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What are we looking for...

We deal with particles (e.g., electrons) moving in nanosized structures

Quantum treatment of the particles implies wavefunctions (e.g., de Broglie,..)

If wavefunction extension ~ structure size, we expect quantum confinement

Known examples in optics (A~hundreds of nm): optical cavity, optical fibers
Signatures of quantization: radiation modes, supported standing waves, ...
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In transport properties, dimensions are scaled
down (we will see)
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Expected signatures of quantization: non-ohmic
behavior, tunneling effects, single electron, ... 2
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Expected advantages: miniaturization, speed,
consumption, novel functions,...
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Outlook

* Focus on “conventional” (silicon-based, inorganics) technology (we will mention
other possibilities later on)

Dimensionality of the structures and density of states for 3-D, 2-D, 1-D, 0-D
structures (bulk, quantum wells, quantum wires, quantum dots)

* Electron transport and quantum confinement in 2-D structures in the
presence of a magnetic field:
- High mobility 2-D electron gases at heterostructure interface;
- Quantum electron in a magnetic field: Landau levels;
- Quantum Hall Effect (integer, and a few words on the fractional effect);
- von Kilitzing quantum of resistance

* Electron transport and quantum confinement in 1-D structures without
magnetic field:

- Landauer treatment and levels;

- electron waveguides: “transverse modes”
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Conductivity in the classical (macroscopic) world

(Microscopic) Ohm'’s law:
J=cE > |=V/R with R=1I[S o)

\

In classical terms, resistance is a function of th (in bulk 3D
materials, it is directly proportional to the length | and inversely proportional
to the cross section S): R ~ (typical width)*(2-dimensionality)

it Drude (either classical or quantum):
IHus e .
L"-. /._.“', Diffusional motion of the electrons
A N |
~ - N 1llllil I 7] . ” .
oy ~-} Collisional” processes (material-
I.-"' - - s T dependent) rule the resistivity
I'|:' i

Dimensionality enters transport properties
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Dimensionality and quantum confinement effects

Quantum confinement effects expected pos| SDEG
whenever the de Broglie wavelength of gV
the particle (i.e., the electron) approaches Bulk (3D) T Energe
the typical size of the nanostructure |
2DEG
Agg = h/p ~ 7x104/v [m/s] in nm DOS[ '__lj
(Viem~10%4-10°m/s, v~109m/s) v | Esgtt >
L/h dp 1-D 1DEG
g(p) dp o« S/h? 21p dp 2-D ﬁ Dos‘ .\ ("z
V /h34mp?2dp 3-D , .
@ Quantum wire {1D}) Energia
dE NE 1-D
g(E) dE o« dE 2-D ODEG
\E dE 3-D 7 J | l

'

Quantum dot (0D} Energia

DOS expression affected by dimensions
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Electron transport and quantum confinement

Transport properties depend on the dimensionality of the structures: new and
unexpected effects associated with quantum confinement can arise

Quantum confinement is hard to be seen in 2DEG (2-dimension electron
gases, e.g., conductive films)

Fully localized ODEG structures (quantum dots) do require other processes
for transport tooccurr (e.g., tunneling, as we will see in the next part)

Basically, 1DEG structures are well suited for investigating electron
transport (Qquantum wires)

Hystorically, the first observations are associated with the Quantum Hall
Effect (QHE) in specific 2DEG structures with the presence of a static
magnetic field
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2DEG in semiconducting heterostructures

1.1 Two-dimensional electrom gas (2-DEG)

Recent work on mesoscopic conductors has largely been based on GaAs—
AlGaAs heterojunctions where a thin two-dimensional conducting layer is
formed at the interface between GaAs and AlGaAs. To understand why
- this layer is formed consider the conduction and valence band line-up in
: the z-direction when we first bring the layers in contact (Fig. 1.1.1a). The
. ‘Fermi energy E¢ in the widegap AlGaAs layer is higher than that in the
- parrowgap GaAs layer. Consequently electrons spill over from the

n-AlGaAs leaving behind positively charged donors. Thi.’

gives rise to an electrostatic potential that causes the bands to bend as
shown. At equilibrium the Fermi energy is constant everywhere. The elec-
tron density is sharply peaked near the GaAs—-AlGaAs interface (where
the Fermi energy is inside the conduction band) forming a thin conduct-
ing layer which is usually referred to as the two-dimensional electron gas
(2-DEG in short). The carrier concentration in a 2-DEG typically ranges
from 2 x 10'/cm? to 2 x 10'%cm? and can be depleted by applying a neg-
ative voltage to a metallic gate deposited on the surface. The practical
importance of this structure lies in its use as a field—e ansistor [1.2,
® / 1.3] which goes under a variety of name h aMOdulation

Surface Doped Field Effect Transistor) o (Hig ectron Mobility
Transistor).

Note that this structure is similar to standard silicon MOSFETSs, where
the 2-DEG is formed in silicon instead of GaAs. The role of the wide-gap
AlGaAs is played by a thermally grown oxide layer (SiO.). Indeed much
of the pioneering work on the properties of two-dimensional conductors
was performed usinge silicon MOSFETs (141

n-AlGaAs i-GaAs

(a)

-

After Ferry and Goodnick,
Transport in nanostructures,

®) E
2-DEG ®) |
t > : Cmbridge (1997)
Ef — —r _ Y I

+
E,
ig. 2.12. (a) Conduction band profile through a modulation-doped heterojunction system. (b) Charge
snsity versus distance due to ionized donors and acceptors.

Fig. 1.1.1. Conduction and valence band line-up at a junction between an n-type

AlGaAs and intrinsic GaAs, (@) before and (b) after charge transfer has taken place. b B an d b en d | n g ” at th e | n terfaC e

Note that this is a cross-sectional view. Patterning (as shown in Fig. 0.3) is done on

the surface (x—y plane) using lithographic techniques. prOdUCGS |Oca|i2ati0n in a ZDEG
with typ. thickness 1-10 nm
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Reminder on Fermi level in
doped semiconductors |

 Fermi level and carrier density in doped semiconductors

@irrier concentration in n-type semiconductors

e consider now extrinsic semiconductors, containing donor impurities, or acceptor
'km'ities, or both, and we wish to study their influence on the Fermi level and
e free carrier concentrations. We consider first the case of semiconductors in which
y donor impurities are present (n-fype semiconductors). The density Ny of donor
purities is supposed to be uniform in the sample, and the binding energy of the
fonor levels is £4. The schematic representation of the energy levels and occupancy
ot T = 0) is given in Fig. 7a.

