L = 2g (1-\cos\theta_1) = -5.7 \text{ m/s}^2$ [è l'accelerazione centripeta in quel punto; il segno negativo indica il verso centripeto]

c) Supponendo che l'urto tra le due sfere sia totalmente **elastico**, quanto vale la velocità v'_1 della sfera 1 subito dopo l'urto?

 $v'_1 = \dots$ m/s $v_T(m_1-m_2)/(m_1+m_2) \sim 2.4$ m/s [viene imponendo conservazione della quantità di moto (lungo l'orizzontale, ma subito prima e subito dopo l'urto la velocità ha **solo** componenti orizzontali), e la conservazione dell'energia cinetica; per non rifare il conto da capo, può far comodo ricordare che, in queste condizioni (urto elastico centrale), si ha: $v_1-v_2 = v_2'-v_1'$, cioè, essendo $v_1 = v_T$ e $v_2 = 0$, $v_T = v_2'-v_1'$, da cui $v_2' = v_T+v_1'$; d'altra parte la conservazione della quantità di moto implica che $m_1v_T = m_1v_1'+m_2v_2'$; sostituendo l'espressione di v_2 ' appena determinata si ottiene il risultato]

d) Dopo l'urto la sfera 1 continua a muoversi, fino a fermarsi quando raggiunge una certa altezza. Quanto vale l'angolo θ'_1 che l'asta 1 forma con la verticale quando la sfera 1 si ferma?

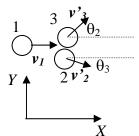
 $\theta'_1 = \dots - gradi$ $arcos(1-v_1)^2/(2gL)$ ~ 26 gradi [dalla conservazione dell'energia meccanica della sfera 1]

e) In seguito all'urto, anche la sfera 2 comincia a muoversi, fino a fermarsi quando raggiunge una certa altezza. Quanto vale l'angolo θ'_2 che l'asta 2 forma con la verticale quando la sfera 2 si ferma? [Può farvi comodo ricordare che l'urto è elastico]

 $\theta'_2 = \dots$ gradi $arcos(1-(m_1/m_2)(cos\theta'_1 - cos\theta_1)) = <math>arcos(1-(m_1/m_2)(1-v_1'^2/(2gL)-cos\theta_1)) \sim 76$ gradi [essendo l'urto elastico, e considerando trascurabili le forze di attrito, complessivamente il sistema conserva la sua energia meccanica, che è tutta potenziale sia all'inizio (quando la sfera 1 si trova in posizione angolare θ_1) che alla fine (quando le due sfere si strovano in θ'_1 e θ'_2), da cui, con un po' di trigonometria, il risultato]

2. Su un tavolo ad aria disposto su un piano **orizzontale** possono scivolare senza attrito dei dischi di massa $m_1 = m$ e **raggio trascurabile** (sono puntiformi ai fini

dell'esercizio). Il disco 1, che si muove con velocità v_I nella direzione X del riferimento di figura, urta contemporaneamente i dischi 2 e 3, di massa rispettivamente $m_2 = m$ ed $m_3 = 2m$, precedentemente fermi. L'urto è, evidentemente, **non centrale** e infatti dopo l'urto i dischi 2 e 3 si mettono in movimento formando angoli di valore rispettivamente θ_2 e θ_3 rispetto all'asse X (vedi figura). Si osserva inoltre che la direzione del moto del disco 1 **non cambia** dopo l'urto.



- a) Quanto valgono le componenti V_X e V_Y della velocità del centro di massa del sistema dopo l'urto?
 - $V_X = \dots m_1 v_1 / (m_1 + m_2 + m_3) = v_1 / 4$

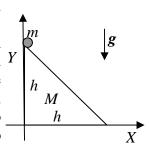
X ed Y, la velocità del CM resta costantemente pari a quella prima dell'urto]

b) Sapendo che i **moduli** delle velocità dei dischi 2 e 3 dopo l'urto valgono v_2 '= 2v' e v_3 '= v', quale relazione deve esistere tra i valori degli angoli θ_2 e θ_3 ? Commentate:

c) Supponendo ora di sapere che $\theta_2 = \pi/3$ rad, quanto deve valere ν ' affinché l'urto risulti elastico? [Esprimete il valore di ν ' in funzione di ν_I]