A In intrinsic semiconductors we have seen that the Fermi level lies (basically) at the
middle of the energy gap (see Eq. 6). Doping with donors (or acceptor) levels is the
jnost common method to change in a controlled way the position of the Fermi level
'thin the energy gap. The presence of donor levels shifts the Fermi level from the
fn iddle of the energy gap toward the edge of the conduction band. Let us in fact define
éw: temperature

kBTd =E&4,

where Ty can be considered as the “ionization temperature” of the donor levels. If
T « T, we expect that practically all donor levels are occupied and thus the chemical

potential must be located in the energy range E; < u(T) < E.. If T is comparable

3

with T; we expect that most donor levels are ionized and p(T) lies somewhat below the

donor energy Ej, but still very near to the conduction band edge. At temperatures

so high that the intrinsic carriers are much larger than the concentration of don.or
impurities, doping becomes uninfluential and we expect that the chemicail potential
approaches the middle of the bandgap. The chemical potential and the carrier con(fen-
tration can be determined quantitatively from the knowledge of donor concentration,

G.Grosso and G.Pastori Parravicini,
Solid State Physics (Academic, 2000)

den31ty-of-states of the bulk crystal, and appropriate Fermi-Dirac statistics for band
. levels and donor levels.

The lmpunty states within the energy gap are described by localized wavefunctions;
ad@gkwd c I thns be empty, or occupied by one electron of either spin, but not by
(of 6 spin) because of the penalty in the electrostatic repulsion
Dueta tlns;the ptobablhty P(Ed) that the level Ey is occupied by an electron

1

 P(Eg) = (1/2) e haT 471 5 (19)

the above expression has been derived in Appendix III-C in the same way as the
fundamental Fermi-Dirac statistics (1).

The chemical potential of the doped semiconductor is determined by enforcing the
conservation of the total number of electrons as the temperature changes. In a semi-
conductor with Ny donor impurities per unit volume, the density ng(T) of electrons
in the conduction band must satisfy the relation

[no(T) = Na[1 - P(Ea)] + po(T) [ > (20)

where 19 and po are given by expressions (2). Eq. (20) is the straightforward general-
ization of Eq. (3); it states that the free electrons in the conduction bands are supplied
by the thermal ionization of donor levels and by the thermal excitation of valence elec-
trons. Eq. (20) can also be interpreted as an overall charge neutrality condition in the
sample: the concentration ng of negative charges equals the concentration of ionized
donor impurities plus the concentration of holes.

(a) (b)
E EA
conduction band conduction band

EC B
E | 2 o o A8 a & -

U(T=0) !

|
EV'ZE@:&;;" - iw*’”g'w‘* ';:?‘”s :‘?

. .

‘*w’!&&* *"y%%@t%wéﬁd %ﬂ gx‘givl

:w” &i»@ . ;zw - §s§*** as“‘w; |
Fig. 7 (a) Schematic representation of the ene rgy levels of a homogencously doped n-type
semiconductor at T = 0 (in abscissa any arbitrary direction in the homogeneous material can
be considered). Typical energy values are B = £, — E v~ 1leVand ey = E, — Fy &~ 10meV,
The Fermi level at zero temperature lies at (1/2)( (Eq+ L), which is the middle point between
Eqy and E.. (b) Schematic representation of the energy h vels of a homogeneously doped p-
type semiconductor at T = 0; typical values of £, = - o — I, are of the order of 10 meV. The

I(lml level at zero temperature lies at (1/ 2){.L + E.), which is the middle point between
vy oand F,.
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Low T

Reminder on Fermi level in doped semiconductors I

Equation (20) can be solved (numerically) to obtain the Fermi level and hence the
free carrier concentration. In the case the n-type semiconductor is non-degenerate
(which is the ordinary situation, except for extremely high concentration of dopants),
Eq. (20) can be simplified using Egs. (5). We have:

(1/2) eFa—n)/ksT

—(Be—p)/ksT _
Ne(T)e =Na (1/2) e(Ea—w)/ksT 4 1

+ Ny(T)e=W=Eo)/kaT 97y

This is a third order algebraic expression in z = exp(u/kpT) that could be easily
solved. We prefer to consider Eq. (21) in different regions of physical interest and
handle it analytically.

(i) Very low temperatures (or “freezing out region” ). Consider the semiconductor at
very low temperatures T' < Ty. In this temperature region we certainly have

E;<pu(T)<E,.

Thus the second term in the right hand side of Eq. (21) can safely be neglected;

High T

furthermore the denominator in the first term in the right-hand side of Eq. (21) can
be taken as unity. We have thus

N.(T) e~ (Be—u)/ksT _ %Nd e(Ea—p)/kpT ; (22a)

taking the logarithm of both members we obtain for the Fermi level

Nqg

1 1
> M(T)—§(Ed+Ec)+§kBTlnm-

We can replace expression (22b) into equation (22a), and we obtain that the '_
density in the conduction band is

N,
no(T) = N(T) e~ Eew)/kaT — , [N (T) 7‘1 e~ea/2keT
,»

Thus, the temperature dependence of the free electron carriers in n-type semicond
tors at temperatures T' < Ty has (approximately) the exponential form exp(—A/k
where A is half the binding energy of the donor levels. Notice that for high dog
Eq. (22b) shows a tendency of u(T") to increase and possibly to invade the cond cl
band; in this situation we must consider directly the implicit equation (20) for:
determination of the chemical potential. ‘

(i) Saturation region. Consider the semiconductor in the temperature region E '
T < Eg/kp; we expect that (almost) all donor levels are ionized, while the th el
excitation of valence electrons is still negligible. We have ;

no(T) = N(T) e~ (Bc—p)/ksT v Ny

|

from the logarithm of both members, we have for the chemical potential ]
rmediate T N, °
Interme > WT)=E.+kpT In —2 . (ﬂ
N.(T) 9

While the number 7o (T") of majority carriers is essentially constant and equal Ny, €

number of minority carriers is obtained by considering the mass-action law (7). Ing
saturation region, characterized by all donor levels ionized, and at temperatures whe

T e o

ni(T) < Ny, we have

ni(T)
"Ny

For instance, the intrinsic carrier concentration of silicon at room temperature is
ni(T) ~ 10 cm=3. In n-type silicon with donor concentration Ny =~ 10'4 cm~3, we
have ng ~ 10" em™* and pp ~ 10% em™3; in the above situation there are eight orders
of magnitude in the difference between the concentration of majority carriers and of
minority carriers. Notice also that in silicon N,(T) & 10'® cm~3; the chemical potential
(24b) remains near the conduction band edge, but safely below it, so that the non-
degeneracy conditions (4) are justified. As another example, consider an n-type GaAs
crystal at room temperature with n;(T) &~ 107 cm™ and ng & Ny ~ 10" cm~3; in
this case we have pg ~ 1lcm™3, a value fourteen orders of magnitude less than the
majority carrier concentration.

(iii) Intrinsic region. If we increase further the temperature, the thermal excitation
of valence electrons into the conduction band increases, and eventually the intrinsic
situation is recovered. The temperature dependence of the density of free electron
carriers in an n-type semiconductor is schematically summarized in Fig. 8.

no(T) = Ny and po(T) = (24c)

Up to this point, impurities have been (tacitly) considered as isolated and inde-
pendent; furthermore the doped semiconductor is assumed to remain non-degenerate,
i.e. the Fermi level is several kpT away from the band edges. As the concentration
of dopants is increased new phenomena occur; for instance, the Fermi level may ap-
proach and invade the energy bands; the density-of-states of the semiconductor may
be perturbed near the edges and a bandgap narrowing may result; the impurity levels
may interact forming an impurity band, with effects on the conductivity of the sample;
here, we do not enter in these and other interesting consequences of heavy doping in
semiconductors.

I | n <exp(-Eg/2kgT)
In n(T)
slope -E/2 _
/ P = necexp(-£4/2kpT)
| slope -€4/2
i ; n= 1\(1 N /
| =~
- . -4 . ! - .
INUnSIC:  gapuration region | freezing out
region ! region
— e i -
high ow 1/kgT
temperature lemperature
Fig. 8 Schematic variation of the electron concentration as a function of 1/kpT in an n-fy
semiconductor with Ny donor impurities per unit volume.
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High mobility in MODFET/HEMT structures

Mobility
What makes the 2-DEG in GaAs very special is_the extremely low scat-
tering rates that have been achieved. Thé mobility Xat low temperatures)
provides a direct measure of the momentum relaxation time as limited by
impurities and defects. Let us first briefly explain the meaning of mobil-
ity. In equilibrium the conduction electrons move around randomly not
producing any current in any direction. An applied electric field E gives
them a drift velocity v, in the direction of the force eE as shown in Fig.
1.1.2. To relate the drift velocity to the electric field we note that, at

2DEG interface

—’eE
IS much “better”
than grown thin
films in terms of
mobility

- Diift v,

velocity,

Fig. 1.1.2. In the presence of an electric field the electrons acquire a drift velocity
superposed on their random motion.

High “in-plane”
mobility achieved
(collisions
negligible)

Mobility (cm2/Vs)

,” Bulk

(b)
| el
1

2
0 Temperature {K)m
Fig. 1.1.3. Mobility vs. temperature in modulation-doped structures. Higher mobility
(but lower carrier concentration) is obtained with thicker buffer layers. Also shown for
comparison is the mobility in (a) high purity bulk GaAs and in (b) doped GaAs for use
in FETs. Adapted with permission from Fig. 9 of T. J. Drummond, W. T. Masselink
and H. Morkoc (1986). Proc. IEEE, 74, 779. © 1986 IEEE

steady-state, the rate at which the electrons receive momentum from the
external field is exactly equal to the rate at which they lose momentum
(p) due to scattering forces:

[ [
dt scattering dt field

Hence, (Tn: momentum relaxation time)

mvy et
=¢E = vi=—2E
Tm m

The mobility is defined as the ratio of the drift velocity to the electric
field:

(1.1.1)

Mobility measurement using the Hall effect (see Section 1.5) is a basic

characterization tool for semiconducting films. Once the mobility is
known, the momentum relaxation time is readily deduced from Eq.(1.1.1).

In bulk semiconductors as we go down from room temperature, the
momentum relaxation time increases at first due to the suppression of
phonon scattering. But it does not increase any further once the phonon
scattering is small enough that impurity scattering becomes the dominant
mechanism (see Fig. 1.1.3). With a donor concentration of 10'7/cm’ the
highest mobility is less than 10* cm?/V s. Higher mobilities can be ob-
tained with undoped samples but this is not very useful since there are
very few conduction electrons.

In a 2-DEG, on the other hand, carrier concentrations of 10%/cm®in a
layer of thickness ~100 A (equivalent bulk concentration of 10'*/cm?)
have been obtained with mobilities in excess of 10° cm?/V s (the current
record is almost an order of magnitude larger than what is shown in Fig.
1.1.3). The reason is the spatial separation between the donor atoms in the

AlGaAs layer and the conduction electrons in the GaAs layer. This
reduces the scattering cross-section due to the impurities, leading to
weaker scattering. Often an extra buffer layer of undoped AlGaAs is intro-
duced between the GaAs and the n-AlGaAs in order to increase the
separation between the 2-DEG in the GaAs and the ionized donors in the
AlGaAs. This reduces the scattering but it also reduces the carrier
concentration.




Classical Hall effect in a conductor

A known current is sent along x

A known magnetic field (static and
homogeneous) is applied along z

In a two-charge fluid model of the
current, Lorentz force drives
positive and negative charge along
y, with a sign depending on the
charge polarity

Vy=Ryl=v,BL=nuBL/e At equilibrium, charge separation
occurs (along y)
Mobility can be measured (including -> an electric field exists
the sign) by Hall experiments -> a potential difference can be

measured across Yy direction

Classically, the Hall resistance
IS a continuous feature
depending on the mobility
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Electron dynamics in a magnetic field (quantum)

Effetti gauntistici: diventano importanti ad esempio quando la separazione
ded livelli emergetici quantizzati & paragonabile & energia del sistema, oppure

quando la lunghesza donda di de BEroglie des = bjpei aviicina ad una lunghesza

catatterietica del sisterma.

Nel QHE ai ha quantizzazione Jdell’energia dovota alla presenza di B, che
produoce effetti ceservabili (anche per valord di campo readietis) grazie alle picoole
dimensioni del siatenia in una diregione.

0.1

Moto classico di un elettrone in presenza di
B

Suppongs B= B 2. Dhalla forza di Lorent:

Ff.ar:nt: =—2vuB {I'}
ai ha:
i = —etn B {2}
hef, = ewB X {3}
da cui {derivando e eoatitnenda):
. el g
iy = — Ur . {4}
i

Il Ioto lunge x ed y & oecillatorio con la pulzazione di mclnt; X
La combinazione dei moti lungs » ed ¥ con opportone condis
luogo ad wno mota circolare oon Ja stessa pulsazione & fogake :zrb:tu'.:zm e rq:hé
we = tuy‘}. S Pelettrone ha anche noto lungs 2, la traetlofid £ Ona apirale.