 $v' = \dots 2v_I/5$ [viene dalla condizione di conservazione dell'energia cinetica: $(m_I/2)v_I^2 = (m_I/2)v_I^2 + (m_2/2)v_2^2 + (m_3/2)v_3^2$, che, sostituendo con i dati noti del problema e semplificando opportunamente, dà: $v_I^2 = v_I^2 + 6v_1^2$. In questa espressione il modulo della velocità del disco 1 dopo l'urto, v_I' , è incognito, ma tale valore si può determinare dalla conservazione della quantità di moto lungo X: $m_Iv_I = m_Iv_I' + m_2v_2' \cos\theta_2 + m_3v_3' \cos\theta_3$, cioè, sfruttando quanto noto e semplificando: $v_I = v_I' + 2v_1'$. Affinché le due condizioni di conservazione dell'energia cinetica e della quantità di moto lungo X siano entrambe valide, deve sussistere la relazione data in risposta]

3. Una massa puntiforme m si trova ferma sulla sommità di un piano inclinato la cui sezione è costituita da un triangolo rettangolo isoscele con cateti lunghi h (vedi figura). La massa può scivolare **senza attrito** lungo il piano. Il piano inclinato è poggiato su un piano orizzontale su cui può scorrere a sua volta **senza attrito.** Per le risposte usate un sistema di riferimento cartesiano XY centrato sul vertice retto del piano inclinato, come in figura (ovviamente questo sistema di riferimento è solidale con il piano orizzontale, cioè rimane fisso durante l'eventuale moto del piano inclinato). La massa del piano inclinato vale M e, rispetto a questo sistema di riferimento, il centro di massa del **solo piano inclinato** si trova nella posizione di coordinate $X_{CM} = h/2$ e $Y_{CM} = h/2$ (la posizione lungo Z non è rilevante).



a) Quali sono le coordinate X_{TOT} ed Y_{TOT} che individuano la posizione sul piano del centro di massa dell'**intero sistema** (piano+massa puntiforme)?

 $X_{TOT} = \dots MX_{CM}/(M+m) = Mh/(2(M+m))$

 $Y_{TOT} = \dots (MY_{CM} + mh)/(M+m) = h(M/2+m)/(M+m)$ [per definizione]

b) La massa viene lasciata libera di muoversi sotto l'azione della gravità e si osserva che anche il piano inclinato si muove (in direzione orizzontale). Lungo quale direzione il sistema può essere considerato "isolato"? Commentate:

la direzione *X*, lungo la quale non agiscono forze esterne al sistema (che sono solo verticali, dato che sono costituite da forza peso e reazione vincolare che il piano orizzontale esercita verticalmente sulla base del piano inclinato)

c) In quale posizione *X*' si viene a trovare il centro di massa del **solo piano inclinato** quando la massa puntiforme raggiunge il fondo del piano inclinato stesso?

 $X' = \dots X_{TOT}$ -(h/2)(m/(m+M) = (h/2)(M-m)(M+m) [il sistema è isolato lungo l'asse X, ed essendo il sistema fermo all'inizio, la coordinata orizzontale del **centro di massa totale** del sistema rimane inalterata e pari costantemente a X_{TOT} . Deve quindi essere: $X_{TOT} = (mx' + MX')/(m+M)$, dove x' è la coordinata della massa puntiforme quando questa si trova alla fine del piano inclinato. Attenzione, perché tale coordinata è misurata nel sistema di riferimento fisso: tenendo conto che in un riferimento solidale al piano la massa parte da 0 e percorre uno spazio orizzontale h, e che questo riferimento si trova spostato di una lunghezza pari alla differenza tra posizione orizzontale finale ed iniziale del CM del **piano inclinato**, si ha $x' = h + X' \cdot X_{CM} = h/2 + X'$. Manipolando algebricamente si ha la risposta]