0.2 Trattazione gquantistica
*
L'Harniltoniana di uwn elettrone in preenza di B & (gange di Lorentz]:
1 2 E
H = E{I—" —eA)”, {5}

con A potenziale vettore (Vx A = B). Nel nostro caso conviene acegliere & =
{— 8By, 0, 4, quindi =i ha:

1
H = g—{{pe +eBy)" + 5, +90) - {8

Dhato che non cotnpare dipendenza eaplicita nd da x néda =, po e p: 900 coatanti
del moto, quindi la eoluzione sarh del tipo o = explifer}enplit-=)F{y), con

] —+

ay 13
bt 50 —i+va_n

A —

Fly) funzione da determinare attraverso Fapplicazione delleq. Ji Schrédinger
{Eq. 6), che d4:

_KEF

T Gyt

can B eapressions opportuna di energia. Cuesta ¢ Pequazione di un cacillatore
armonico lungos ¥ oon pulaagione o, e cemntrn O oscilberione:

fodes
Ho Py { &)

I livelli di enerpia sono guantizzali con awtovalbori:

+ %mu'f{y —w) F=EF, {7}

B i = Bbin + (1 + 3, (9)

dove § & un numero guantioo riferito all’energia cinetica Fi,. 5i noti che i valori
del quants di energia sono genvalmente bassi (el o frazioni di me') per campd
magnetici vawali.

Ea il gistema hspiceole dimensioni long

Epponiarnn 1o spezmore eia L),

allora deve sasere fpo| = L, da cui:

BO!

eBL
[

it

ky <

Quindi, la bagaa dimensionalith longs 3 produce una limitazione sul valore di
ke [efetto di "mezcolmments™ delle divezioni spagiali tipico delle aibuazioni in
cui i ha a che fare con un campo mwagneticn).

0.3 Densitd degli stati e degenerazione

MNel cann unidmensionale, che qui ai applica per tenere conto del conflnamento
spaziale lungo la divezione ¥, e di conseguenza del confinamento nello epazio k
lungn la diregione x (vedi Eq. {13)), &i ha che la densith degli atati (Tiferita aolo
alla direzione di quantizzagions) &

L
k. = —. 11
glfo)dk, = dit, =~ {11}
Conaiderando la aola diresione x, integrando ai ofbiene:
I eBE2
i — = —— 12
.||u, T Irh ¢ {12}

dove g & tenuto conto della condizione Eq. (10). Dividendo Fegpreasione al
membro di destra di Eg. (12} per £7 ai ottiene in pratica una deosith (1, ) di
portatori di cavica per unith di superfcie {reale], ehe vale gquindi:

el
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Landau levels

DFaltra parte, Fenergia del portatore di carica s pad acrivere

niLe

BE= =
Eot+o =, {14)
donve Figpette alla Eq. (14) & & eaplicitata la parte cinetica. Dalla Ey. [14) 6
ricava
o' in 1
T R i O Y {15}
am JE-E
s i i
T 16

denzitd degli stati tipica per un gase 1-DEG. In corrapondencza delle energie £,
la [ E) tende a divergere [livelli di Landan).

A L

£ E n=2 |
j &%n; Subbands
™
N S
ky=0 frs ky=0
(a) (b}

Figura 9.3
Schema di bande _dx efiergia in funzione di k. in assenza (@) ed in presenza (b) di wn
campo magnetico 5 applicate in direzione = (vedi eg. 9.52).

1D-like density of states

density,

Densith degli stati

. (o= E}
E tho = Egb
nergia o,

Figura 9.5
Densita di stati vicino al minimo di una banda in presenza di un campo magnetico co-
con lin

(Surface) density of states, i.e., carrier
level is eB/h
For a given number of carriers

(electrons), a B value exists so that all
carriers are in the ground level

corresponding to each Landau

stante: il caso B =0 & indicato ea tratteggiata {vedi eq. 8.25) e il caso B#0 con linea
contimua (vedi eq. 9.58).

The small thickness of the
conductor combined with the
presence of the magnetic field

leads to a 1D-like behavior
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QHE and von Klitzing qguantum of resistance |

0.4 Cuanto di resistenza di Von Klitzing

Conaiderando la forza di Lorentz come forza elettromotrice, nelleffetto Hall
clasaico ai ha che la differenza di potenziale Ve (in direzione g, chod Lrasveraa
rigpetto al moto delle cariche e al campo magmetico) & Fyr = DB € la corrente
di portatori Ji carica & F = n el con w, dengith auperfcisle di cavica gih
introdotta. Dralla legge di Ohi 2 dedece una resigtenza Hall Ry,

=2 {17}

Nel QHE, Fazione combinata del campo moagnetieos e del confinaniento apaiale
porti alla precenza dei lvelll di Landan e alla lore degenerachone. Cioando un
livella di Landaw {auppoviame il livells m) & completatnente sceupatas e il zoe-
ey d mmplet.am&ut.e vuobo, ciod i livelli di Landan aons pimli:_ OENUIG £07)

{18}

da eni detiva che la resiatenza Hall s esprime come sottomultiple del valore
.fbl."rzi, dipendente aobs da eoatanti fondamental:

Queato rieultato ha diverss congeguenze. In prine lwopo atabiliece un valore
ruantizzato della registenza [il cui valore & 25812 806 ol ). Occorve notare che
nellefetio Hall quantistico Iz quantizzazione della recistenza & concepuensa del
confinamento epaziale, 'na la eua ceservazione & resa possibile dalla presenza
del campe Magnetico [ consegeents guantizzazione del wioto dei portator i
catica]. In condizioni ovdinarie Peffetto di quantizzazione non & Facilmente o=
gervabile (e i genevale, g feords che 2 egistenza nolaurata pud esere interpre

Fig. 0.3. Scanning electron micrograph of a long wire 75 nm wide patterned from a
GaAs-AlGaAs heterojunction. Four-terminal Hall measurements are made using

taka come un parallelo di tanle resiatenee]. Inoltre esigtono delle oconeguenze voltage probes placed along the wire ~ 2 um. apart. Reproduced with permission from
notevali dal punto di vieta metrelogics, legate alla precisione con ewi i pud M. L. Roukes, A. Scherer, S. J_, Allen, H. G. Craighcad, R. M. Ruthen, E. D. Beebe
eseguire la misura delle costanti fondamentali # e &2, Dal punto di vista tee- and J. P. Harbison (1987), Phys. Rev. Lett. 59, 3011.

nolegico, la conseguenza principale @ comungwe che la diffevenza di potenziale
mlignata won & lineare ool la corfente, ma segite un Lipieo andamento a gradini,
Per ragioni di tipo epevimentale, i aistemid in cui tradizionaliente g osseeva QHE
goma delle etercstrutiore, ad esempio tipo Gade/GaheAl, in coi il conflnamenta .
apaziale & ollenulo in atrati eotdili (poszd guantici). M eaS U re m e ntS Ca rrled OUt at Vel'y

Per completezza, occorve vicordare che accanlo al QHE #ers, scoperto da

Von Klitzing {premio Nobel 19855, esiste un QHE frazionario, legato all'occupazions low tem pe rature in order to
Trazionaria dei livelli di Landaw {Taui and Stormeer, prenio Mokl 19235 .
decrease (phonon) scattering
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QHE and von Klitzing quantum of resistance Il

n=2

Conduzione g 104
Conduziong_~ //-'EF g
n-GaAl_As| p-GaAs =TT /' —~Valenza z
: g o
i
Valenza 5
{8)
0
250 |- %H'?h' """"""
< 3
EW0r = T
T X
= 1 2 >
" — Ty = e e _r.
e i 2e? =
T 100 - Uy b - - 50
g I_4e
& S0F
0 s 100 150
{b} e
Figura 1111

{a) Indicazione schematica della ginnzione con campo elettrico, che produce stati con mobilita
alla superficie della giunziome. (&) Misure di effetto Hall quantizzato, con i caratteristici
gradini dove il potenziale di Hall & costante, e il potenziale nella direzione della corrente
nullo. (Da K. von Klitzing, Europhysics News 13, 2 (Aprile 1982)).

http://www.physicstoday.org

MAGNETIC FIELD (T)

August 2003 Physics Today 39

Resistance is quantized in units
of R, ~ 25.8 Kohm

The quantum depends on the
fine structure costant, i.e., on
fundamental quantities (e, h)
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A few words on fractional-QHE

1982 (Tsui, Stoermer, et al.): discovery of Fractional-QHE

p h e .
=— - Filling factor
[ Ry g e’ J L 2mp *1 J
TTT—— o Interpretation (Laughlin): many-body
e R B problem
LU s
T The Hamiltonian should include terms
Toa™ - accounting for interaction inter-electron
O Rt and electron-ion (lattice)
oo A collective wavefunction (product of
— single electron wavefunction) should be
. used and the corresponding Landau
) I,n A levels identified
of Degeneracy of the levels turns out to
L i TP P L % depend on the specific system
r‘ EDHEHE'::::!:IFIILE‘:EII:FI = ConSIdered

] Fisica delle Nanotecnologie 2005/06 - ver. 4b - part 2 - pag. 16
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Towards 1DEG

We have seen that 2DEG structures with magnetic field B do exhibit
quantized transport behavior (von Klitzing quantum of resistance)

Role of B: mix up the directions so that 2DEG DOS behaves similar to 1DEG

If B = 0 no quantum effect is observed (the charge carriers can always find a
“non confined” direction for their motion!)

1DEG structures (quantum wires) expected to show a signature of quantum
confinement effects without B

From the technological point of view, a 1DEG is quite complicated to
achieve in “conventional” electronics (inorganics), but it can be done

The simplest way, at least ideally, is based on the exploitation of either
linear conductive molecules (organics) or mesoscopic structures
(nanowires/nanotubes): we will see more!
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Examples of realization of 1-D nanostructures (conventional) |

(a)

(a

7
.
%%/////////%%

7

[: GaAs (c)

% AlGaAs
- n-AlGaAs

FIGURE 3. Examples of epitaxially grown QWRs and QBs. A ridge QWR (a), a groove
QWR (b), a (field-induced) edge QWR (c), a (T-shaped) edge QWR (d), a tilted superlat-
tice (TSL) (e), and a self-assembled QB structure (f). See section VI.B for their details
and references.

FIGURE 20. (a) An image of an MBE grown GaAs ridge. (b)An SEM cross-s ectional

image of a GaAs ridge with thin AlAs marker layers. (c)A TEM image of a ridge quantum
wire structure after Koshiba er a.[97]. (See color plate.)

Film growth with specific arrangements
(e.g., onto specifically “cut” susbtrates)
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Examples of realization of 1-D nanostructures (lithography) Il

(@)

Figure 16: Schematic cross sectional views of
three different ways o define narrow 2-DEG chan-
nels in an AlGaAs/GaAs heterostructure. The pos-
itively ionized donors and the negatively charged
2-DEG channel as well as the negative Schottky
gate clectrode (b) are indicated.

{a) Lithographically structured wire on a modula-
tion doped (AlGaAs n-doped) AlGaAs/GaAs het-
erostructure,

{b) 2-DEG channel formed in the 2-DEG at an
AlGaAs/GaAs heterostructure by the action of two
evaporated metal gates. 17 biased negatively they
repel the electrons in the 2-DEG below.

{¢) A similar effect on the electron concentration
in the 2-DEG is obtained hy spatially varying ion-
ized donor concentration (positive charges) in the
upper AlGaAs layer.

(c)

W SHane Split-gate MODFET

o (MOdulation Doping)

2 DEG channel

split-gate electrod es

rh:._.,:_‘_‘?‘*'

2D eleciron

+ system
e rasas: AlGaAs
—T et >
2 DEG channel GaAs
) et

T i +errrrrerranrs AlGaAs

t GaAs An additional pair of
2 DEG channel electrodes with a nanosized

gap leads to a 1-D like
conducting channel

Da R. Waser Ed., Nanoelectronics

e e o T Lithography (typically EBL) used to define lateral the structure

VCH, 2003)
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A closer look at the de Broglie wavelength

Degenerate and non-degenerate conductors

At equilibrium the available states in a conductor are filled up according
to the Fermi function

1

hE)=13 exp[(E - ErYkaT]

1.2.7)

where E; is the Fermi energy. Away from equilibrium the system has no
common Fermi energy, but often we can talk in terms of a local quasi-
Fermi level which can vary spatially and which can be different for dif-
ferent groups of states (such as electrons and holes) even at the same
spatial location. We will generally use F, to denote quasi-Fermi levels
and reserve E; for the equilibrium Fermi energy.

There are two limits in which the Fermi function inside the band
(E > E,) can be simplified somewhat making it easier to perform numeri-
cal calculations (see Fig. 1.2.2). One is the high temperature or the non-
degenerate limit (exp{E; - E¢)/ksT >> 1) where

fo(E) = exp[~(E - E¢YksT] (1.2.8)
() Non-degenerate limit
fo (E)
Ef —> E
Eg
(b) Degenerate limit
o E » E

Fig. 1.2.2. 'I"he Fermi function inside the band (E > E) can be approximated by (a)
Eq.(1.2.8) in the non-degenerate limit and (b) by Eq.(1.2.9) in the degenerate limit.

The other is the _low
(exp[Es — E¢]/ksT << 1) where

temperature or the degenerate limit

(1.2.9)

In this book we will mainly be discussing degenerate conductors.
To relate the equilibrium electron density n, (per unit area) to the
Fermi energy we make use of the relation

ne = f N(E) fo(E)E

For degenerate conductors it is easy to perform the integral to obtain

ns = No(E¢ —E;) where N, = m/nh® (1.2.10)

where we have made use of Eqs.(1.2.6) and (1.2.9).
At low temperatures the conductance is determined entirely by elec-

trons with energy close to the Fermi energy. The wavenumber of such
electrons is referred to as the Fermi wavenumber (k;):

(1.2.11)

Using Eq.(1.2.10) we can express the Fermi wavenumber in terms of the

electron densitv:

The corresponding velocity is the Fermi velocity v: = hke/m .

(1.2.12)

In the “degenerate case” (low
temperature) Fermi velocity
depends on the square root of
the electron density
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1.3 Characteristic lengths

A conductor usually shows ohmic behavior if its dimensions are much

larger than certain characteristic lengths, namely, (1)_the de Broglie

wavelength, (2) the mean free path, and (3) the phase-relaxation length.

We will discuss these one by one. In addition to these characteristic
lengths, the screening length can also play a significant role especially in
low-dimensional conductors as we will see in Section 2.3 (see Fig. 2.3.3).

Wavelength (1)

We have seen (Eq.(1.2.12)) that the Fermi wavenumber k; goes up as the
square root of the electron density. The corresponding wavelength goes
down as the square root of the electron density: De B rog lie

wavelerglh at the

For_an electron density of 5 x 10"!/cm?, the Fermi wellf'g l'll }éea out Ity

At low temperatures the current is carried mainly by electrons
having an energy close to the Fermi energy so that the Fermi wavelength
is the relevant length. Other electrons with less kinetic energy have
longer wavelengths but they do not contribute to the conductance.

Mean free path (L,,)
An electron in a perfect crystal moves as if it were in vacuum but with a
different mass. Any deviation from perfect crystallinity such as impurities,
lattice vibrations (phonons) or other electrons leads hat
scatter the electron from one state to another thereby changing its mo-

mentum. The momentum relaxation time 7, is related to the collision
time 7. by a relation of the form

1

— = —Qpn
Tm Te

where the factor an (lying between 0 and 1) denotes the ‘effectiveness’
of an individual collision in destroying momentum. For example if the

Criteria for 1DEG situations

collisions are such that the electrons are scattered only by a small angle
then very little momentum is lost in an individual collision. The factor ay
is then very small so that the momentum relaxation time is much longer
than the collision time. For a more detailed discussion of scattering times
in semiconductors see, for example, Chapter 4 of S. Datta (1989),
Quantum Phenomena, Modular Series on Solid-state Devices, vol. VIII,
eds. R. F. Pierret and G. W. Neudeck, (New York, Addison—Wesley).

The mean free path, L., is the distance that an electron travels before
its initial momentum is destroyed; that is,

(132)

where 7w is the momentum relaxation time and v¢ is the Fermi velocity.
The Fermi velocity is given by

vf-ﬁki=ﬁ-,/2zms—»3x10’cm/s if ny=5x10"/cm?
m m

Assuming a momentum relaxation time of 100 ps we obtain a mean free
path of L, = 30 pm.

Phase-relaxation length (Lg)

Let us first discuss what is meant by the phase-relaxation time (t,). We
will then relate it to the phase-relaxation length. In analogy with the mo-
mentum relaxation time we could write

1 1

—_— - _a'p
T, Tc

where the factor o, denotes the effectiveness of an individual collision in
destroying phase. The destruction of phase is, however, a little more
subtle than the destruction of momentum. A more careful discussion is re-
quired to define what the effectiveness factor a, is for different types of
scattering processes.
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A rough picture of 1DEG conductivity

In the bulk, classically we have:
J=nev

1. At T=0 only the portion of electrons
eV/ Eis involved in the transport
process

2. Fermi velocity must be considered:

Ve =V(2E¢/m);
3.n ofg(E)dE ; in the 1-D case o VE;

| = eV/E; e V(2E-/m) V(2m E.)/h =
=2 e2V/h

Conductivity in an ideal 1DEG
structure:
G,p=ilV=2¢e?h

=

eVI\‘~\ E.

reservoir ) reservoir
2-D 2-D
1-D

channel

Mean occupation number

1

A

Fermi distribution
- eV

=

1DEG DOS peculiarities lead to a quantized conductivity

See van Wees et al.
PRL 60 848 (1988)
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Landauer levels (intrawire tunneling)

“tunneling” through a quantum wire

Barrier
= wire wire Pz =
Reservoir 1 Reservair 2
o Figure 19: Onc-channel
y meodel for the derivation of
| | | | ballistic quantum transport
T‘ | | | through a barnier between twa
'W—._| | | reservoirs. The harrier is
| FA | | | deseribed by its transmittance
| | | W | Tand its reflectance R uy. ps,
| i F.B W # and g arc the chemical
i F2 potentials in the different
| | TEZIONS.

A general description of non-diffusive quantum-mechanical transport 1n nano- and
mesoscopic structures has been developed by Landauer [9] and Biittiker [10]. 1n the ide-
alized mode! two reservoirs | and 2 characterized by their chemical potentials Wy, and
W, , are connected through two ideal 1-D wires of length L. In these wires the electronic
states are plane waves ©(x) = exp{ike)/ JL , which can have positive and negative k-vec-
tors and two spin orientations. With the quantum-mechanical expression for the current

density in one dimensi
y mone dimensen (quantum)
current dehsity

i= % (?_.;';"V 4 - @?V?,f"‘)

the comresponding current for one k-vecior and one spin orientation is obianed as

etk
mi

(36)

Between the two wirdGan cnergetic barriec)or the electrons is assumed, which is charac-
terized by its quantum-mcciamentreflection coefficient R and its transmission coefti-
cient T, with 7+ B =1 {Figure 19).

Due to the difference Wy —#,., of the chemical potentials a current through the
wires is induced. 1t results [rom electrons with energies W, = W = W ; and k-vectors in
positive forward direction, which occupy the clectronic states in the left wire. Part of the
current is reflected at the barrier and the other part is transmitted. The reflected current is
absorbed in reservoir 1 while the transmitted part is absorbed in reservoir 2. Only within
these reservoirs does chergy dissipation occur. The total current in the positive k-direc-
tion in the Teft wire is thus obtained by adding up all occupied states and using (56) as

Da R. Waser Ed., Nanoelectronics
and information technology (Wiley-
VCH, 2003)

mL

_ ehk

I LD (W, Wiz (57)

DY (W) is the 1-D density of states ( i i i
per wire length L} according to (51). With
W= k**/2m this yields e b g o G W

e
I =—(Wg— W7
W) (58)
and for the transmitted net current in the right wire
e
1= =T (W, W, (59
wh
The reflected current J; in the left wire is accordingly
e
g =—R(We —Wr2) (60)

b h

?;_fF‘?f the dp?ermination of the chemical potentials the total number of states in the wires
Ewnl})posmve and negative k-values, has to be taken into account, i.e. |

I (WY W, —W o). In the right wire the current, which is induced by (W5 |~ ), cor-
esponds to a complete occupation of states between Wy and W, (Figire 19), such

TD(]}(W)(WFJ = WF,Q) = 2DUJ (W)(WFJ = Wp,g) (6]')
ithin the left wire both the currents I, and J; have to be cansidered and the resulting

cupation of states is assumed to correspond to the occupation of states between W,
d-#; 5, such that ‘

(1+ R) DU (), — We o )= 2D () (W . — W2 (62)
ith R+T = 1 the difference between (61) and (62) yields
Pra—Wep = R(We1—Wez) (63)

. -;-- ¥ as the voltage between both wires and ef"= W: , - Wpp one obtains from (59
Bl (63) for the current through the wires e T e

(64)

This is the analogue to Ohm’s law for quantum transport through a nanoscopic system.
The conductance of the system thus follo

(65)
This so-called Landauer formula aga s the conductivity quantum eth (_Jf 1.D

oI
quantum transport. The Landauer formalism Tor uantufi T to
a network where several wires connect a barrier with reservoirs,
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Ballistic transport

In the ballistic transport regime,
IW H electrons are assumed to move
within the structure without

J
b B : .
scattering (but that at the interface
o\ Quasi-ballsic ) | with the ohmic contacts, i.e., the
\/\/\/\; 1w | higher-dimensional “outer world”)
4 R

Ballistic

avav:

e

Figure 10.4: Electron trajectories characteristic of the diffusive (¢ < W, L), quagi-ballistic
(W < £ < L), and ballistic (W, L < £) transport regimes, for the case of specular boundary
scattering. Boundary scattering and internal impurity scattering (asterisks) are of equal
importance in the quasi-ballistic regime. A nonzero resistance in the ballistic regime results
from backscattering at the connection between the narrow channel and the wide 2DEG
regions. Taken from H. Van Houten et al. in “Physics and Technology of Submicron
Structures” (H. Heinrich, G. Bauer and F. Kuchar, eds.) Springer, Berlin, 1988.

Behavior analogous to an
optical fiber in the total
reflection mode

If a quantum wire is considered,
comparison between the de
Broglie wavelength and the
transverse size suggests to
consider single mode fibers

Transverse modes
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Transverse modes |

1.6 Transverse modes (or magneto-electric subbands)

this section we will discuss the concept of transverse modes or sub-
ids which will appear repeatedly in this book. These are analogous to
ransverse modes (TEu, TMu: efc) of electromagnetic waveguides. In
row conductors, the different transverse modes are well separated in
rgy and such conductors are often called electron waveguides.

We consider a rectangular conductor that is uniform in the x-direction
and has some transverse confining potential U(y) (see Fig. 1.6.1). The
motion of electrons in such a conductor is described by the effective mass
equation (see Eq.(1.2.2))

. 2
£+ (inV + eA)
2m

+UQ)|¥(x,y) = E¥(x,y)

We assume _a_constant magnetic field B in the z-direction perpendicular
to the plane of the conductor. This can be represented by a vector poten-
tial of the form

A=—-iBy = A, =-By and A, =0

so that Eq.(1.2.2) can be rewritten as

£+ P ;m eBy) | Ez':; sUO)W(xy) = E¥(ry)  (161)

d d
- —if— d —in-=
where Px= and py = 3

The solutions to Eq.(1.6.1) can be expressed in the form of plane waves
(L: length of conductor over which the wavefunctions are normalized)

W(x,y) = -%ex;{ikx]x(y) (1.62)
where the transverse function ) (y) satisfies the equation
2 2
P LLLR *2;3’) + 24 U0) [x0) = Ex0) (163)
m

Note that the choice of vector potential is not unique for the given mag-
netic field. For example we could choose A, =0 and A, = -Bx. The solu-
tions would then look very different though the physics of course must
remain the same. It is only with our choice of gauge, that the solutions
have the form of plane waves in the x-direction. We will use this gauge in
all our discussions.
We are interested in the_nature of the transverse eigenfunctions and the
_cigenencrgies for different combinations of the confining potential U and
the magnetic field B. In general for arbitrary confinement potentials Uuly)

ere are no analytical solutions. However, for a parabolic potential
thich is often a good description of the actual potential in many elec-

m waveguides)
confining potential

ue)

i, —>

. A rectangular conductor assumed to be uniform in the x-direction and
having some transverse confining potential U(y).

Electrons are confined within the structure
by a suitable potential

The “transverse eigenfunction” (depending

on the potential) must obey the boundary
conditions
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Transverse modes Il
i
Confined electrons (U = 0)Gn zero magnetic field @ where 4n(q) = €x p[—q2/2]H,. @ !
nsider first the case of zero magnetic field, so that Eq.(1.6.3) reduces
H,(q) being the nth Hermite polynomial. The first three of these poly-

w2k 2 4 nomials are
Py~ mawdy? ~E 1.6.4
B PR B L gy ]x(y) %0) (1.64) 1 2 "t

Ho(q) ==, Hi(g) = o7+ and Hz(Q)-W
1e eigenfunctions of Eq.(1.6.4) are well-known (see any quantum o .
echanics text such as L. I. Schiff (1968), Quantum Mechanics, Third The velocity is obtained from the slope of the dispersion curve:
lition, (New York, McGraw-Hill) Section 13). The eigenenergies and

1 dEmk) ke Group velpgl
genfunctions are given by w(n,k) = P P prcfjg)y
@ =u.(q) where g= \/’"C‘D Gty The dispersion relation is sketched in Fig. 1.6.2. States with different
index  are said to belong to different subbands just like the subbands that
nik? arise from the confinement T the z-direction (sec Section 1.2). The
- - yees 1.6.5b i -
E(n.k)=E. + m +(n+-})hwo, @ ( ) spacing between two subbands is equal to Aw,. The tighter the

confinement, the larger w, is, and the further apart the subbands are.

Usually the confinement in the z-direction is very tight (~ 5-10 nm) so

n=123. fF® that the corresponding subband spacing is large (~ 100 meV) and only

A T HH Eq one or two subbands are customarily occupied. Indeed, in all our

Subbands \ j discussions we will assume that only one z-subband is occupied. But the
y-confinement is relatively weak and the corresponding subband spacing

is often quite small so that a number of these are occupied under normal

>k operating conditions. The subbands are often referred to as transverse
modes in analogy with the modes of an electromagnetic waveguide.

Fig. 1.6.2. Dispersion relation, E(k) vs. k. for electric subbands arising from
electrostatic confinement in zero magnetic field. Different subbands are indexed by n.

Quantization (subbands) arises when
After S.Datta, Electronic Transport in solving the Schroedinger equation in the
Mesoscopic Systems, Cmbridge (1997) confining potential (transverse modes)
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Transverse modes Il

Calculating the current

To calculate the current we note that the states in the narrow conductor
belong to different transverse modes or subbands as discussed in Section
1.6. Each mode has a dispersion relation E(N,k) as sketched in Fig. 2.1.1b
with a cut-off energy

EN =E(N,k- 0)

below which it cannot propagate. The number of transverse modes at an

energy E 1s obtained by counting the number of modes havin

energies smaller than E:

M(E) = 2 HNE - ¢en) 211

We can evaluate the current carried by each transverse mode (numbered
by ‘N’ in Fig. 2.1.1b) separately and add them up. i
Consider a single transverse mode whose +k states are occupied
according to some function f*(E). A uniform electron gas with n electrons
per unit length moving with a velocity v carries a current equal to env.
Since the electron density associated with a single k-state in a conductor
of length L is (1/L) we can write the current I* carried by the +k states as
. € . exl1dE .,
P=p 2 @355 ®
Assuming periodic boundary conditions (see Fig. 1.2.1 and related discus-
sion) and converting the sum over k into an integral according to the
usual prescription

2 - 2 (for spin)xi——fdk

k

2e %
btai I' === f*
we obtain h-[f (E)dE
where ¢ is the cut-off energy of the waveguide mode. We could extend

this result to multi-moded waveguides and write the current, I*, carried by
the +k states in a conductor as

. 2e’ .,
I S L FH(EYM(E)E (2.1.2)

where the function M(E) (defined in Eq.(2.1.1)) tells us the number of
modes that are above cut-off at energy E. Note that this is a general result
independent of the actual dispersion relation E(k) of the waveguide: the

current carried per mode per unit energy by an occupied state is equal to
2|e|/h (which is about 80 nA/meV).

Contact resistance

Assuming that the number of modes M is constant over the energy range

> E > u;, we can write

2 _ 2
=2 w2y (2.13)
h e h

so that the contact resistance (which is the resistance of a ballistic
waveguide) is given by

Golwi=t)e  h _129kQ
I 2¢°M M

Note that the contact resisfan inversely with the number of
modes. The contact resistance of a single-moded conductor is ~ 12.9 kQ,
which is certainly not negligible! This is the resistance one would mea-
sure if a single-moded ballistic conductor were sandwiched between two
conductive contacts.

Usually we are concerned with wide conductors having thousands of
modes so that the contact resistance is very small and tends to go un-
noticed. To calculate the number of modes M(E) we need to know the
cut-off energies for the different modes ey. As we have seen in Section
1.6, the details depend on the confining potential U(y) and the magnetic
field. However, for wide conductors in zero magnetic field the precise
nature of the confining potential is not important. We can estimate the
number of modes simply by assuming periodic boundary conditions. The
allowed values of k, are then spaced by 2n/W (see Fig. 1.2.1), with each
value of k, corresponding to a distinct transverse mode. At an energy E;
(= h*k#/2m), a mode can propagate only if —k: < k, < ks. Hence the
number of propagating modes can be written as

kW w |
M = Int| —| = Int| —
. [ F 1 ] [M/Z]
where Int(x) represents the integer that is just smaller than x. Assuming a
Fermi wavelength of 30 nm, the number of modes in a 15 pm wide field-

effect transistor is approximately 1000, so that the contact resistance is
about 12.5 Q.

The waveguide supports trasnverse
modes below some (energy) cut-off,

leading to Landauer levels
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Da G. Timp, Nanotechnology EI ectron Waveg u | d es |

(Springer-Verlag, 1999) Da R. Waser Ed., Nanoelectronics

and information technology (Wiley-

VCH, 2003)
GATE VOLTAGE (V) POINT
-1.4 -1.3 -1.2
SPLIT | [ CONTACT
GATE o/ . ; ; ; '
= 10— QPC
= S AlGaAs/GaAs
&
o 4/EMENE 0O & 8}—0.6K
= G
(NN Z 6
S 2 £
2 2 4
= >
O
% e i - i - Q 2
a
Z 3 0 | 1 1 1 |
8 o1 O COSNSE  — SRS | 20  -1.8 -1.6 1.4 12 10
i LAN DAU E R GATE VOLTAGE (V)
I | | I | | | L EVE LS Figure 18: Quantized conductance of a quantum
-0.75 -0.65 -0.55 -0.45 point contact (QPC) at 0.6K prepared at a
GATE VOLTAGE (V) AlGaAs/GaAs interface (2-DEG). The conduct-
ance was obtained from the measured resistance
FIGURE 19. The two terminal conductance of an electron waveguide at T=280mK as a after subtraction of a constant series resistance of
function of gate voltage (or the width of the constriction). The inset at the top of the 400 €2 {After [8]).

figure shows a top view of 200 nm long split-gate electrodes with a 300 nm gap between
them placed on a high mobility GaAs/AlGaAs heterostructure. The bottom inset shows a
similar device on the same heterostructure with a 600 nm lithographic length. The quant-
ization of the conductance (G =(1+0.01)24%/k) of the 200 nm long constriction shown in

(a) deteriorates after cycling to room temperature, as shown in (b). We attribute the Qu antized resistance
deterioration to a ditference in the configuration of depletion charges corresponding vari-
ations in the width of the constriction. The poor quantization of the conductance of a Observed (at Very |OW T)

600 nm long constriction, shown in {(c), is also supposed to develop from fluctuations in
the width. (See color plate.)
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Electron waveguides Il
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FIGURE 15. The interconnection delay for 1 em and 1 mm long lines as a function of line
width for three materials Al WSi,, and polysilicon assuming a channel resistance of
Reor=1kQ. It is assumed that the spacing between lines is equal to the width, that the
interconnection thickness is a third of the width, and that the dielectric thickness is about
a fifth of the width. Constant field scaling is applied and we assume that pa=3uQcm,
Pwsi, =300Qcm, and P roty =5001Q2cm, for the respective resistivities. Adapted from Bak-
oglu[9s].

If conductance is not affected by

diffusive transport:

- resistance (within the
wire) is negligible;

- speed is at a maximum;
- dissipation can be
neglected;

- single electron transport
can be achieved (no doubt
a single charge entering
the structure is
transmitted!)

Quantum wire potentially suitable as unconventional interconnects
(but cumbersome fabrication, need to operate at very low T!)
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1DEG and active devices?

Can the 1DEG transport properties be exploited in a three-terminal
(active) device?

Can a 1DEG-channel MOSFET (not just a split-gate) be realized?

[The idea is to control the few/single electron flow across the wire
with an additional electric field or voltage]

We will see in “non conventional” implementations!
(possibly with less fabrication problems)

Quantum wire (1DEG)
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Conclusions

v’ Transport properties (conductivity) is strongly affected by
dimensionality

v Lower dimensionality implies a different functional dependence
of DOS on the energy

v Quantum confinement effects may arise when considering
nanostructures with size comparable to the de Broglie wavelength
(either single-particle, or degenerate semiconductors)

v Quantum Hall Effect (2DEG + magnetic field) demonstrates
quantized resistance

v" Similar quantization effects (but for factor 2!) is observed also
in electron waveguides

v’ Landauer levels can be associated to transverse modes
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